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ABSTRACT 
 
Aims: To identify Cardiac Autonomic Neuropathy (CAN) from a range of measures extracted from 
Heart Rate Variability (HRV), including higher moments of RR intervals and a spectrum of entropy 
measures of RR intervals. 
Study Design: Analysis of HRV measured from participants at a diabetes screening clinic. Groups 
were compared using t-tests to identify variables that provide separation between groups. 
Place and Duration of Study: Charles Sturt Diabetes Complications Clinic, Albury, NSW Australia. 
Methodology: Eleven participants with definite CAN, 67 participants with early CAN, and 71 
without CAN had their beat-to-beat fluctuations analyzed using two spectra of HRV: the spectrum of 
moments of RR intervals and the spectrum of Renyi entropy measures. RR intervals were extracted 
from ECG recordings and were detrended before analysis. 
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Results: Higher moments of RR intervals identified a previously unnoticed sub-group of patients 
who are atypical within the definite CAN group. Classification of CAN progression was better with 
Renyi entropy measures than with moments of RR intervals. Significant differences between early 
and definite CAN were found with the sixth and eighth moments, (P=.022 and P=.042 respectively), 
but for entropy measures P values were orders of magnitude smaller. 
Conclusion: Identification of early CAN provides the opportunity for early intervention and better 
treatment outcomes, as well as identifying atypical cases. Our findings illustrate the value of 
exploring a range of different measures when attempting to detect differences in groups of patients 
with CAN. 
 

 
Keywords:  Cardiac autonomic neuropathy; cardiac arrhythmia; heart rate variability; entropy 

measures. 
 

1. INTRODUCTION 
 
Cardiovascular disease (CVD) and sudden 
cardiac death (SCD) represent a major portion of 
world-wide morbidity and mortality. In the United 
States, the incidence of SCD has been reported 
at 300,000 annually, but may be higher as the 
exact definition of SCD remains to be clarified 
[1]. In addition, an aging population and higher 
rates of obesity and diabetes may lead to an 
increase in SCD, which is associated with 
autonomic nervous system dysregulation of the 
heart [2,3]. Coronary artery disease is a 
multifactorial disease that is a major contributor 
to SCD, as are congestive heart failure, left 
ventricular dysfunction and post-myocardial 
infarction [4,5]. Accurate, non-invasive, clinical 
diagnostic tools have the potential to reduce the 
incidence of SCD in at-risk populations. 
Autonomic nervous system modulation of the 
heart leads to variability in the heart rate and in 
the length of the inter-beat interval. A certain 
degree of beat-to-beat fluctuation is an important 
physiological attribute, and a loss of variability in 
heart rate is associated with pathophysiology and 
increased risk of adverse cardiac events. Thus 
an increased heart rate or lowered heart rate 
variability (HRV) have been validated as markers 
of increased risk of myocardial infarct [4,6]. 
 
Cardiovascular function is under the modulation 
of the autonomic nervous system. Damage to the 
parasympathetic or sympathetic part of the 
autonomic nervous system leads to dysfunction 
of heart rate control and vascular dynamics, and 
an increased risk of mortality, as shown in the 
ACCORD trial [7]. Cardiac Autonomic 
Neuropathy (CAN) has been described in 
diabetes, Parkinson’s disease, depression, 
coronary heart disease and congestive heart 

failure [8-12]. CAN is a disease that involves 
nerve damage leading to increasingly abnormal 
control of heart rate, which is especially 
prominent in people with diabetes. The extent of 
the loss of sympathetic and parasympathetic 
involvement in regulating the heart rate can be 
determined from an ECG recording and analyzed 
to provide a risk stratification tool. 
 
The standard clinical test for CAN is the Ewing 
battery, but this has limitations, as one or more of 
the five tests may be contraindicated due to 
cardiac or respiratory disease [13-15]. Analysis 
of the distribution of RR intervals over a selected 
period such as 20 minutes provides a more 
robust basis for determining autonomic nervous 
system function [16]. The simplest 
characterisation of heart rate variability remains 
the mean heart rate and standard deviation; 
however other measures may provide further 
insight. 
 

1.1 Heart Rate Variability 
 
A common type of ECG signal is shown in      
(Fig. 1). Such signals have been studied 
extensively and the diagnostic value of the 
different features is well established. Letters are 
used to identify ECG features. The fiducial point 
or peak of the QRS interval can be identified 
most easily and is therefore used to obtain an 
RR interval tachogram, from which the heart rate 
variability can be obtained. The natural rhythm of 
the human heart is known to vary in response to 
sympathetic and parasympathetic signals. 
Generally, sympathetic activity increases HR and 
decreases HRV, whereas parasympathetic 
activity decreases HR and increases HRV [17]. 
HRV is commonly used in assessing the 
regulation of cardiac autonomic function [18,10]. 
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Fig. 1. A typical ECG signal showing the RR Interval 
 

The ECG signal may often be degraded by the 
presence of noise, so that the most reliable 
feature that can be obtained from low quality 
recordings (and therefore the most easily 
obtained measurement) is the interval between 
successive R peaks, the RR interval, which is the 
inverse of the heart rate. A typical adult heart 
rate is 60-80 beats per minute, with typical RR 
interval lengths between 750 and 1000 
milliseconds. RR intervals can be subjected to 
further analysis through a variety of algorithms in 
order to provide measures with good discriminant 
power, based on the difference of RR interval 
variability. HRV provides information only on the 
changes in the interval length, is non-invasive 
and easy to obtain from an ECG recording. 
 
Cardiac Autonomic Neuropathy (CAN) leads to 
arrhythmias and may precipitate SCD. An open 
question is to what extent this condition is 
detectable by measures based on HRV. An even 
more desirable option is to detect CAN in its 
early, preclinical stage, to improve treatment and 
treatment outcomes. 
 

1.2 Multi-scale Moments 
 
Moments are measures of distribution such as 
mean, median, mode, skewness and kurtosis. 
The various moments from RR intervals provide 
a numeric value by which the distribution can be 
characterized. The familiar arithmetic mean and 

variance of RR intervals can be informally viewed 
as moments of order 1 and 2 respectively, where 
order refers to the exponent used in calculating 
these values. Higher order moments can be 
defined as: 
 �� = �[(� − 	)� ]               (1) 

  
where E[x] is the expectation of X, and µ is the 
arithmetic mean of the variable X. Expectation is 
commonly interpreted as the sum of observations 
on X in a sample of size n, divided by n, so that 
for example the second moment or variance is 
defined as: 
 

�2 = 1� �(�� − �̅)2
�

�=1
 

 

(2) 

 
which calculates deviation in observations xi in 
the sample of size n from the mean. The third 
and fourth moments have a known interpretation, 
as the Skewness and Kurtosis respectively, 
although m3 and m4 are usually subject to 
corrections in order to address statistical bias 
and magnitude. Skewness describes the amount 
of asymmetry of the distribution, so can reveal 
whether the distribution is leaning to the left or 
right, and consequently whether the tails are 
larger on the lower or upper sides of the 
distribution. A negative value indicates a larger 
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tail for values lower than the mean, while a 
positive value indicates a larger tail above the 
mean. Kurtosis measures the flatness of the 
distribution. A flat or platykurtic distribution has a 
negative value for kurtosis, while a peaked or 
leptokurtic distribution has a sharp peak. The 
former indicates that the variance of the 
distribution is due to unusually large deviations 
from the mean, when compared to a Gaussian 
distribution. The latter indicates that the variance 
is due to frequent small deviations. 
 
Higher moments have more difficult 
interpretations, but provide different measures of 
the distribution of RR intervals, so can be used to 
compare different groups of patients. It is usual 
to normalize these moments to provide a scale 
invariant spectrum:  

 

	� = ����  
 

(3) 
 

 
where µk is the standardized moment, and σ

k
 is 

the standard deviation raised to the power   of k. 
 

1.3 Multiscale Renyi Entropy 
 
In the context of the analysis of heart rate 
variability, various entropy measures can 
estimate the variability of the HRV. An entropy 
measure is typically of the form: 

 

�(�) =  − � �(�� )���� �(��)
�

�=1
 

 

(4) 
 

  
where p(xi) is the probability of the random 
variable x, and b is the base of the logarithm, 
commonly 2. Renyi entropy H is a generalization 
of the Shannon entropy: 
 

�� (�) =  11 − � ���2 �� ���
�

�=1
� 

 

(5) 

 
where pi is the probability that X=x and α is the 
order of the entropy measure. This is the 
parameter that is varied to produce the multi-
scale entropy. The probability can be estimated 
in a number of ways. In this work we estimate the 
probability of a sequence of RR intervals of 
length π by comparing the sample i with all other 
samples of length π in the recording, using 
methods similar to those used to estimate 
sample entropy, and as outlined by Lake [19]. 
This involves measuring the distance between 

sample i and all other samples j, then estimating 
pi using a Gaussian (normal) kernel: 
 

�� = � ���  −!��"�#22�2 $
�

# =0
 

 

(6) 

  
where σ is a parameter controlling the width of 
the density function and distij is a distance 
measure, in this case Euclidean, in π 
dimensions: 
 

!��"�# = �&��+� − �# +� (2)

�=0
 

 

(7) 

 
This yields a probability estimate for each sample 
of length π, with the desirable property that its 
value lies between 0 and 1. 
 

2. METHODOLOGY 
 
Anthropometric and clinical data were obtained 
from patients reviewed at the Charles Sturt 
Diabetes Complications Screening Group 
(DiScRi), Australia [20]. Participants attending 
the screening clinic had their lead II ECG 
recorded for 20 minutes and RR intervals 
analysed. The subjects were comparable for age, 
gender, and heart rate, and the same physical 
conditions were used for each subject. ECGs 
were recorded using a Maclab Pro with Chart 7 
software (AD Instruments, Sydney). Initial 
screening of participants led to the exclusion of 
those with heart disease, presence of a 
pacemaker, kidney disease or polypharmacy 
including multiple anti-arrhythmic medications. 
The study was approved by the Charles Sturt 
University Human Ethics Committee and written 
informed consent was obtained from all 
participants. CAN was defined using the Ewing 
battery criteria, and so participants were 
separated into early CAN, definite CAN, or no 
CAN [13,21,22]. 
 
Eleven participants with definite CAN, 67 
participants with early CAN, and 71 without CAN 
attending the screening clinic participated. From 
the 20-minute recording, a 15-minute segment 
was taken from the middle of the original 
recording to remove start-up artefacts and 
movement artefacts at the end of the recording. 
Only the RR intervals were retained, and no 
other information from the ECG were utilised in 
this study. The baseline was removed by 
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subtracting the mean value of the RR interval 
from the RR data. The trend was removed after 
analysis by linear correlation. For each 
detrended series the mean, variance, and higher 
moments were calculated as described above. 
 
The multi-scale Renyi Entropy was calculated 
from -5< α<+5, where α represents the scaling 
exponent and α=1 is the Shannon entropy. For 
all calculated measures, a student’s t-test was 
performed to compare the means of every 
variable. For all variables from the moments and 
the Renyi spectra, histograms were calculated 
and smoothed using a filter of: 
 

 
                                       

Frequency values for all histograms were then 
normalised, by dividing by the number of patients 
in each class. A selection of these histograms is 
presented below. 
 

3. RESULTS AND DISCUSSION 
 
Results for the spectrum of moments are shown 
in (Table 1). Column headings are given for each 
calculated moment. The first two columns 
provide the mean and variance. Under these 
headings, the P-value results of t-tests are 
provided, comparing the means of the three 
patient groups for each moment. Any value 
below P=.05 is regarded as significant at the 
95% confidence interval level, and is indicated by 
shading. 
 
(Table 1) shows there is evidence for a 
difference between the mean of RR intervals 
(P≤4.99E-6), and evidence of a difference 
between variance of RR intervals (P≤8.53E-4). 
These results are well known and agree with the 
findings of previous studies [23]. Also of clinical 
interest is the significant difference between 
Early and Normal CAN groups for the sixth and 
eighth moments (P=.022 and P=.042 
respectively). 
 

The values of mean and variance for the three 
patient groups are illustrated using smoothed 
histograms in (Figs. 2 and 3). Patients in the 
Normal group (controls) have lower mean RR 
interval (Fig. 2) and higher variance (Fig. 3), 
while patients in the Definite group (confirmed 
CAN) have a higher mean and lower variance. 
The values of the 6

th
 and 8

th
 moments are 

illustrated similarly in (Figs. 4 and 5). 
Examination of these two figures reveals a 
hitherto unnoticed outlier sub-group in the 
Definite CAN group, which is apparent in both 
(Figs. 4 and 5). This outlier sub-group consists of 
two patients who have elevated values, apparent 
in higher even moments including the 4

th
 moment 

(not shown) but not apparent from any of the odd 
moments analysed. This difference is due to the 
fact that moments calculated using even 
exponents treat both positive and negative 
deviations from the mean as equivalent. 
Moments calculated using odd exponents on the 
other hand, treat deviation from the means 
differently, depending on whether they are 
positive or negative. These outliers were not 
detected by the mean or variance, but became 
apparent when higher moments were examined. 
This highlights the value of exploring higher 
moments associated with the RR interval 
distribution for analysis of HRV. 
 
The results for Renyi entropy are shown in 
(Table 2). Column headings identify the Renyi 
entropy calculated for different values of the 
exponent α. As in the previous table, the P-
values resulting from t-tests are provided below 
these headings. An examination of significant 
results, in shaded cells, reveals very different 
results for negative and positive values of α. 
Nearly all the significant values correspond to 
α<0. There is little difference resulting from the 
actual value of α chosen, but in general the 
negative part of the Renyi spectrum appears to 
provide superior discrimination between patient 
groups. 
 
 

 
 

Table 1. P values comparing mean value of moments for each of the 3 classes: D: Definite 
CAN, E: Early CAN and N: Normal (controls). Skewness is closely related to µ3, while kurtosis 

is closely related to µ4. Shaded cells indicate significance at P = .05 or better 
 

T-test Mean Vari µ3 µ4 µ5 µ6 µ7 µ8 µ9 

D vs. E 5.0E-6 8.5E-4 .63 .89 .17 .83 .16 .53 .15 

E vs. N 5.6E-7 9.1E-6 .74 .063 .29 .022 .23 .042 .28 

N vs. D 4.7E-10 1.8E-7 .84 .32 .41 .24 .44 .22 .055 



Table 2. P values comparing mean of renyi entropy for each of the 3 classes: D: Definite CAN, 
E: Early CAN and N: Normal (controls). Shaded cells indicate significance at 

 

T-test H(-5) H(-4) H(-3)

D vs. E .15 .16 .17 
E vs. N 7.7E-5 7.0E-5 6.1E
N vs. D 8.9E-5 1.0E-4 1.3E

Fig. 2. Smoothed histogram comparing the three pati

Fig. 3. Smoothed histogram comparing the three patient gro
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values comparing mean of renyi entropy for each of the 3 classes: D: Definite CAN, 
E: Early CAN and N: Normal (controls). Shaded cells indicate significance at P=.05 or better

3) H(-2) H(-1) H(1) H(2) H(3) 

 .18 .22 .27 .25 .22 
6.1E-5 5.3E-5 7.2E-5 .09 .19 .22 
1.3E-4 2.2E-4 7.4E-4 .057 .066 .060 

 

 
2. Smoothed histogram comparing the three patient groups for mean RR interval

 

 
3. Smoothed histogram comparing the three patient groups for variance of 

RR interval 
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values comparing mean of renyi entropy for each of the 3 classes: D: Definite CAN, 
=.05 or better 

H(4) H(5) 

.21 .20 

.21 .20 

.054 .050 

 

ent groups for mean RR interval 

 

ups for variance of  



 
Fig. 4. Smoothed histogram comparing the three patient groups for the 6th moment. This 

reveals a previously undetected outlier sub
 

Fig. 5. Smoothed histograms comparing the three patient groups for the 8th moment. The 
previously undetected outlier sub

 
The smoothed histogram for Renyi entropy with 
α=-5 is shown in (Fig. 6). The differences are 
readily observed, with patients from the Definite 
group providing, on average, a higher value of 
Renyi entropy (mean of 2.14), followed by 
patients from the Early group (mean of 2.06). 
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4. Smoothed histogram comparing the three patient groups for the 6th moment. This 
reveals a previously undetected outlier sub-group (indicated with arrow) in the definite group

 
5. Smoothed histograms comparing the three patient groups for the 8th moment. The 

previously undetected outlier sub-group is indicated with an arrow 

The smoothed histogram for Renyi entropy with 
The differences are 

readily observed, with patients from the Definite 
group providing, on average, a higher value of 
Renyi entropy (mean of 2.14), followed by 

the Early group (mean of 2.06). 

The lowest values for H(-5) were obtained from 
patients in the Normal CAN group, with a mean 
value of 1.88. Compare this with the smoothed 
histogram for the Shannon entropy 
(Fig. 7). Here the three patient groups cannot be 
distinguished from each other. It is clear that
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4. Smoothed histogram comparing the three patient groups for the 6th moment. This 
definite group 

 

5. Smoothed histograms comparing the three patient groups for the 8th moment. The 
 

were obtained from 
patients in the Normal CAN group, with a mean 
value of 1.88. Compare this with the smoothed 
histogram for the Shannon entropy H(1) shown in 

. Here the three patient groups cannot be 
distinguished from each other. It is clear that the 



Shannon entropy is unable to distinguish 
between the three groups of patients, whereas 
the Renyi entropy with negative exponents is 
able to separate these groups. 
 
In this study, we have examined two spectra of 
measures. The spectrum of moments is obt
by extending the variance using exponents 
greater than 2. These moments include 
skewness and kurtosis, but form part of a 
spectrum, which extends further to include 
moments of order 8 and higher. For instance the 
third moment (or skewness) indicates 
the variance is due to fewer, larger deviations on 
one side of the distribution compared to the 
other. In definite CAN when the sympathetic 
component of autonomic regulation starts to 
predominate or parasympathetic withdrawal is 
occurring, a skewed distribution favouring shorter 
RR intervals can be expected. The current work 
indicates that the distributions are fairly 
symmetrical, as shown by relatively low values 
for the third moment (skewness) and values that 
were similar across all three patient 
Kurtosis describes the flatness of the distribution 
relative to the normal distribution. RR interval 
time series with high kurtosis have a distinct 
peak near the mean, decline rather rapidly, and 
have heavy tails. In this case the relatively large 
values for the 4

th
 moment indicate a distribution 

with a high peak around the mean, indicating that 
 

 
Fig. 6. Smoothed histograms comparing the three patient groups for 
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Shannon entropy is unable to distinguish 
between the three groups of patients, whereas 
the Renyi entropy with negative exponents is 

In this study, we have examined two spectra of 
measures. The spectrum of moments is obtained 
by extending the variance using exponents 
greater than 2. These moments include 
skewness and kurtosis, but form part of a 
spectrum, which extends further to include 
moments of order 8 and higher. For instance the 
third moment (or skewness) indicates whether 
the variance is due to fewer, larger deviations on 
one side of the distribution compared to the 
other. In definite CAN when the sympathetic 
component of autonomic regulation starts to 
predominate or parasympathetic withdrawal is 

distribution favouring shorter 
RR intervals can be expected. The current work 
indicates that the distributions are fairly 
symmetrical, as shown by relatively low values 
for the third moment (skewness) and values that 
were similar across all three patient groups. 
Kurtosis describes the flatness of the distribution 
relative to the normal distribution. RR interval 
time series with high kurtosis have a distinct 
peak near the mean, decline rather rapidly, and 
have heavy tails. In this case the relatively large 

moment indicate a distribution 
with a high peak around the mean, indicating that 

most of the variance is due to many relatively 
small deviations of the RR interval size from the 
mean, and very few large deviations.
 
The spectrum of moments higher than of order 4 
for RR intervals suggested that higher odd 
numbered moments do not afford a measure to 
assist in distinguishing the three groups. 
However, the higher even moments drew 
attention to a sub-group of patients who are 
atypical within the group with definite CAN. 
Moments with even exponent treat positive and 
negative deviations from the mean in a similar 
way, so may group together values that may not 
be associated using odd moments. This sub
group requires further investigation. However 
not uncommon to misclassify a patient using the 
Ewing battery, especially if only one or two of the 
required five tests are used. For the current 
study, only those ECGs were analysed where 
results for the complete Ewing battery of tests 
was available. In spite of this, some 
misclassification is possible. In addition, patients 
with cardio respiratory disorders, those that are 
frail or obese may have difficulty in performing 
the required tests. Therefore passive testing for 
CAN, as is the case by interpreting the RR 
intervals obtained from an ECG recorded at rest, 
may provide more robust results for assessment 
of CAN progression. 
 

6. Smoothed histograms comparing the three patient groups for renyi entropy with 
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most of the variance is due to many relatively 
small deviations of the RR interval size from the 
mean, and very few large deviations. 

ts higher than of order 4 
for RR intervals suggested that higher odd 
numbered moments do not afford a measure to 
assist in distinguishing the three groups. 
However, the higher even moments drew 

group of patients who are 
he group with definite CAN. 

Moments with even exponent treat positive and 
negative deviations from the mean in a similar 
way, so may group together values that may not 
be associated using odd moments. This sub-
group requires further investigation. However it is 
not uncommon to misclassify a patient using the 
Ewing battery, especially if only one or two of the 
required five tests are used. For the current 
study, only those ECGs were analysed where 
results for the complete Ewing battery of tests 

. In spite of this, some 
misclassification is possible. In addition, patients 
with cardio respiratory disorders, those that are 
frail or obese may have difficulty in performing 
the required tests. Therefore passive testing for 

reting the RR 
intervals obtained from an ECG recorded at rest, 
may provide more robust results for assessment 

 

ropy with α=-5 



Fig. 7. Smoothed histograms comparing the three patient groups for Renyi entropy with 
(equivalent to Shannon entropy)

 

The spectrum of Renyi entropy was much more 
successful in distinguishing patient groups, 
showing highly significant differences in means 
for the three groups (P<.0001). However, the use 
of a spectrum of measures revealed that these 
differences could not be detected using the 
Shannon entropy (α=1). It was necessary to 
explore more fully the range of possible 
exponents in order to discover a suitable entropy 
measure that could distinguish patient groups.  
One drawback of the study was that groups such 
as those with diabetes or obesity often have 
prescribed medication, which may directly or 
indirectly affect cardiac function and therefore 
rhythm analysis. Our data reflect this, as the 
number of participants identified with definite 
CAN is rather small due to the exclusion criteria 
applied. 
 

4. CONCLUSION 
 
Risk stratification of sudden cardiac death is an 
important component in clinical practice, 
especially in patients with diabetes, where the 
risk is much higher and an asymptomatic stage 
associated with Cardiac Autonomic Neuropathy 
(CAN) often occurs. It is desirable to find a 
relatively non-invasive method to ide
and this work explores the feasibility of 
identification based on measures of Heart Rate 
Variability (HRV). In this work, we have 
examined the use of two spectra of 
measurements to identify CAN: the spectra of 
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7. Smoothed histograms comparing the three patient groups for Renyi entropy with 
(equivalent to Shannon entropy) 

The spectrum of Renyi entropy was much more 
successful in distinguishing patient groups, 

significant differences in means 
). However, the use 

of a spectrum of measures revealed that these 
differences could not be detected using the 

). It was necessary to 
explore more fully the range of possible 
exponents in order to discover a suitable entropy 
measure that could distinguish patient groups.  
One drawback of the study was that groups such 
as those with diabetes or obesity often have 
prescribed medication, which may directly or 

diac function and therefore 
rhythm analysis. Our data reflect this, as the 
number of participants identified with definite 
CAN is rather small due to the exclusion criteria 

Risk stratification of sudden cardiac death is an 
t component in clinical practice, 

especially in patients with diabetes, where the 
risk is much higher and an asymptomatic stage 
associated with Cardiac Autonomic Neuropathy 
(CAN) often occurs. It is desirable to find a 

invasive method to identify CAN, 
and this work explores the feasibility of 
identification based on measures of Heart Rate 
Variability (HRV). In this work, we have 
examined the use of two spectra of 
measurements to identify CAN: the spectra of 

moments and the spectra of Renyi en
calculated from RR intervals. 
 

The mean and variance of the RR interval are 
useful discriminators, but higher moments did not 
provide any additional discriminating power, 
except that some moments were able to detect 
outliers. However the Renyi 
particular the negative part, was consistently 
successful in identifying groups of patients.
 

Our findings illustrate the value of exploring a 
range of measures when attempting to detect 
differences in groups of patients. Although 
measures such as mean, variance and Shannon 
entropy may be more well-known than Renyi 
entropy, these measures may not provide the 
required discrimination. An exploration of 
multiscale measures as demonstrated in this 
study provides new insights into cardiovascular 
disease. 
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7. Smoothed histograms comparing the three patient groups for Renyi entropy with α=1 

moments and the spectra of Renyi entropy, both 

The mean and variance of the RR interval are 
useful discriminators, but higher moments did not 
provide any additional discriminating power, 
except that some moments were able to detect 
outliers. However the Renyi spectrum, in 
particular the negative part, was consistently 
successful in identifying groups of patients. 

Our findings illustrate the value of exploring a 
range of measures when attempting to detect 
differences in groups of patients. Although 

such as mean, variance and Shannon 
known than Renyi 

entropy, these measures may not provide the 
required discrimination. An exploration of 
multiscale measures as demonstrated in this 
study provides new insights into cardiovascular 

All authors declare that written informed consent 
was obtained from the patients for publication of 

All authors hereby declare that all experiments 
have been examined and approved by the 
Charles Sturt University Human Ethics 
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Committee and have therefore been performed 
in accordance with the ethical standards laid 
down in the 1964 Declaration of Helsinki. 
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