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ABSTRACT

Aims: To ascertain the effectiveness of edge detection and contour detection algorithms
to identify hard exudates and hemorrhage region in fundus images of diabetic patients.
Study Design: Canny’s algorithm was selected as the edge detection algorithm, and
Snakes’ algorithm was selected as the contour detection algorithm.
Place and Duration of Study: A total of 212 fundus images were procured from the
Department of Ophthalmology of Bangladesh Institute of Research and Rehabilitation for
Diabetes, Endocrine and Metabolic Disorders for this study. The images were captured
between 2010 and 2013.
Methodology: Noise was removed from the images using successive Gaussian and
median filtering. Green component of the image was used for detection of hard exudates,
and red component was used for detection of hemorrhage. To apply Canny’s algorithm,
color gradient was calculated, and a threshold was applied to the gradient to select a
candidate region. Snakes’ algorithm was applied by scaling the color intensity from 0 to 1,
and a threshold color value was chosen to draw the contours. Several filters were applied
to the selected region to detect and discard the false-positives. A total of 32 images were
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used for training purpose. The algorithm was later applied to the rest of the 180 images.
Results: For Canny’s algorithm, a threshold color gradient value of 0.30 was chosen to
identify the hard exudates, and a value of 0.28 was chosen to identify the hemorrhage
regions. For Snakes’ algorithm, a color intensity value of 0.7 was chosen for detection of
hard exudates, and 0.83 was chosen for detection of hemorrhage regions. Both Canny’s
algorithm and Snakes’ algorithm performed similarly in detection of hard exudates. For
detection of hemorrhage regions, generally Canny’s algorithm performed better compared
to Snakes’ algorithm. Even in situations where there was poor color contrast, Canny’s
algorithm was able to suggest a candidate region, whereas Snakes’ algorithm completely
failed to suggest a region.
Conclusion: Both Canny’s algorithm and Snakes’ algorithm performs equally effectively
in detecting hard exudates. But in detection of hemorrhage regions, generally Canny’s
algorithm performs better compared to Snakes’ algorithm.

Keywords: Diabetic retinopathy; color image processing; canny algorithm; snakes’ algorithm;
color funduscopy.

1. INTRODUCTION

Diabetes is rapidly becoming a major metabolic disorder globally. It is estimated that 2.8% of
world population has this metabolic disorder [1]. This is expected to rise to 4.4% by 2030.
Though the estimates for Bangladesh vary, there are reports that anywhere from 4.8% to
6.6% of the population of the country have Type 2 diabetes [2]. Type 2 diabetes is a
hereditary disorder, and is also known to result from limited physical activities and lifestyle.

One of the ramifications of Type 2 diabetes is abnormalities in the eyes known as diabetic
retinopathy (DR). Diabetic retinopathy causes abnormalities in the retina, and in worst case,
blindness. The visual features of DR include, among others, retinal hemorrhage, micro
aneurysm, hard and soft exudates. As shown in Fig. 1, in color retinal images, retinal
hemorrhage appear as dark brown regions; hard exudates appear as bright yellow regions
with sharp boundaries; and soft exudates appear as light yellow regions with blur boundaries.
The amount of these features increase with the advancement of diabetes. Therefore, their
early detection is paramount importance in treatment, control and monitoring of diabetes. As
a result, substantial amount of effort has been devoted towards detection of these regions by
processing their images.

All features of detection algorithms normally have two steps: image enhancement and
candidate selection. In image enhancement, some kind of filters are used to enhance the
regions under consideration; and in candidate selection, normally some statistical measure is
used to identify the region. For detection of retinal hemorrhage, some enhancement
techniques include median filtering [3,4], histogram specification [5,6] and contrast
enhancement [7] and candidate selection methods include assignment of posterior
probability [3], morphological thresholding [4], principal component analysis [5,6,7].

Different enhancement techniques have been proposed for exudates also. Some of these
techniques include homographic surface fitting to compensate the non-uniform
illumination [8], histogram specification [9,10] and gamma correction [11]. Procedures for
candidate selection include dynamic clustering [12], morphological closing and
thresholding [13,14], edge detection [15,16,17], fuzzy c-means clustering [9,10] and
recursive region growth [3].
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Fig. 1. Color fundus image with different features identified

It is quite clear from the brief review above that the topic of color fundus image processing to
detect diabetic retinopathy is fairly new, and is still in its exploratory stage. No standard
detection technique has yet been developed for selection of candidate regions. Nevertheless,
because of its immense medical and social importance, there is tremendous interest in this
subject.

This research looks at the effectiveness of two popular algorithms those are used for feature
detection - edge detection using Canny’s algorithm, and contour detection using Snakes’
algorithm. The study was undertaken to enhance the understanding of retinal feature
detection in terms of hard exudates and retinal hemorrhage; hence to facilitate the treatment,
control and monitoring of diabetes in Bangladesh.

2. MATERIALS AND METHODS

This study was started as an initial exploratory study. Therefore, of the retinal features
discussed earlier in this paper, it was decided that detection of retinal hemorrhage and hard
exudates would be attempted. Detection of soft exudates was not among the primary
objectives in this study.

The identification algorithm started with the fact that color images are a combination of red,
green and blue components. The intensity of the three components of colors of each pixel
are arranged in blue, green and red sequence, each sequence being one byte long.  As a
first step of this study, the color image was separated into its components colors. Fig. 2
shows the three components colors of an example color fundus image. We can clearly
observe that certain features of the fundus are more prominent in particular color
components. To obtain a better understanding of the color variations in each image, each
color component of a pixel was used to construct the gray scale of the pixel for that color. To
obtain the gray scale of a particular color component of a pixel, the other two color
components were manually replaced with the particular component. For example, for a
particular pixel, to obtain the gray scale of the red component, the intensity of the red
component was manually substituted in the blue and green components of the color. The
results are shown in Fig. 3. We notice from Figs. 3(b)–(d) that the contrast difference
between exudates and the background is more prominent in Fig. 3(c), i.e. the green
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component. On the other hand, the contrast difference between retinal hemorrhage and the
background is more prominent in Fig. 3(b), i.e. the red component. Therefore, as done in
earlier studies, the green component of the color image was used to identify the hard
exudates. But, because of better contrast, the red component was used to identify the retinal
hemorrhage.

(a) (b) (c) (d)

Fig. 2. Color fundus image with component images. (a) original color image. (b) red
component. (c) green component. (d) blue component

(a) (b) (c) (d)

Fig. 3. Grayscale components of the color fundus image. (a) original color image.
(b) grayscale of the red component. (c) grayscale of the green component.

(d) grayscale of the blue component

Though there was very little noise in most of the fundus images; nevertheless, noise
reduction was achieved using both Gaussian filter and median filter. The kernel of the
Gaussian filter was
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It was observed that using the two filters give a better result than using either of the two
filters individually.

For edge detection, traditional Canny’s algorithm was used [18,19]. The green component of
the color image was used for exudates detection, and the red component was used for
hemorrhage detection. Earlier work has already applied Canny’s algorithm for diabetic
retinopathy [20].

The details of Canny’s algorithm for edge detection can be obtained elsewhere [18], but
briefly, the idea of this algorithm is that for an edge pixel, the gradient of the gray-scale
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intensity between the edge and its neighbor pixel would be high. Therefore, for each pixel,
the gradient of gray-scale component, D, is calculated as

22
yx DDD 

where Dx is the gradient in x-direction, and Dy is the gradient in y-direction obtained from the
Sobel-operator [21] using the following kernel matrix.
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If the calculated gradient is greater than a preset threshold value the pixel is then identified
as an edge pixel. After the pixel is identified, it is tested to filter out false positive. This is
achieved by checking the neighboring pixels. If none of the neighboring pixel has been
detected as an edge, then the particular pixel is considered to be a false-positive, and
discarded. Finally, the identified pixels are then marked on the color image.

Though several algorithms are available for contour detection, Snakes’ algorithm is used
most widely. Briefly, Snakes’ are active contour models that are guided by energy minimizing
external constraint forces that pull it towards features such as lines edges, or function values.
The details of Snakes’ algorithm has been described well in literature [22,23]. Contour
detection has extensive application in medical imaging also. It is used widely in CAT
scanning and MRI [24,25]. Snakes’ algorithm has been used in this study also. The color
component value of edge pixel was chosen as the function value, and the algorithm was
used to draw a contour of that color component value. Once again, the green component
was used for exudates detection, and the red component was used for hemorrhage
detection. Before the algorithm was used, the color components were normalized from 0 to 1.

A total of 212 color fundus images were procured from Bangladesh Institute of Research and
Rehabilitation for Diabetes, Endocrine and Metabolic Disorders (BIRDEM). The images were
captured using a Zeiss Visucam Fundus Camera. The images had a resolution of 720 × 576
pixels. Of these 212 images, 32 – about 15% – images were used as reference for training of
the algorithms. The algorithms were then applied to the other 180 images for feature
identification.

All image processing was accomplished using custom written computer programs.

3. RESULTS AND DISCUSSION

Canny’s algorithm and Snakes’ algorithm were used to detect hard exudates and retinal
hemorrhage from color fundus images. Both these algorithms have been explained briefly in
the previous section. As stated earlier, 212 color fundus images were available, of which 32
images were used to decide upon the threshold values to detect the candidate regions.

In order to detect the hard exudates using Canny’s algorithm, the green component of the
color image was separated. The first derivatives were calculated, and was checked and
filtered as suggested by the algorithm. The corrected derivatives were scaled from 0 to 1. A
threshold value of 0.3 was set to choose the borders of the hard exudates.
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The detection of retinal hemorrhage using Canny’s algorithm started with the selection of the
red component of the color image. The first derivatives were calculated and filtered as stated
earlier. Finally a threshold value of 0.28 was set to choose the hemorrhage region.

To detect the hard exudates using Snakes’ algorithm, once again the green component was
chosen. The color values were scaled from 0 to 1, and a threshold value 0.7 was set to
identify the candidate region. The detection of retinal hemorrhage using Snakes’ algorithm
was achieved using the red component, and a threshold value of 0.83.

After the threshold values were decided using 32 images, the algorithms were used to
process the other 180 images. Some of the results are shown in Fig. 4. Eight examples are
shown in the figure. The regions marked with blue are the candidate regions for exudates;
whereas the regions marked with red are the candidate regions for retinal hemorrhage. The
figures marked with (i) are the color images with the candidate regions as detected by
Canny’s algorithm, and the figures marked with (ii) shows the candidate regions as detected
by snakes’ algorithm.

(a) i (a) ii (e) i (e) ii

(b) i (b) ii (f) i (f) ii

(c) i (c) ii (g) i (g) ii

(d) i (d) ii (h) i (h) ii

Fig. 4. Eight examples of color fundus images with the hard exudates and retinal hemorrhage
detected.
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In almost all cases, the optic disk was also identified with the hard exudates as a candidate
region. Since the algorithm for the detection of optic disk is quite routine and no attempt was
made in this study to remove the disk. Moreover, as the objective of this study was to
evaluate the effectiveness of two detection algorithms, ignoring the optic disk does not make
any effect in evaluation of the algorithms.

It is quite clear from the images that there is quite a bit of subjectivity in the selection of the
candidate regions. Though, of the images shown, it can be seen that Canny’s algorithm
performs better, but this cannot be made as a general statement. There are images where
Snakes’ algorithm performs better. In general, it can be said that both the methods performs
equivalently while detecting hard exudates, but in detection of the retinal hemorrhage, in
most cases Canny’s algorithm performs better. In images where there was very poor contrast
of the retinal hemorrhage, Canny’s algorithm was observed to indicate a specific region that
was highly subjective, but in most cases, the Snakes’ algorithm completely failed to identify
any region as a candidate region. Furthermore, in Snakes’ algorithm, as the selection criteria
was a color value, and the values of color components range from 0 to 255; therefore, it was
quite common that the program would attempt to draw a contour through a range of points –
hence failing to draw a contour. This raised lots of ambiguity in the resulting contour.

4. CONCLUSION

The subject of analyzing color fundus image for diabetic retinopathy is fairly new. The
comparison of the two algorithms shows that Canny’s algorithm is more robust than
contouring algorithm in detecting hard exudates and retinal hemorrhages. Because of the
nature of contouring algorithm, lots of ambiguities develop while attempting to find a
candidate region. Furthermore, it was observed that the threshold level of both these
algorithms can be adjusted to obtain any candidate region. So, it is difficult to decide upon a
‘global’ threshold level that can be used everywhere. Therefore, further research is needed in
this area is needed to decide upon a robust algorithm for diabetic retinopathy.
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