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Improved Artificial Bee Colony Algorithm with Adaptive 
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Ming Zhaoa, Xiaoyu Songa, and Shuangyun Xingb

aInformation & Control Engineering Faculty, Shenyang Jianzhu University, Shenyang, China; bSchool of 
Science, Shenyang Jianzhu University, Shenyang, China

ABSTRACT
The problem that ABC (Artificial Bee Colony) algorithm is good 
at exploration but poor at exploitation for the numerical opti-
mization is investigated in this paper. PA-ABC (Parameter 
Adaptive ABC) algorithm is proposed, which adopts different 
search equations with different search abilities for the employed 
bee and the onlooker bee. Firstly, the best-so-far solution is 
introduced into each search equation to enhance exploitation; 
secondly, the employed bee uses two random solutions to 
search, so as to keep high ability of exploration; thirdly, the 
onlooker bee searches around a random solution to keep popu-
lation diversity; most importantly, adaptive parameter com-
puted by fitness function is introduced in the search equation 
of the onlooker bee, which makes the search step adjust accord-
ing to the search process. So the search equation of the 
employed bee has balanced abilities of exploration and exploi-
tation, while the search equation of the onlooker bee can make 
the search focus transfer from exploration to exploitation adap-
tively. The experiment results on benchmark functions show 
that the search performance of PA-ABC is higher than or at 
least comparable to basic ABC and typical improved ABCs. In 
addition, compared to the performance of the state-of-the-art 
ABC variants under their original parameter configuration, PA- 
ABC is verified to have similar performance to them.
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Introduction

In the fields of the engineering design, economics, statistical physics, informa-
tion theory, and computing science, there are many kinds of the optimization 
problems. However, these problems are usually NP hard problems of which 
the optimal solutions cannot be obtained in a reasonable time. In recent years, 
enlightened by biology, some researchers proposed a large number of artificial 
life computation optimization to solve these optimization problems, such as 
genetic algorithm (GA) (Tang, Man, Kwong, He 1996), differential evolution 
algorithm (DE) (Das and Suganthan 2010; Storn and Price 1997), particle 
swarm optimization algorithm (PSO) (Kennedy and Eberhart 1995), and ant 
colony optimization algorithm (ACO) (Dorigo and Stutzle 2004), etc. Since 
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these algorithms can obtain approximate optimal solutions quickly (Simon 
2008), they have been widely studied and applied in optimization problems of 
engineering and science areas.

In 2005, inspired by the foraging behavior of the bee swarm, Karaboga 
proposed the artificial bee colony algorithm, which had become one of the 
latest and hottest swarm intelligence algorithms (Karaboga 2005). Compared 
with other optimization algorithms, such as GA, PSO, DE and ACO, ABC can 
search better solution more effectively with less control parameters (Karaboga 
and Akay 2009; Karaboga and Basturk 2008). Thus, ABC is widely used to 
solve complex practical optimization problems (Karaboga, Gorkemli, Ozturk, 
et al. 2014), such as job-shop scheduling (Li, Pan, Tasgetiren 2014), filter 
design (Vural, Yildirim, Kadioglu, et al. 2012), image segmentation 
(Bhandari, Kumar, and Singh 2015), biological medicine (Li, Li, Gong 2014), 
transit network design (Rajasekhar, Lynn, Das, Suganthan 2017), vehicle 
routing (Shi, Pun, Hu, Gao 2016), cooper strip production (Yang, Chen, Yu, 
Gu, Li, Zhang, Zhang 2017), etc.

Nevertheless, there also exists some problems in ABC that need to 
improve, such as lower convergence speed (Kong, Chang, Dai, Wang, 
Sun 2018) and insufficient exploitation (2018). This is mainly because 
that although ABC performs best on exploration, it cannot take full 
advantage of searching history, leading to poor exploitation (Karaboga 
and Basturk 2008). The weakness has limited the application of ABC. So 
to speed up convergence, many researches took advantages of this kind of 
priori knowledge to modify basic search equation. These ABCs can be 
classified into two classes: ABCs with added guiding information and 
ABCs with adaptive adjusting mechanism.

Many improved ABCs use the best-so-far solution to guide the search-
ing direction. In (Gao, Liu, and Huang 2012), Gao et al. proposed ABC/ 
best in which bees only searched around the best-so-far solution. 
Furthermore, Gao et al. used probability to choose between searching 
based on the best-so-far solution and searching randomly in (Cui, Li, 
Wang, Lin, Chen, Lu, Lu, 2017; Gao and Liu 2012). Luo et al. (Luo, 
Wang, and Xiao 2013) proposed COABC in which onlooker bees made 
roulette selection based on cumulative nectar amount. Zhu et al. (Zhu and 
Kwong 2010) proposed Gbest-guided ABC, which used the information of 
the best-so-far solution in the search equation. In (Banharnsakun, 
Achalakul, and Sirinaovakul 2011), Banharnsakun et al. proposed the best- 
so-far ABC, which shared the best-so-far solution in the whole popula-
tion. Babayigit et al. (Babayigit and Ozdemir 2012) proposed ABCclobest 
in which the onlooker bee generated the candidate solutions based on its 
current position and the best-so-far solution. Xiang et al. (Xiang and An 
2012) proposed ERABC, which added the best-so-far solution into the 
search process. In (Li, Niu, and Xiao 2012), Li et al. proposed I-ABC, 
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which used the best-so-far solution, inertia weight, and acceleration coef-
ficient to correct the searching process. Lin et al. introduced the informa-
tion of the best-so-far solution in the neighborhood and the elite 
solutions, respectively, in the search equation of ABCLGII (Lin et al. 
2018).

In some papers, the search for the candidate solutions is guided by search 
experience and related individual information. For example, Imanian et al. 
(Imanian, Shiri, and Moradi 2014) proposed VABC in which onlooker bees 
used PSO search strategy to search the candidate solutions. In (Tsai, Pan, and 
Liao 2009), Tsai et al. introduced universal gravitation and proposed IABC, in 
which onlooker bees were attracted to the locations of the employed bees and 
evaluated their fitness values. Liu et al. (Liu et al. 2012) proposed Mutual ABC, 
which made bees to learn between each other. Li et al. (Li, Li, Gong 2014pro-
posed IF-ABC, which made full use of the internal state information of each 
iteration. In (Gao, Liu, and Huang 2013), Gao et al. proposed CABC with the 
altered search equation and OCABC by introducing the orthogonal experi-
ment design to get more valuable information from search experience. In our 
previous work (Song, Zhao, Yan, Xing 2019), the individual selection range of 
the search equation is limited to the elite solutions. In (Brajević 2021), a 
modified search operator is proposed, which exploits the useful information 
of the best-so-far solution in the onlooker bee phase to improve exploitation 
tendency.

Different search equations have different search characteristics, so some 
researchers have applied the mixture of multiple strategies to the search 
process of bees. In (Zhou, Yao, Chan, et al. 2019), Zhou et al. divided the 
whole population into three subgroups and designed evolutionary opera-
tors with different search biases for each subgroup to play different roles. 
Song et al. selected and designed a variety of strategies with different 
search capabilities, which were combined at different proportions in the 
search stages of the employed bees and onlooker bees (Song, Zhao, and 
Xing 2019). In (Brajević, Stanimirović, Li, Cao 2020), Brajević et al mixed 
fireflies and artificial colonies and used a new multi-strategy ABC to 
conduct local search.

In addition, a slide of papers introduced other dynamic adjustment or 
local mechanism. Li et al. proposed DABC in which employed bees used 
tabu local search (Li, Pan, Tasgetiren 2014). Alam et al. (Gao and Liu 
2011) proposed ABC-SAM, which was adaptively mutated and used step 
size adjusted dynamically. Rajasekhar et al. (Anguluri, Ajith, and Millie 
2011) proposed L-ABC with mutation ability that generated candidate 
solution by Levy distribution. In (Kang, Li, and Ma 2011), Kang et al. 
proposed RABC that used ABC to explore globally and Rosenbrock rota-
tion of the direction to exploit locally. Zhang et al. (Zhang, Zheng, and 
Zhou 2015) proposed GEM ABC, which added GEM into the search 
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process. Alatas et al. (Alatas 2010) proposed Chaotic ABC based on the 
adaptive parameter with the chaotic map. In (Akay and Karaboga 2012), 
Akay et al. introduced the control parameter setting into ABC, to dyna-
mically adjust the dimension to modify and the search step. In our 
previous work (Song, Yan, and Zhao 2017), we introduced the objective 
function value in the search equation in the form of trigonometric 
mutation.

Exploration and exploitation are important components of the any meta-
heuristic algorithm, and in order to be successful, a search algorithm needs to 
establish a good ratio between these two processes (Brajević and 
Stanimirović 2018; Das, Biswas, and Kundu 2013; Das, Biswas, Panigrahi, 
Kundu, Basu 2014). Exploration is the ability to visit various regions in the 
problem landscape, aiming to locate a good optimum, while exploitation is 
the ability to concentrate the search around a promising candidate solution, 
trying to find the optimum more precisely (Lin et al. 2018). So based on 
previous study, this paper proposes two novel search equations for the 
employed bee and the onlooker bee to form PA-ABC. The design of search 
equation for the employed bee focuses on enhancing exploitation while 
improving exploration, and the balance between them. The design of the 
search equation for the onlooker bee focuses on improving exploitation 
while keeping high population diversity, and the adaptive adjusting on the 
search step size.

In the following sections, PA-ABC is presented in Section 2; Section 3 
provides parameter setting, some experiment results and analysis of PA- 
ABC compared with the related algorithms on sets of benchmark functions; 
Section 4 concludes all the work.

Artificial Bee Colony Algorithm with Adaptive Parameter (PA-ABC)

In this section, firstly, we propose the two novel search equations called TRC- 
ABC (ABC that searches around the center of two random solutions) and RA- 
ABC (ABC that searches around one random solution with adaptive para-
meter) individually and analyze their search scopes according to their items in 
detail. Furthermore, we propose PA-ABC, which uses these two equations to 
search for optimal solution.

TRC-ABC

The search equation of TRC-ABC is shown in Equation 1:
vi;j ¼ ðxr1;j þ xr2;jÞ=2þ ϕi;jðxr1;j � xr2;jÞ þ φi;jðyj � xr1;jÞ (1)
where r1 and r2 are distinct numbers different with i on {1, . . ., FN} (FN is 

the number of food sources, which equal to NP/2, and NP is the population 
size) selected randomly. ϕi;j is a random number on [−0.25, 0.25]. φi;j is a 
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random number on [0, 1]. y is the best-so-far solution. In Equation 1, since the 
search equation adopts trinomials, to avoid excessive search step length, the 
value range of the random number in the second item is set as [−0.25, 0.25], in 
combination with the value range design of the third random number.

The first item at the right of Equation 1 illustrates that the candidate 
solution is generated around the center of two solutions selected randomly. 
Equation 1 also applies slight turbulence with the second item based on the 
difference vector of the two solutions. Both the first two items ensure the 
strong ability of exploration. Based on the range of φi;j, the search scope 
affected by these two items is shown in Figure 1a.

Furthermore, the third item is added with the best-so-far solution as guid-
ing information to increase the exploitation probability around it. If xr1 is just 
the best-so-far solution (y = xr1), then φi;jðyj � xr1;jÞ = 0, meaning that the 
search process only affected by the first two items and the search scope is equal 
to Figure 1a. Now the search process is near to the global optimal solution, so 
the solution better than the best-so-far solution is inclined to find. Otherwise, 
exploitation around the best-so-far solution is enhanced, because of the guid-
ing information of it in the third item. The search scope of this case is shown in 
Figure 1b. The arc lines in Figure 1 represent the theoretical search scope of 
the search equation.

RA-ABC

Referring to the improved ABCs with high performance, such as CABC, ABC/ 
best and GABC, RA-ABC adopts the search equation shown in Equation 2.

vi;j ¼ xr1;j þ ϕi;jðxr1;j � xr2;jÞapþ φi;jðyj � xr1;jÞ (2)
ap ¼ ðf ðxr1;jÞ � f ðxr2;jÞÞ=ðf ðxr1;jÞ þ f ðxr2;jÞÞ (3)

Figure 1. Search scope of TRC-ABC. (a) Search scope affected by the first two items of TRC-ABC. (b) 
Search scope of TRC-ABC when y≠ xr1.
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where r1 and r2 are distinct integers different with i on {1,2, . . .,FN}. 
ϕi;j is a random value on [−0.75,0.75]. ap is the adaptive parameter which 
is computed by the fitness function value of xr1 and xr2 shown in Equation 
3. y is the best-so-far solution. φi;j is a random number on [0,0.5]. f(x) is 
the fitness function (minimum optimization) value of x. In Equation 2, 
since the search equation adopts trinomials, to avoid excessive search step 
length, the value range of the random number in the second item is set as 
[−0.75, 0.75], in combination with the value range design of the third 
random number.

The first item at the right of Equation 2 illustrates that the candidate 
solution is generated around xr1, which selected randomly from the 
population to keep high diversity. The second item without ap can 
bring more information making equation getting the higher search 
performance (Gao, Liu, and Huang 2013). Because the first two items 
provide the equation with enough exploration, we shrink the range of 
ϕi;j from [−1, 1] to [−0.75, 0.75], so as to enhance exploitation and 
furthermore balance exploration and exploitation. The search scope 
affected by these two items is shown in Figure 2a. Then consider the 
effect of the adaptive parameter ap in the second item to adjust the 
search step size according to the search process. At early stage of the 
search process, the difference between xr1 and xr2 is large, so the com-
puting result of ap based on their fitness function values is large too, 
which means big step size, indicating that the search equation focuses on 
exploration; at late stage of the search process, with converging to the 
optimal solution gradually, the difference between xr1 and xr2 becomes 
small, so the computing result of ap based on their fitness function 
values is small which means that the step size is small as well, indicating 

Figure 2. Search scope of RA-ABC. (a) Search scope affected by the first two items of RA-ABC. (b) 
Search scope affected by all the items of RA-ABC.
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that the search equation works toward exploitation. In general, para-
meters ϕi;j and φi;j are set properly to balance exploration and exploita-
tion, and the adding of parameter ap can make the search process 
adaptively adjusted from exploration to exploitation according to the 
search process.

The third item at the right of Equation 2 uses the best-so-far solution to 
guide the search direction. Because φi;j is a positive number on [0, 0.5], making 
the search process toward the direction of the best-so-far solution to improve 
exploitation, as shown in Figure 2b.

Consider the value ranges of the last two items at the right of the equation. 
The step of the second step is 1.5, and the step of the third is 0.5, that is the 
step size of the third is 1/3 of the second. Thus, if they are in opposite 
directions, the search process will work toward y with xr1 as the center, as 
shown in Figure 3a.When the two items are in the same direction, the search 
process will work toward y with larger step. Therefore, the search process 
according to the equation can realize adaptive adjusting on search step, as 
shown in Figure 3b.

PA-ABC

In PA-ABC, TRC-ABC is used as search equation of the employed bee to 
realize the balance between exploration and exploitation while keeping strong 
ability of exploration, and RA-ABC is embedded in the search of the onlooker 
bee phase to improve exploitation while keeping population diversity. 
Moreover, due to the enough exploitation of PA-ABC, roulette wheel selection 
is canceled.

Figure 3. Search scope of the last item of RA-ABC. (a) In same direction. (b) In opposite direction.
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Experiment and Analysis

Benchmark Functions and Parameters Setting

To test the algorithm on typical optimization functions of variable kinds and 
to find the best suitable problem the algorithm can solve effectively, we choose 
28 benchmark functions to form test set shown in Tables 1 and 2, and provide 
the optimum and the search range of each function.

There are 22 basic scalable functions in Table 1: f1, f3-f8 are continuous 
unimodal; f2 is non-continuous unimodal; f9 is noisy quartic; f10 is 
Rosenbrock function, which is unimodal with 2 or 3 dimensions but multi-
modal with higher dimensions; f11-f22 are multimodal, and the number of 
optimum will increase with dimensions exponentially; f19 is bounded. All 
functions are evaluated by the global optimal value searched.

There are six functions in Table 2: f23, f24, f27, f28 are shifted functions; f25 
and f26 are rotated functions (Zhang, Zheng, and Zhou 2015). These functions 
are mainly intended to avoid the situation that some algorithms copy one 
parameter to another to generate a neighbor solution, so they are more 
difficult to optimize.

Table 1. Basic benchmark functions.
No of Function Name Search range Optimum

f1 Elliptic [−100,100]n 0
f2 Exponential [0,1.28]n 0
f3 Schwefel 2.21 [−100,100]n 0
f4 Schwefel 2.22 [−10,10]n 0
f5 Sphere [−100,100]n 0
f6 SumPower [−1,1]n 0
f7 SumSquare [−10,10]n 0
f8 Step [−100,100]n 0
f9 Quartic [−1.28,1.28]n 0
f10 Rosenbrock [−5,10]n 0
f11 Rastrigin [−5.12,5.12]n 0
f12 Ackley [−32,32]n 0
f13 Alpine [−10,10]n 0
f14 Griewank [−600,600]n 0
f15 Levy [−10,10]n 0
f16 NCRastrigin [−5.12,5.12]n 0
f17 Penalized 1 [−50,53]n 0
f18 Penalized 2 [−50,53]n 0
f19 Schwefel 2.26 [−500,500]n 0
f20 Weierstrass [−0.5,0.5]n 0
f21 Himmelblau [−5,5]n −78.33236
f22 Michalewicz [0,п]n −99.2784

Table 2. Shifted and rotated benchmark function.
No of Function Name Search range Optimum

f23 Shifte Schwefel’s Problem 1.2 [−100,100]n 0
f24 Shifted Rastrigin’s function [−5,5]n 0
f25 Shifted Rotated Elliptic’s Function [−100,100]n 0
f26 Shifted Rotated Rastrigin’s function [−5,5]n 0
f27 Shifted Schwefel’s Problem 1.2 with noise [−100,100]n 0
f28 Shifted Sphere’s Function [−100,100]n 0
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Because the dimension number of the problem is a vital factor affecting the 
performance of the algorithm, so we test f1-f20 with D =30 and D =60, f21-f22 
with D =100 and D =200. Under each dimension setting, we run each algo-
rithm on every function independently for 30 times, and compute mean value 
and standard deviation of 30 runs to analyze.

Moreover, to compare the algorithms fairly, we set the same value to each 
common parameter shown in Table 3.

In addition, we also tested the proposed algorithm PA-ABC based on 
CEC2021 (Ali, Anas, Ali, Prachi, Abhishek, Suganthan, 2021), and it found 
the optimums for solving the 10 basic functions in 10 dimensions with the 
general setting of acceptable solution 1E-8. For detailed test results, please 
refer to the supplementary experimental material.

Experiment Result and Analysis on Basic Benchmark Function

Table 4 lists the comparison results among PA-ABC, basic ABC and several 
typical improved ABCs including I-ABC, GABC, ABC/best and CABC run-
ning on 22 basic benchmark functions when D =30 for f1-f20 and D =100 for 
f21-f22.

As seen from Table 4, compared with other ABCs, PA-ABC performs best 
on 17 of 22 basic benchmark functions. For f3, although ABC/best performs 
better slightly than PA-ABC, the results of them are in same magnitude, which 
means they have similar performance with each other; for f7 only the perfor-
mance of ABC/best is better than PA-ABC; for f22, although CABC performs 
better slightly than PA-ABC, the difference between their results is very small. 
Moreover, for f15, f17 and f18 of which the global optimal solutions are not 
equal to 0 due to influence of the precision of п, PA-ABC finds their global 
optimal solutions. Particularly for f15, the standard deviation of 30 runs of PA- 
ABC is 0, indicating that the global optimal solution is found by every running.

To further verify the effectiveness of PA-ABC, based on the experiment 
results in Table 4, SPSS is used to conduct non-parametric test including 
Wilcoxon test and Friedman test, and the test results are shown in the last 
two rows of Table 4. It can be seen from the results of Wilcoxon test about 
significant difference compared with PA-ABC that the p-values of ABC, I- 
ABC, GABC are all less than 0.05, indicating that there are significant differ-
ence between them and PA-ABC, and PA-ABC is far superior to these three 

Table 3. Parameter setting for compared ABCs.
Parameter Setting NP for all ABCs limit for all ABCs Max_FES for all ABCs C of GABC

D = 30 for f1-f20 
& D = 100 for f21-f22

100 200 100000 1.5

D = 60 for f1-f20 
& D = 200 for f21-f22

500000

APPLIED ARTIFICIAL INTELLIGENCE e2008147-533



Table 4. Result comparisons of ABCs on 30-dimension functions f1-f20 and 100-dimension 
functions f21 and f22.

fun ABC I-ABC GABC ABC/best CABC PA-ABC

f1 7.15E-19 
(8.73E- 

19)

5.39E-25 
(6.79E- 

25)

8.51E-27 
(9.12E-27)

2.03E-35 
(2.24E- 

35)

2.99E-39 
(3.87E-39)

8.87E-44 
(6.36E- 

44)
f2 8.74E-12 

(2.65E- 
13)

2.48E-08 
(8.97E- 

09)

3.87E-16 
(2.30E-16)

2.77E-21 
(2.23E- 

21)

6.04E-20 
(2.57E-20)

3.32E-11 
(3.76E- 

11)
f3 2.06E+01 

(2.46E 
+01)

2.25E+01 
(3.48E 
+01)

9.17E+00 (3.78E 
+00)

4.32E+00 
(9.57E- 

01)

8.12E+00 
(3.69E+00)

7.29E+00 
(1.56E 
+00)

f4 2.03E-06 
(3.18– 

06)

3.89E-07 
(1.58E- 

08)

2.42E-11 
(3.41E-11)

6.93E-17 
(5.78E- 

17)

4.87E-17 
(1.23E-17)

3.98E-20 
(1.33E- 

20)
f5 1.21E-11 

(2.45E- 
11)

2.42E-13 
(3.18E- 

13)

3.04E-20 
(2.86E-20)

3.40E-30 
(6.12E- 

30)

3.01E-31 
(4.82E-31)

1.57E-36 
(1.13E- 

36)
f6 2.36E-09 

(2.03E- 
09)

8.75E-11 
(8.14E- 

11)

3.78E-18 
(2.81E-18)

3.83E-28 
(7.38E- 

28)

5.87E-29 
(6.04E-29)

6.51E-35 
(5.57E- 

35)
f7 1.21E-24 

(2.14E- 
24)

5.34E-27 
(1.17E- 

26)

3.18E-37 
(6.10E-37)

5.98E-59 
(4.42E- 

58)

3.76E-40 
(4.29E-40)

1.95E-51 
(4.91E- 

51)
f8 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
f9 2.99E-01 

(1.68E- 
01)

3.71E-01 
(2.27E- 

01)

2.30E-01 
(6.90E-02)

7.84E-02 
(4.10E- 

02)

1.56E-01 
(6.47E-02)

1.01E-02 
(4.80E- 

03)
f10 3.89E-01 

(2.83E- 
01)

2.01E+00 
(3.41E 
+00)

4.00E+00 
(5.81E+00)

1.96E+01 
(3.20E 
+01)

4.01E-01 
(1.84E-01)

2.63E-01 
(1.76E- 

01)
f11 5.77E-02 

(3.42E- 
01)

6.63E-05 
(3.50E- 

04)

5.41E-13 
(3.80E-12)

0(0) 0(0) 0(0)

f12 6.01E-06 
(4.24E- 

06)

3.84E-05 
(2.25E- 

04)

2.37E-10 
(3.82E-11)

4.10E-14 
(4.33E- 

15)

3.35E-14 
(2.14E-15)

2.88E-14 
(2.89E- 

15)
f13 3.10E-04 

(3.14E- 
04)

5.02E-04 
(3.78E- 

04)

2.10E-05 
(3.11E-05)

2.47E-15 
(2.17E- 

15)

2.71E-17 
(2.69E-17)

4.33E-20 
(1.11E- 

19)
f14 1.01E-09 

(2.83E- 
09)

5.39E-10 
(4.39E- 

10)

9.99E-16 
(1.27E-15)

0(0) 0(0) 0(0)

f15 4.15E-09 
(5.97E- 

09)

6.57E-11 
(8.45E- 

11)

4.31E-17 
(8.82E-17)

4.68E-30 
(1.56E- 

29)

1.35E-31 
(2.32E-33)

1.35E-31 
(0.00E 
+00)

f16 6.01E-02 
(1.94E- 

01)

9.22E-06 
(2.75E- 

05)

4.87E-14 
(2.60E-13)

0(0) 0(0) 0(0)

f17 7.76E-12 
(5.12E- 

12)

8.32E-14 
(5.63E- 

14)

1.71E-22 
(1.25E-22)

2.34E-32 
(6.14E- 

33)

1.70E-32 
(1.22E-33)

1.57E-32 
(2.74E- 

48)
f18 4.74E-10 

(4.60E- 
10)

4.51E-12 
(3.82E- 

12)

7.28E-21 
(4.92E-21)

4.16E-31 
(1.12E- 

30)

1.44E-31 
(1.51E-31)

1.35E-32 
(5.47E- 

48)
f19 8.84E-10 

(2.30E- 
09)

2.62E-09 
(3.14E- 

09)

3.17E-12 
(8.83E-13)

2.01E-12 
(7.71E- 

13)

3.91E-06 
(3.10E-05)

1.39E-05 
(7.49E- 

05)
f20 6.24E-04 

(8.87E- 
05)

4.70E-04 
(8.82E- 

05)

2.20E-09 
(3.37E-09)

0(0) 0(0) 0(0)

f21 −7.82E+01 
(5.19E- 

02)

−7.82E+01 
(6.17E- 

02)

−7.83E+01 
(3.51E-03)

−7.83E+01 
(3.90E- 

07)

−7.83E+01 
(5.11E-09)

7.83E+01 
(5.05E- 

10)

(Continued)
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algorithms. It can be seen from the ranking results of Friedman test, PA-ABC 
<CABC<ABC/best<GABC<I-ABC<ABC, indicating that PA-ABC performs 
best, and p-value is far less than 0.05.

Table 5 lists the comparison results among PA-ABC, basic ABC and several 
typical improved ABCs including I-ABC, GABC, ABC/best and CABC run-
ning on 22 basic benchmark functions when D =60 for f1-f20 and D =200 for 
f21-f22.

As seen from Table 5, compared with other ABCs, PA-ABC performs best 
on 18 of 22 basic benchmark functions. Moreover, for f15 and f18 which the 
global optimal solutions are not equal to 0 due to influence of the precision of 
п, PA-ABC finds their global optimal solutions. Particularly for f15, the 
standard deviation of 30 runs of PA-ABC is 0, indicating that the global 
optimal solution is found by every running.

It can be seen from the results of Wilcoxon test about significant difference 
compared with PA-ABC that the p-values of ABC, I-ABC, GABC, ABC/best, 
and CABC are all less than 0.05, indicating that there are significant differences 
between them and PA-ABC, and PA-ABC is far superior to these five algo-
rithms. It can be seen from the ranking results of Friedman test, PA-ABC 
<CABC<ABC/best<GABC<I-ABC<ABC, indicating that PA-ABC performs 
best, and p-value is far less than 0.05.

Experiment Result on Shifted and Rotated Functions

To compare the algorithms objectively and avoid using the known character-
istics of basic benchmark functions to increase performance of the algorithms 
artificially, based on the experiments on 22 basic benchmark functions, we test 
PA-ABC, basic ABC and its several typical variants on the 6 shifted or rotated 
functions in Table 2, with results shown in Table 6. From Table 6, we can see 
that PA-ABC performs best among all the algorithms on all of the functions. 
Particularly for f23, f25, f27, and f28, only PA-ABC finds the global optimal 
solution. Therefore, we can conclude that PA-ABC is an effective optimization 
algorithm with better performance.

Table 4. (Continued).
fun ABC I-ABC GABC ABC/best CABC PA-ABC

f22 −8.36E+01 
(6.61E- 

01)

−8.30E+01 
(6.83E- 

01)

−8.59E+01 
(7.49E-01)

−8.96E+01 
(6.49E- 

01)

−9.32E+01 
(4.87E-01)

−9.30E+01 
(6.53E- 

01)
Wilcoxon 

R− R+ 

p-value

16 215 
0.000543

12 219 
0.000321

27 183 
0.003592

38 98 
0.120839

36 84 
0.172848

PA-ABC vs.

Friedman 
p-value 
= 5.62E-14

5.36 5.00 3.77 2.55 2.39 1.93
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It can be seen from the results of Wilcoxon test about significant difference 
compared with PA-ABC that the p-values of ABC, I-ABC, GABC, ABC/best, 
and CABC are all less than 0.05, indicating that there are significant difference 

Table 5. Result comparisons of ABCs on 60-dimension functions f1-f20 and 200-dimension 
functions f21 and f22.

fun ABC I-ABC GABC ABC/best CABC PA-ABC

f1 2.68E-17 
(2.53E-17)

3.66E-22 
(4.63E-22)

6.85E-25 
(3.63E-25)

7.95E-33 
(4.14E-33)

9.86E-39 
(7.93E-39)

5.02E-42 
(2.81E-42)

f2 2.43E-21 
(2.77E-22)

5.10E-16 
(6.65E-16)

2.39E-23 
(3.69E-24)

3.41E-28 
(7.84E- 

29)

7.96E-28 
(2.75E-28)

1.87E-19 
(2.16E-19)

f3 5.35E+01 
(5.44E 
+00)

5.20E+01 
(3.94E 
+00)

4.59E+01 
(5.86E 
+00)

3.23E+01 
(3.66E+00)

3.17E+01 
(3.85E 
+00)

2.87E+01 
(4.98E 
+00)

f4 7.97E-06 
(2.78E-06)

9.97E-07 
(4.69E-07)

8.06E-11 
(2.72E-11)

3.29E-15 
(5.26E-15)

8.84E-17 
(7.10E-17)

3.62E-19 
(1.15E-19)

f5 8.54E-10 
(9.72E-10)

2.01E-11 
(2.64E-11)

4.95E-19 
(8.52E-19)

5.96E-17 
(3.72E-16)

2.89E-30 
(2.59E-30)

3.92E-35 
(2.66E-35)

f6 3.60E-08 
(3.32E-08)

9.87E-10 
(5.54E-10)

5.47E-17 
(3.78E-17)

2.70E-23 
(8.97E-23)

1.01E-27 
(2.21E-27)

5.89E-33 
(3.36E-33)

f7 2.57E-20 
(5.06E-20)

1.10E-24 
(3.56E-24)

1.53E-37 
(4.21E-37)

6.69E-58 
(4.11E- 

57)

1.87E-40 
(3.60E-40)

1.60E-40 
(8.15E-40)

f8 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
f9 8.56E-01 

(2.68E-01)
9.88E-01 
(2.54E-01)

3.81E-01 
(1.20E-01)

2.93E-01 
(7.28E-02)

2.84E-01 
(8.26E-02)

1.87E-02 
(6.05E-03)

f10 1.24E+00 
(1.18E 
+00)

1.13E+01 
(3.60E 
+01)

1.67E+01 
(3.00E 
+01)

6.81E+01 
(6.11E+01)

4.75E-01 
(4.40E-01)

1.85E-01 
(1.91E-01)

f11 7.86E-01 
(7.72E-01)

5.91E-01 
(7.37E-01)

1.36E-12 
(4.48E-12)

0(0) 0(0) 0(0)

f12 1.38E-05 
(5.62E-06)

3.85E-06 
(1.86E-06)

5.87E-10 
(2.16E-10)

1.61E-13 
(4.19E-14)

8.27E-14 
(6.91E-15)

7.00E-14 
(4.92E-15)

f13 4.59E-03 
(4.68E-03)

3.76E-03 
(2.85E-03)

9.29E-05 
(8.19E-05)

6.43E-14 
(5.49E-14)

9.44E-17 
(2.74E-16)

7.74E-19 
(2.61E-18)

f14 9.30E-09 
(7.62E-09)

1.43E-07 
(8.87E-06)

0(0) 0(0) 0(0) 0(0)

f15 4.64E-09 
(4.82E-09)

1.20E-10 
(2.16E-10)

7.21E-17 
(2.07E-16)

3.52E-27 
(2.26E-26)

1.42E-31 
(2.99E-32)

1.35E-31 
(0.00E 
+00)

f16 7.97E-01 
(7.02E-01)

5.57E-01 
(5.93E-01)

1.25E-11 
(6.11E-11)

0(0) 0(0) 0(0)

f17 3.69E-11 
(3.70E-11)

5.49E-13 
(5.85E-13)

1.52E-21 
(1.46E-21)

7.78E-31 
(9.15E-31)

1.37E-32 
(6.14E-33)

7.85E-33 
(1.37E-48)

f18 1.89E-09 
(1.97E-09)

4.80E-11 
(4.39E-11)

1.68E-19 
(1.52E-19)

3.12E-29 
(2.05E-29)

9.97E-31 
(8.35E-31)

1.35E-32 
(5.47E-48)

f19 4.49E-10 
(4.73E-10)

5.27E-09 
(6.86E-09)

5.09E-11 
(9.83E-12)

4.17E-11 
(3.61E- 

12)

5.22E-11 
(4.25E-12)

1.41E-08 
(6.05E-08)

f20 2.43E-03 
(2.72E-04)

2.95E-03 
(3.35E-03)

6.97E-08 
(6.12E-08)

0(0) 0(0) 0(0)

f21 −7.81E+01 
(8.40E-02)

−7.81E+01 
(6.26E-02)

−7.83E+01 
(2.17E-02)

−7.83E+01 
(6.15E-07)

−7.83E+01 
(9.22E-09)

−7.83E+01 
(2.47E-09)

f22 −1.50E+02 
(2.79E 
+00)

−1.51E+02 
(9.50E-01)

−1.55E+02 
(2.38E 
+00)

−1.62E+02 
(8.88E-01)

−1.80E+02 
(9.43E-01)

−1.81E+02 
(8.16E-01)

Wilcoxon 
R− R+ p-value

11 220 
0.000281

9 222 
0.000214

18 172 
0.001944

20 116 
0.013064

21 115 
0.015086

PA-ABC vs.

Friedman 
p-value = 5.62E-14

5.41 5.09 3.75 2.70 2.16 1.89
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between them and PA-ABC, and PA-ABC is far superior to these five algo-
rithms. It can be seen from the ranking results of Friedman test, PA-ABC 
<ABC/best<GABC<CABC<I-ABC<ABC, indicating that PA-ABC performs 
best, and p-value is far less than 0.05.

Conclusions

To improve the performance, PA-ABC adopts two novel search equations 
for the employed bee and the onlooker bee. The search equation of the 
employed bee focuses on the balance of exploration and exploitation on 
high level, enhancing exploitation by slight turbulence and the introduce 
of the best-so-far solution as guiding information while ensuring high 
exploration by randomly selecting food sources to search around. The 
search equation of the onlooker bee realizes enhancing exploitation by the 
introduce of the best-so-far solution as guiding information while ensur-
ing high population diversity by selecting random food source to search 
around, and adjusting of the search step size automatically by the intro-
duce of adaptive parameter, which can make the search process transform 
from early exploration to late exploitation. Experiment results on bench-
mark functions have shown that PA-ABC has better effectiveness and 
robustness. Future work will focus on the application of PA-ABC algo-
rithm to solve practical problems, such as circular antenna array design 
(Bose, Kundu, Biswas, Das 2012), dynamic optimization problems (Biswas, 
Bose, and Kundu 2012), parameter optimization (Biswas, Saha, De, Cobb, 
Das, Jalaian 2021), etc.

Table 6. Comparisons between PA-ABC and ABCs on shifted and rotated functions.
fun ABC I-ABC GABC ABC/best CABC PA-ABC

f23 3.26E-06 
(2.17E-06)

2.18E-06 
(8.46E-07)

3.19E-08 
(2.47E-08)

3.07E-11 
(2.33E-10)

5.10E-12 
(4.12E-12)

0(0)

f24 2.12E+04 
(3.06E+03)

2.05E+04 
(6.11E+03)

2.07E+04 
(4.87E+03)

2.30E+04 
(7.01E+03)

2.53E+04 
(5.87E+03)

5.18E+03 
(1.96E+03)

f25 6.23E-02 
(8.95E-02)

1.26E-01 
(4.02E-01)

2.20E-05 
(2.12E-05)

5.82E-12 
(2.33E-11)

1.98E-03 
(8.85E-03)

0(0)

f26 3.49E+04 
(5.83E+03)

2.47E+04 
(4.12E+03)

2.11E+04 
(3.94E+03)

2.40E+04 
(4.13E+03)

3.01E+04 
(7.02E+03)

6.48E+03 
(1.46E+03)

f27 4.28E+0 
(2.07E+0)

4.02E+0 
(1.13E+0)

3.00E-01 
(3.86E-01)

7.14E-11 
(2.17E-10)

7.12E-11 
(2.07E-10)

0(0)

f28 3.22E+0 
(1.73E+0)

3.04E+0 
(1.38E+0)

9.11E-02 
(3.08E-01)

2.88E-11 
(4.72E-11)

2.16E-11 
(3.91E-11)

0(0)

Wilcoxon 
R− R+ 

p-value

0 21 
0.027708

0 21 
0.027708

0 21 
0.027708

0 21 
0.027708

0 21 
0.027708

PA-ABC vs.

Friedman 
p-value 
= 0.00169

5.42 4.50 3.42 3.00 3.67 1.00
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