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ABSTRACT

The light amplification by finite active media is used extensively in modern optics applications. In
this paper, the light amplification and scattering by the cluster of small active particles is studied
analytically and numerically with the help of the local perturbation method and phenomenological
laser theory. It is shown that light amplification is possible even for one small particle, and that
the amplification is more profound when the light frequency nears the frequency of the cluster’s
morphological resonance. Theoretical discussions are supplemented by numerical results for
scattering by clusters which particles positioned at ordered and at slightly disordered positions.
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1 INTRODUCTION

Light amplification by stimulated emission of
radiation (laser) is well known phenomenon
routinely employed in solids-state, gas, and dye
lasers [1]-[3]. With the development of micro
and nano technology the new kind of lasers, so-
called photonic crystal lasers, emerged [4]-[7].
The common peculiarity of the photonic crystal
lasers is that they are made of finite number
of particles or cells ordered at least in one
dimension. These lasers are extremely versatile:
they can be made from active host medium filled
by passive scattering particles, or from active
scatterers immersed into passive host medium,
or both. Moreover, the particles in such lasers
can move or be static. From practical point of
view, the photonic crystal lasers and amplifiers
can be used as light sources to compensate the
optical losses in metamaterials [8]-[10].

To the author’s knowledge, the light generation
by a scattering medium with negative resonance
absorption was initially studied in work [11] where
it was shown that the lasing is possible in such
medium. The scattering by individual active
spheres and cylinders was studied analytically
and numerically in a number of works (see, for
example [12]-[16] and references therein). At the
same time, the discussion of the scattering by
a cluster of active particles is somewhat limited
to very small clusters made of few particles [17]
or to periodic structures [18]. Scattering by
many active particles occurs in so-called random
lasers ([19]- [25]), while analytical predictions
are difficult to made for such systems due to
extremely large number of particles.

Recently, the scalar wave scattering by dispersive
particles was studied by using the local
perturbation method (LPM) in the work [26].
In reality, however, the vector wave scattering
occurs.

To the author’s knowledge, the cluster amplifier
made of small particles was not studied
analytically and numerically in the literature
before.

In this paper the light amplification and scattering
by active particles with the size smaller than the
incident wavelength is studied with the help of the

LPM [27]-[30] and the phenomenological laser
theory [1]-[3]. As an example, two important
cases are studied numerically: scattering by
ordered cluster and by weakly disordered cluster.
It was shown that the light amplification is
possible in both cases, however it is severely
affected by the size of the particles, by
the concentration of the doped active atoms,
by interaction between the particles, and by
morphological resonances.

2 THE LPM FORMALISM

The formalism used in this section is described in
a number of papers ([27]-[28]) and it will be briefly
presented here for convenience and consistency.

Consider the cluster positioned at the origin of
the coordinates and made of N identical active
particles which characteristic size L is small
compared to the incident wavelength A. The
frequency-domain fourier transform E(r,w) of
the electric field E(r,t) propagating in the host
medium filled with the particles is described by
the following equation [29]

(A—=VRV+E)E(r,w) +

B2
=3 fr =t Eren — en)Blrn,w) = S@), )
=1

where r and r,, are the radius vectors of the
observer and the n-th particle respectively, and

=2 _ Y e fr—r)=4 b TEW
k= =oven fir r")*{o, ré¢ V,
(2.2)

Here A and V are the Laplacian and nabla
operators, ® defines tensor product, k£ is a
wave number in the host medium (w is the
angular frequency and c is the speed of light in
vacuum), ;.. and e, are the relative (in respect
to vacuum) permittivities of the n-th particle and
the host medium respectively, f is the function
describing the shape of the scatterers, V,, is
the volume of the n-th particle, and S is the
source of the field. The permittivity es.,» of the
active particles is, in principle, a complex function
depending on the electric field E(r,,,w) inside the
particle, the frequency w, and other parameters.
We will discuss this topic in greater detail in the
next section.
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It should be noted, that the equation (2.1) is an
approximate one and it is correct only when the
small scatterers (kL < 1) are considered.

The solution of the equation (2.1) can be
expressed in the form

E(r,w) = Ein(r,w) + Eo(r,w), (2.3)

where the scattered field E.. is

- P~ VeV
Esc(r,w):g<l+ ]‘i >><

N
Z Esc,n _5h rn,w)@n(r),

n=1

(2.4)

and
eta(r—ry,)

q—W) dq

/ Faet—)
flar= g [ e

Here T is the 3 x 3 unitary tensor in polarization
space and r, is the radius vector of the n-th
particle. The function f is the Fourier transform
of the function f. The incident field E;, is
created by the source S in the host medium (more
information can be found in [31]).

The formula (2.4) is rather general one and
it describes the field scattered by the cluster
made of small particles of arbitrary form. The
resonance properties and interference between
the scatterers are taken into account by the fields
E(r,,w) inside the particles. The fields E(r,)
should be found by solving the system of 3N
linear equations obtained by substituting r = r,,
into (2.3).

The scattered field (2.4) can be simplified when
the observer is outside of the cluster, such that
r # r,. In this case the integrals (2.5) can be
calculated explicitly and the scattered field (2.4)
can be presented in the following form

~ KV ([~ VeV
E.(r,w) = pr— <I+ 2 ) X
N eikBn
nz::l Ese,n — 5h I‘n,w) Rn ) (25)
where
R, =|r—rn|, r #rp. (2.6)

Here R, is the distance between the observation
point r and the radius vector r,, of the n-th
scatterer, V is the scatterer’s volume.

In many practical cases the distance between the
cluster and the observer is much larger than the
size of the cluster, i.e. |r| > max(|ry,|), and in
addition, the condition k |r| > 1 is satisfied. In
this case the field (2.5) can be simplified and it
can be rewritten in the following form

- kZV eikr R
Boc(r,w) = = (1—1@1) x
N .
Z 5sc n - rn7w)eizkllrn, (27)
where
l=r/r, r = |r| > max(|rn|), kr > 1. (2.8)

We note that the formula (2.7) is the final
expression for the field scattered by the cluster of
small particles, and it will be used in the following
discussion.

3 THE PERMITTIVITY OF
THE ACTIVE PARTICLES:
STEADY STATE SOLUTION

In this section we will study the permittivity e »
of the active particles which characteristic size
is much smaller than the incident wavelength
(kL < 1). The particles are active due to
homogeneously distributed doped active atoms.
The density of the active atoms is M. We
note that the permittivity .., in formula (2.7)
can be complex number with negative or positive
imaginary part, and in this case one can study
wave scattering with gain or loss in active media
[12]-[14]. The problem with such approach is
two-fold. First, the value of the imaginary part
is not related to the properties of the actual
medium, and second, the permittivity is the same
for all particles, that is not true for real systems.
As it was suggested in [15], such approach is
valid for quantitative estimations of lasers before
threshold. For more accurate investigation one
should use rigorous methods taking into account
atomic transitions and pump dissipation.

It is important to acknowledge that when the
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particles are small the number of active atoms in
upper state is constant within the particle, while
this number can be different for other particles.
We assume that all the scatterers have the
same density M of the active atoms. It is not
limiting assumption, and it is very convenient one.
We also assume that the amplifier is at steady
state, so the densities of the active atoms in
the upper and low states are time independent.
We approximate the active atoms as two-level
systems exited by the optical pump with the
frequency w, and relaxing with the wide range of
the frequencies w; (j = 1,2, .., p, .., N.,). We can
present the permittivity ., of the small particles
in the following form

(3.1)

where €., is the permittivity of the n-th
scatterer without the active atoms and ¢ ,, is
the permittivity of the n-th particle due to the
presence of the active atoms. The latter can be
expressed in the following form [1]

5,sc,'n(rn7 w) = 7'5 \/ 6gc,n(ML(r”)Ua(w)7
My (rn)oe(w)), (3.2)

where the emission and the absorption cross
sections of the active medium respectively are

, (3.3)

—_ 0 !
Esc,n = <L:sc,n + 8sc,'n (rn, w)7
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mcy/ Egc,n ((w - Q(L)Q + 72) ’

and the density of the active atoms is
M = My(ry) + Mr(ry). (3.5)

Here My and M; are the densities of the
active atoms in the upper and low states
respectively, and M is the total density of the
active atoms. The frequencies 2, and Q. are
the resonance frequencies for absorption and
emission respectively, and « is the oscillator
strength. The frequencies ~, and ~. are the
dipole relaxation frequencies for the absorption
and the emission respectively (typical values
are about 10'® Hz [32]), and e and m are the
electron’s charge and mass respectively.

oe(w) =

(3.4)

oa(w) =

The importance of the formula (3.2) is that
it allows us to use experimentally measured
emission and absorption cross sections (o. and
0q.) When the density My is known.  This
approach will be used in the following section

where the results of the numerical calculations
will be presented. It should be noted also that
we neglected by the real part of the permittivity
€%.,n, because it is small compared to the optical
contrast sgc,n—eh, especially near the resonance.
We note that the formulae (3.3) were calculated
assuming that w ~ Q., Q,.

3.1 Rate Equation Approximation

The expressions (3.1) and (3.2) for the
permittivity of the particles suggest that the
densities My and Mj should be known. We
can find them by using the rate equation
approximation (see for example, [1]).

When the pulse duration exceeds the dipole
relaxation time (typically 10712 s), the density
My of the upper level atoms can be calculated
by using the rate equation approximation in which
the dopants respond so fast that the induced
polarization follows the optical field adiabatically
[32]. We use the following rate equation [33]

N,
dMU(I‘n) . =
T = ;Ij(rn,wj) X
[ML(rn)oa; — My (rn)oe;] — My (rn)/7, (3.6)
where
0o = 0alwj), dej = 0e(wy), (3.7)
Ii(rn,w;) = yr E(rn,w;)| Aw”.(3.8)

Here o,; and o.; are the absorption and the
emission cross sections at the frequency w;
respectively, and I; is the flux of photons at the
frequency wj, and the |...| brackets denote the
absolute value. The parameter r is the relaxation
time of the exited atom (typically 1073 — 107% s
[32]), h is the reduced Planck constant, Aw =
wj+1 —wj is the frequency bin, and N,, is the total
number of the frequency bins.

Since we consider only steady state solutions

when
dMU (I‘n)

dt
the solution of the rate equation (3.6) is
M Z;VW ]j (I‘,“ UJj)O'aj
17+ 33 Ii(tn, w;)(0aj + 0¢j)
(3.10)
and the formula (3.2) for the permittivity ¢, ,, has
the form

=0, (3.9)

MU(I‘n) =
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a(W)oe; — 0e(W)ogj]

N,
oo(w)/T+ S Li(rn,w;) o
€lsc.,n(rnaw) = ’L'LM\/E(SJC,TL ( )/ ZJ ]\?( J) [
w 1/T+Z]-w[j(rn,Wj)(Uaj+Uej)

The formula (3.11) is the main result of this
section and it shows that the permittivity of the
small active scatterer is a complex function of
the intensities of the fields E(r,,w) inside the
particles, frequency w, position of the particles
r,, and absorption and emission cross sections
oq; and oc;. When the light intensity changes
(due to increased reflection from the scatterer’s
boundaries or due to decreased amount of
the scattered light from all other particles, for
example), it will affect the permittivity ¢, ,, (3.11).
We note that the photon fluxes I;(r,,w;) should
be found by solving the system of nonlinear
equations with respect to the fields E(r,,w;)
inside the particles.

3.2 Usage of Weak Scattering

As the expression (3.11) for the permittivity of the
small active particles suggests, the field scattered
by the cluster should be found by solving the
system of nonlinear equations with respect to
the fields E(r,,w) inside the particles. However,
this tedious task is essentially simplified in our
case, because we consider the scattering by
small particles. As the result, the scattered field in
the sum (3.11) is small compared to the incident
one, and it is natural to use perturbation theory
where the intensities I; are small compared to
the pump intensity I,. We distinct pump and
signal (anything but a pump) frequencies w,, and
wj respectively.

When the signal is so small that

U7+ Ip(rn, wp)(Tap + 0ep) >

No,
le(rn,wj)(aaj + 0ej), (3.12)
J#p

Tap = 0a(Wp), Oep = 0ec(wp), (3.13)

Etv?

ISC = T 5 5 5
(r,w) 16m2e2r?

N
—ikl-r,
( l®1) g (ese;n —€n) rn,w)e m
n=1

, (3.11)

the permittivity (3.11) can be expressed in the
approximate form

/ cM 0
Esc,n(rme) =1 w Ssc n X

0a(w)/T + Ip(Tn, wp) [0a(w)oep — Te(w)Tap]
/7 + Ip(rn, wp)(Tap + Tep)

.(3.14)

For some estimations it can be sufficient to
use the permittivity (3.14), while for rigorous
numerical calculations one can apply general
formula (3.11) where fluxes I, are found by using
the method of successive approximations.

When emission and absorption spectra are very
distinct and separated such that e, = 04s = 0,
we can simplify the formula (3.14) for the pump

and the signal respectively
iCM \/ €gc,n X
w.

p

E.lscm(r’ﬂawp) =

Cap/T + Is(rn)0ap0es

17+ Ipy(tn)oap

(3.15)

M
—1 €d%,mn X
Ws

E;c,n(rnaws) =

Ip(tn)oesoap

17+ Iy(rn)oap

The important feature of the formulae (3.15) is
the sign flip: for the pump it is positive (the pump
is absorbed) and for the signal it is negative (the
signal is amplified).

4 INTENSITY OF THE
SCATTERED FIELD AND
THE LIGHT AMPLIFICATION

We define the intensity of the scattered field as
I.. = |Es|?, and by using the formula (2.7) we
can present the intensity in the following form

2
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where

l=r/r, r = |r| > max(|ryn|), kr > 1, (4.2)

and the permittivity e, is described by the
expression (3.11) or by (3.14). The expression
(4.1) suggests that the light amplification (related
to the imaginary part of the permittivity e.,) is
due to step wise amplification inside each active
particle, and it is coded in the fields E(r,,w).
Below we consider the fields E(rn,w) in grater
detail for one active particle.

4.1 The Light Amplification by
Small Active Sphere

Consider the light amplification by small active
sphere. In this case the intensity of the scattered
field is described by the expression (4.1) where
the field E(r1,w) has the following form [34]

Ein (I‘l ) w)

E(rl,w) = D)

(4.3)

and the denominator D is

<1 — L%k* - i%LSkB) )
(4.4)

The resonance frequency w, is found from the
following equation

(Esc,l - Eh)

1
+ 3e h

Re D(w,) =0, (4.5)
and the resonance width ¢ is defined as
Im D
£= | apd 46)
T e w=uw,

In accordance with formulae (4.5) and (4.6) the
resonance width & and the resonance frequency
w, respectively are

- /&n Lw? 3c? Im(ese,1 — €n) (4.7)
I 2w L2 Re?(esc1 — €n)’ '
and
W = V3 (1 4 Refesen — €h))l/2
L+/Re(esc — €n) 3en

(4.8)
When the permittivity e..,1 of the particle is real,
the resonance width is defined by the first term
in Eq. (4.7). When the imaginary part of the

permittivity e,.,1 is taken into account and it is
negative or positive, the resonance width can
be slightly decreased or increased respectively.
The formulae (4.7) and (3.2) suggest that when
Myoe < Mpo,, the resonance width increases
(with respect to the one in the passive medium)
and it decreases when Myo. > Mo,.

This decrease (or increase) corresponds to
effective gain (or loss) of the field scattered by
the particle at the resonance frequency.

We note that similar conclusions can be drawn for
the clusters consisting of two and more particles,
while the analytical investigation of such systems
is much more complicated.

5 TWO NUMERICAL EXAM-
PLES: LIGHT AMPLIFI-
CATION BY ORDERED
AND BY WEAKLY
DISORDERED SPHERICAL
CLUSTER

In this section the light amplification and
scattering by active clusters (clusters made of
an active material) is studied numerically. The
normalized intensity R of the scattered field is
calculated. The normalized intensity is defined
as

R(r,w) = Lsc(r,w)/Linc(0,w). (5.1)
All the used clusters are 3D structures (as shown,
for example, on the Fig. 1) made of cubes doped
with Yb3T (active material). The absorption and
emission cross sections are taken from [35] and
the other parameters are from [33]. The incident
field is generated by the point source described
by the following formula

Ein(r,w) =E

eik(rfrs)
) k|I’*I’S| > 15

(5.2)
where the field E, is polarized along z direction.

O47r|r—rs\

" The source is positioned at rs = {1,0,0} and the

center of the cluster is positioned at the origin of
coordinates r = {0,0,0}. The pump wavelength
is selected to be A, = 911 nm, and at this specific
wavelength the field Eq is artificially increased
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by several orders of magnitude to simulate the
pump. Finally, the perturbation theory is used to
calculate the density of the upper level atoms.

and
ordered

5.1 The amplification
scattering by
spherical cluster

Consider the scattering by the spherical cluster
made of the small active cubes organized into
simple cubic lattice. The size of the cubes in the
cluster is L = 25 nm, the period is d = 2.2L, the
radius of the cluster is 5d. The permittivity of the
scatterers is e,¢,» = 4.2466 and the permittivity of
the host medium is €, = 1. Such combination of
the cluster’s permittivity and dimensions creates
optical resonance of the passive cluster (cluster
without any active material) near kL = 0.16 (A =
982 nm).

The Fig. 2 shows the normalized intensity &
of the scattered field for the active clusters with
Y3t density M = 5 % 102" m™3, M = 2.5 x 10%7
m~3, and M = 10*" m~3. For comparison, the
intensity of the scattered field from the passive
cluster with Y3+ density M = 0 m™? is also
presented.

x107
L
E“ 04 " '.F
N - —l
x 107" _

y, m

The Fig. 2 shows that light is significantly
amplified at the selected frequency kL = 0.16
for the doping exceeding M = 10" m~3. For
relatively low M, when the doping increases
2.5 times (from M 10 m™ to M
2.5 * 10" m~3), the intensity grows only 1.6
times. However, for relatively higher M, when
the doping increases only 2 times (from M =
2.5 % 102" m™® to M = 5 % 10" m™3), the
intensity grows 2.25 times. Additional simulations
(not presented here) suggest that at even higher
doping, the light amplification increases several
orders of magnitude while the doping increases
only few times. It is important to realize that by
using correct design, the light amplification can
be produced by cluster made of few hundreds of
small active particles. This phenomenon opens
a way for novel applications in nanomedicine,
nanooptics, and security.

We realize that the size of the cluster used in our
calculation is too small to made a lasing with the
conventional values of the doping M (M ~ 10%°
m~?%) and that is why we have presented only
results with M smaller than physically realistic
limit (~ 10%® m~3).

'''''

"9
0 )
x 10"

X, m

Fig. 1. The schematic representation of the spherical cluster made of 123 small cubes. The
period of the cluster is d=2.2L, and the characteristic size of the cubes is L = 25 nm.
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5.2 The Amplification and
Scattering by Spherical
Cluster with Weak positional
disorder

In this subsection we consider the light

amplification and scattering by the active cluster
which particles are randomly positioned near
predefined positions. The predefined positions
are the nodes of the cubic lattice with the period
of d = 2.2L, and the particles are positioned
not further than 0.1L from the nodes to avoid
a collision. We note that the distance 0.1L is
actually 2.5 nm, that is much less than the size of
the particle L, and that is why we call this cluster
weakly disordered one.

We note that the density of the active atoms
in the cluster is M 5% 102" m=3. The
permittivity of the particles and the host medium
iS €se,n = 4.2466 and e, = 1 respectively, the
characteristic size of the cubes is L = 25 nm, and
the total number of the particles in the cluster is
N = 515.

The results of the calculations are presented on
the Fig. 3. The figure shows the results of two
simulation runs for the disordered cluster and one

result for ordered cluster for comparison.

The figure suggests that despite weak positional
disorder the random positioning significantly
influences the scattering and amplification by the
cluster. In our particular case, two scattering
peaks compete with each other: one near
kL = 0.154 (A = 1020 nm) and another is
near kL = 0.147 (A = 1069 nm). This feature
is probably related to the emission spectrum of
active material (Y'53T) which has two crests: very
narrow one near 980 nm and broad one near
1030 nm.

The random amplifier differs from the nonrandom
one in a number of ways. The first difference is
the absence of well defined boundaries, which
in turn, govern the morphological resonances.
Thus, the amplification (or lasing) can be at
several frequencies simultaneously. The second
difference is the random structure inside the
cluster, affecting the interaction between the
particles and the total gain as the result. It is
important to realize that even small randomness
will significantly affect the light amplification in
the cluster made of small active particles, and
that proposed theory can explain and predict the
related effects.

R (r,w)

a0
b\ MO M
= o\=10%" m™
6 ""'M=2.5*1027 m-3

0.157 0.158 0.159 0.1

6 |_0.161 0.162 0.163 0.164

Fig. 2. The normalized intensity of the scattered field & versus normalized frequency %L for
the spherical cluster made of small cubes with different density of the active atoms ). The
period of the cluster is d=2.2L, and the permittivity of the particles and the host medium is
€se,n = 4.2466 and e, = 1 respectively, the characteristic size of the cubes is L = 25 nm, and

the total number of the part

icles in the cluster is N = 515.
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...........................

—N-on randbm
wmrandom, try 1]
===random, try 2

H H I
H - |mmrs
I, A g =
LT LILES H

0.145 0.15

0.155 046 0465 0.17

0.175
kL

Fig. 3. The normalized intensity of the scattered field & versus normalized frequency kL for
slightly disordered spherical cluster made of small cubes. The results of two runs are
presented, and the scattering by the ordered cluster is also shown for comparison. The
period of the cluster is d=2.2L, and the density of the active atoms is M = 5+ 10°” m~3. The
permittivity of the particles and the host medium is ¢,.,, = 4.2466 and ¢;,, = 1 respectively, the
characteristic size of the cubes is L = 25 nm, and the total number of the particles in the
cluster is N = 515.

When the allowed distance from the particles to
the nodes increases (while the period is fixed or
also increases), the effective size of the cluster
grows. As the result, the interaction between the
particles in the cluster will, in average, drop down.
In addition, the effective permittivity of the cluster
will decrease, reducing the reflection of the light
inward from the surface of the cluster. Under
these conditions, the lasing will become much
more difficult.

6 CONCLUSIONS

The light amplification and scattering by the
cluster made of the small active particles have
been studied analytically and numerically.

The permittivity of the small active particles has
been calculated in steady state by using the rate
equation approximation.

The light amplification has been discussed for
small active particle. It has been suggested that
the amplification (or loss) effectively occurs in the

active particle due to narrowing (or broadening)
of the resonance.

The light scattering by the ordered and slightly
disordered clusters of small active particles has
been calculated numerically. The numerical
simulations have been shown that the light
amplification occurs near the morphological
resonances which are governed by the shape of
the cluster and its optical contrast. It was shown
that even small randomness can significantly
affect the light amplification of the cluster made
of small active particles.
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