

Journal of Scientific Research & Reports 3(11): 1534-1541, 2014; Article no. JSRR.2014.11.010

SCIENCEDOMAIN *international www.sciencedomain.org*

Fixed Point Theorems in Quasi-2-Banach Spaces

Silvana Liftaj1*, Luljeta Gjoni² and Kristaq Kikina²

¹Department of Mathematics, University "Aleksander Moisiu", Durres, Albania. ²Department of Mathematics and Computer Science, University of Gjirokastra, Albania.

Authors' contributions

 This work was carried out in collaboration between all authors. All authors read and approved the final manuscript.

Original Research Article

Received 21st February 2014 Accepted 9th April 2014 Published 5th May 2014

ABSTRACT

A number of authors have studied various aspects of fixed point theory in the setting of 2 metric and 2-Banach spaces. In this paper we prove a fixed point theorem for mappings in quasi-2-Banach space via an implicit relation. The results of this paper extend a host of previously known results for metric space in a quasi-2-Banach space.

Keywords: Cauchy sequence; quasi-2-banach space; fixed point.

1. INTRODUCTION

Gahler [1] initiated the concepts of 2-metric and 2-Banach space and Iseki in [2,3], obtained basic results on fixed points in such spaces. These new spaces have subsequently been studied by several mathematicians (for example [4,5,6,7,8]). Recently [8], also proved some results in 2-Banach spaces. In 2006, Park [9] introduces the concepts of quasi-2-normed space and quasi-(2; p)-normed space. In this paper we prove a fixed point theorem for mappings in quasi-2-Banach space via an implicit relation.

__

We start with some definitions before presenting main theorem.

**Corresponding author: E-mail: silvanaliftaj@yahoo.com;*

Definition 1.1 [1] Let *X* be a real linear space of dimension greater than 1 and let $\|\cdot\|$ be a real valued function on $X \times X$ satisfying the following four conditions:

 $(2 N_1)$ $\|x, y\| = 0$ if and only if *x* and *y* are linearly dependent in *X*, $(2 N_2)$ $||x, y|| = ||y, x||$ for all $x, y \in X$, $(2 N_3)$ $\|x,\alpha y\| = |\alpha| \cdot \|x, y\|$ for every real number α ; $(2 N_4)$ $\|x, y+z\| \le \|x, y\| + \|x, z\|$ for all *x*, *y*, $z \in X$.

The function $\| \cdot \|$ is called a 2-norm on *X* and the pair $(X, \| \cdot \|)$ is called a linear 2-normed space. So a 2- norm x , y always satisfies x , $y + \alpha x = x$, $y = x$, for all *x*, $y \in X$ and all scalars α . We cite some examples of 2-Banach spaces from the current literature (see [10], [11]).

Example 1.2 Let $X = R^3$ and consider the following 2-norm on *X* as

$$
\|x, y\| = \begin{vmatrix} i & j & k \\ ae & b & c \\ d & e & f \end{vmatrix} = \left[(bf - ce)^2 + (cd - af)^2 + (ae - db)^2 \right]^{1/2},
$$

where $x = ai + bj + ck$ and $y = di + ej + fk$. Then $(X, \|\cdot\|)$ is a 2-Banach space.

Example 1.3 Let *X* is Q^3 , where Q is the field of rational number and consider the following 2-norm on *X* as:

$$
x, y = \begin{vmatrix} i & j & k \\ a & b & c \\ d & e & f \end{vmatrix},
$$

where $x = ai + bj + ck$ and $y = di + ej + fk$. Then $(X, \|\cdot, \cdot\|)$ is not a 2-Banach space.

Definition 1.4 [9] Let *X* be a linear space. A *quasi-2-normed* is a real valued function on $X \times X$ satisfying three conditions of Definition 2: $(2 N_1)$, $(2 N_2)$, $(2 N_3)$ and the condition $(2 \, N_4^{\bullet})$: There is a constant $k \geq 1$ such that $||x + y, z|| \leq k ||x, z|| + k ||y, z||$ for all $x, y, z \in X$.

The pair $(X, \|, \cdot \|)$ is called a *quasi-2-normed space* if $\|, \|$ is a quasi-2-norm on X. The smallest possible *k* is called the modulus of concavity of $\|\cdot,\cdot\|$.

A quasi-2-norm $\|\cdot,\cdot\|$ is called a *quasi*-(2; *p*)-*norm* ($0 < p \le 1$) if $\|x+y,z\|^p \le \|x,z\|^p + \|y,z\|^p$ for all $x, y, z \in X$.

Definition 1.5 A sequence $\{x_n\}$ in a quasi-2-norm space $(X, \|\cdot\|)$ is said to be a *Cauchy* sequence if $\lim_{m,n\to\infty}||x_m-x_n,u||=0$ for all *u* in X. (Symbolically we denote $d(x_m,x_n)=||x_m-x_n,u||$) **Definition 1.6** A sequence $\{x_n\}$ in a quasi-2-norm space $(X, \|\cdot\|)$ is said to be *convergent* if there is a point *x* in *X* such that $\lim_{n\to\infty} ||x_n - x, y|| = 0$ for all *y* in *X*. If $\{x_n\}$ converges to *X*, we write $\{x_n\} \to x \text{ as } n \to \infty$.

Definition 1.7 A linear quasi-2-norm space $(X, \|\cdot\|)$ is said to be *complete* if every Cauchy sequence is convergent to an element of *X.*

Definition 1.8 A complete quasi-2-norm space is called a *quasi*-2-*Banach space*.

Definition 1.9 Let *X* be a quasi-2-Banach space and *T* be a self-mapping of *X. T* is said to be *continuous* at *X* if for every sequence $\{x_n\}$ in *X*, $\{x_n\} \to x$ as $n \to \infty$ implies ${T (x_n)} \rightarrow T (x)$ as $n \rightarrow \infty$.

We also need the following notion from [12].

Definition 1.10 The set of all upper semi-continuous functions with 5 variables $f: R_{+}^{5} \rightarrow R$ satisfying the properties:

- (a). *f* is non decreasing with respect to each variable,
- (b). $f(t, t, t, t, t) \leq t, t \in R_+$,

will be noted F_5 and every such function will be called a F_5 -function.

Some examples of F_5 -function are as follows:

1. $f(t_1, t_2, t_3, t_4, t_5) = \max\{t_1, t_2, t_3, t_4, t_5\},\$ 2. $f(t_1, t_2, t_3, t_4, t_5) = [\max\{t_1t_2, t_2t_3, t_3t_4, t_4t_5, t_5t_1\}]^{\frac{1}{2}}$, 3. $f(t_1, t_2, t_3, t_4, t_5) = [\max\{t_1^p, t_2^p, t_3^p, t_4^p, t_5^p\}]^{\frac{1}{p}}$, $p > 0$, 4. $f(t_1, t_2, t_3, t_4, t_5) = (a_1 t_1^p + a_2 t_2^p + a_3 t_3^p + a_4 t_4^p + a_5 t_5^p)^{\frac{1}{p}}$, where $p > 0$ and $0 \le a_i$, $\sum_{i=1}^{5}$ 1 $0 \leq a_i, \sum a_i \leq 1$ *i* $a_i, \sum a_i$ = $\leq a_{i}, \sum a_{i} \leq 1$, **5**. $f(t_1, t_2, t_3, t_4, t_5) = \frac{t_1 + t_2 + t_3}{3}$ $f(t_1, t_2, t_3, t_4, t_5) = \frac{t_1 + t_2 + t_3}{3}$ or $f(t_1, t_2, t_3, t_4, t_5) = \frac{t_1 + t_2}{2}$ $f(t_1, t_2, t_3, t_4, t_5) = \frac{t_1 + t_2}{2}$ etc.

2. MATERIALS AND METHODS

We state the following lemma which we will use for the proof of the main theorem.

Lemma 2.1 Let $(X, \|\cdot\|)$ be a quasi-2-normed space with the coefficients $k \ge 1$ and $\{x_n\}$ is a sequence in X. If $d(x_n, x_{n+1}) \le c^n l$, $0 \le c < \frac{1}{k} \le 1$, $l \ge 0$, $\forall n \in N$, then $\{x_n\}$ is a Cauchy sequence.

Proof:

$$
\|x_{n} - x_{n+m}, u\| \le k \|x_{n} - x_{n+1}, u\| + k \|x_{n+1} - x_{n+m}, u\|)
$$

\n
$$
\le k \|x_{n} - x_{n+1}, u\| + k^{2} \|x_{n+1} - x_{n+2}, u\| + k^{2} \|x_{n+2} - x_{n+m}, u\| \le ...
$$

\n
$$
\le k \|x_{n} - x_{n+1}, u\| + k^{2} \|x_{n+1} - x_{n+2}, u\| + k^{3} \|x_{n+2} - x_{n+3}, u\| + ...
$$

\n
$$
+ k^{m-2} \|x_{n+m-3} - x_{n+m-2}, u\| + k^{m-1} \|x_{n+m-2} - x_{n+m-1}, u\| +
$$

\n
$$
+ k^{m-1} \|x_{n+m-1} - x_{n+m}, u\|
$$

\n
$$
\le kc^{n} l + k^{2} c^{n+1} l + k^{3} c^{n+2} l + ... + k^{m-1} c^{n+m-2} l + k^{m} c^{n+m-1} l
$$

\n
$$
\le kc^{n} l \frac{1 - (kc)^{m}}{1 - kc} \le kc^{n} l \frac{1 - (kc)^{m}}{1 - kc} < \frac kc^{n} l.
$$

And so $\lim_{n\to\infty}||x_n-x_{n+m},u||=0$. It implies that $\{x_n\}$ is a Cauchy sequence in X. This completes the proof of the lemma.

Theorem 2.2 Let *X* be a quasi-2-Banach space with the coefficients $k \ge 1$ and $f \in F_5$. Let $T: X \rightarrow X$ satisfying

$$
||T(x) - T(y), u|| \le cf (||x - y, u||, ||x - Tx, u||, ||y - Ty, u||, ||y - T^2x, u||, ||y - Tx, u||)
$$
\n(1)

for each $x, y, u \in X$ and $0 \leq c < \frac{1}{k} \leq 1$. Then *T* has a unique fixed point *z* in *X* such that $x_0 \in X$ gives $\lim_{n \to \infty} T^n(x_0) = z$.

Proof. Let x_0 be an arbitrary point in *X*. Define the sequences $\{x_n\}$ as follows:

$$
x_n = Tx_{n-1} = T^n x_0, \ n = 1, 2, \dots.
$$

Take *u* ∈ *X*. Denote

$$
d_n(u) = ||x_n - x_{n+1}, u||, \ \ n = 0, 1, 2, \dots
$$

By the inequality (1) we get:

$$
d_n(u) = \|x_n - x_{n+1}, u\| = \|T^n x_0 - T^{n+1} x_0, u\|
$$

\n
$$
\leq cf (\|T^{n-1}x_0 - T^n x_0, u\|, \|T^{n-1}x_0 - T^n x_0, u\|, \|T^n x_0 - T^{n+1}x_0, u\|,
$$

\n
$$
\|T^n x_0 - T^{n+1}x_0, u\|, \|T^n x_0 - T^n x_0, u\|)
$$

\n
$$
= cf[d_{n-1}(u), d_{n-1}(u), d_n(u), d_n(u), 0].
$$

By this inequality and the properties of *f*, it follows

$$
d_n(u)\leq c d_{n-1}(u)
$$

In general, we have

$$
d_n(u) \le c^n d_0(u) = c^n l, n \in N,
$$
\n(2)

where $l = d_0(u) = ||x_0 - x_1, u||$, and so

$$
\lim_{n \to \infty} d_n(u) = \lim_{n \to \infty} ||x_n - x_{n+1}, u|| = 0.
$$
 (3)

Then, from (2) and Lemma 2.1 is derived that $\{x_n\}$ is a Cauchy sequence in X and hence is convergent in X. Let $\lim_{n\to\infty}x_n=\lim_{n\to\infty}T^n x_n=\alpha\in X$. The limit α is unique. Assume that $\alpha' \neq \alpha$ and $\alpha' = \lim_{n \to \infty} x_n$. Then by condition (2 N_4^{\bullet}) of Definition 1.5, we obtain

$$
\|\alpha-\alpha^*,u\|\leq k\|\alpha-x_n,u\|+k\|x_n-\alpha^*,u\|.
$$

Letting *n* tend to infinity we get $\|\alpha - \alpha', u\| = 0$ for all $u \in X$ and so $\alpha = \alpha'$.

Let us prove now that α is a fixed point of T. Assume that $\alpha \neq T\alpha$. Then, by Definition 1.3, we obtain $\|\alpha - T\alpha, u\| \le k \|\alpha - x_n, u\| + k \|x_n - T\alpha, u\|$. Then, if $n \to \infty$, we get

$$
\|\alpha - T\alpha, u\| \le k \lim_{n \to \infty} \|x_n - T\alpha, u\| \tag{4}
$$

From (1), we get

$$
||x_n - T\alpha, u|| = ||Tx_{n-1} - T\alpha, u||
$$

\n
$$
\leq cf (||x_{n-1} - \alpha, u||, ||x_{n-1} - Tx_{n-1}, u||, ||\alpha - T\alpha, u||, ||\alpha - T^2 x_{n-1}, u||, ||\alpha - Tx_{n-1}, u||)
$$

\n
$$
= cf (||x_{n-1} - \alpha, u||, ||x_{n-1} - x_n, u||, ||\alpha - T\alpha, u||, ||\alpha - x_{n+1}, u||, ||\alpha - x_n, u||)
$$

Letting *n* tend to infinity we have

.

$$
\overline{\lim}_{n \to \infty} ||x_n - T\alpha, u|| \le cf(0, 0, ||\alpha - T\alpha, u||, 0, 0) \le c ||\alpha - T\alpha, u||.
$$
 (5)

From (4) and (5), we have

$$
\|\alpha - T\alpha, u\| \leq k \lim_{n\to\infty} \|x_n - T\alpha, u\| \leq k c \|\alpha - T\alpha, u\|.
$$

Since $0 < c < \frac{1}{k} < 1$ we have $\|\alpha - T\alpha, u\| = 0$ for all $u \in X$. So α is a fixed point of *T*.

Let we prove now the uniqueness. Assume that $\alpha' \neq \alpha$ is also a fixed point of *T*.

By (1) for $x = \alpha$ and $y = \alpha'$ we get:

$$
\|\alpha - \alpha^*, u\| = \|T(\alpha) - T(\alpha^*), u\|
$$

\n
$$
\leq cf (\|\alpha - \alpha^*, u\|, \|\alpha - T\alpha, u\|, \|\alpha' - T\alpha^*, u\|, \|\alpha' - T^2\alpha, u\|, \|\alpha' - T\alpha, u\|).
$$

\n
$$
= cf (\|\alpha - \alpha^*, u\|, 0, 0, \|\alpha' - \alpha, u\|, \|\alpha' - \alpha, u\|) \leq c \|\alpha - \alpha^*, u\|.
$$

And so, we have

$$
\|\alpha - \alpha', u\| \le c \|\alpha - \alpha', u\|
$$
\n(6)

By (6) we get: $\|\alpha-\alpha', u\|$ =0. Thus, we have again $\alpha=\alpha'$. This completes the proof of the theorem.

3. RESULTS AND DISCUSSION

For different expressions of *f* in Theorem 2.2 we get different theorems. In case $f(t_1, t_2, t_3, t_4, t_5) = t_1$ we have an extension of Banach's contraction principle for metric space in a quasi-2-Banach space:

Corollary 3.1 Let $(X, \| \cdot \|)$ be a quasi-2-Banach space with coefficient $k \ge 1$ and $T: X \rightarrow X$ be a mapping such that

$$
||Tx - Ty, u|| \le c||x - y, u||
$$

for all $x, y \in X$, where $0 \leq c < \frac{1}{\epsilon}$ *k* $\leq c < \frac{1}{x}$. Then *T* has a unique fixed point α in *X* such that $x_0 \in X$ gives $\lim_{n \to \infty} T^n(x_0) = \alpha$.

In case $f(t_1, t_2, t_3, t_4, t_5) = \frac{t_2 + t_3}{2}$ $f(t_1, t_2, t_3, t_4, t_5) = \frac{t_2 + t_3}{2}$ we have an extension of Kannan's contraction principle for metric space [13] in a quasi-2-Banach space:

Corollary 3.2 Let $(X, \|, \cdot\|)$ be a quasi-2-Banach space with coefficient $k \ge 1$ and $T: X \to X$ be a mapping such that

$$
||Tx - Ty, u|| \le c(||x - Tx, u|| + ||y - Ty, u||)
$$

for all $x, y \in X$, where $0 \leq c < \frac{1}{2}$ 2 *c k* $\leq c < \frac{1}{\sqrt{2}}$. Then *T* has a unique fixed point α in *X* such that $x_0 \in X$ gives $\lim_{n \to \infty} T^n(x_0) = \alpha$.

Corollary 3.3 For $f(t_1, t_2, t_3, t_4, t_5) = \max\{t_2, t_3\}$ we have an extension of Bianchini's contraction principle for metric space [14] in a quasi-2-Banach space.

Corollary 3.4 For $f(t_1, t_2, t_3, t_4, t_5) = \frac{at_1 + bt_2 + ct_3}{a+b+c}$ $=\frac{at_1 + bt_2 + b_3}{t_1 + t_2 + b_3}$ $\frac{2}{a+b+c}$ where *a*, *b*, *c* are nonnegative numbers

such that $a + b + c < 1$, we have an extension of Reich's contraction principle for metric space [9] in a quasi-2-Banach space.

Remark 1: For different *f*, we can obtain many other similar results of Rhoades classification [15,16].

Remark 2: For $k = 1$ we take our main theorem and its corollaries for 2-Banach spaces.

4. CONCLUSION

In this paper we proved fixed point theorems for mappings in quasi-2-Banach space via an implicit relation. The results of this paper extend the previously known results for metric space in a quasi-2-Banach space.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- 1. Gahler S. Lineare 2-normierte raume. Diese Nachr. 1965;28(1-2):1–43. German.
- 2. Iseki K. Fixed point theorems in 2-metric spaces. Math Seminar Notes. Kobe Univ. 1975;3:133–136.
- 3. Iseki K. Fixed point theorems in Banach spaces. Maths Seminar Notes. Kobe Univ. 1976;2:11–13.
- 4. Gangopadhyay M, Saha M, Baisnab AP. Fixed point theorems for a class of mappings in a 2-Banach space. Int Journal of Math Analysis. 2009;3(27):1339–1347.
- 5. Gangopadhyay M, Saha M, Baisnab AP. Caristi-type fixed point theorems in a 2- Banach spaces. Gen Math Notes. 2012;8(1):1–5.
- 6. Khan MS, Khan MD. Involutions with fixed points in 2-Banach spaces. Internat J Math & Math Sci. 1993;16(3):429–434.
- 7. Sharma PL, Sharma BK. Non-contraction type mappings in 2-Banach spaces. Nanta Math. 1979;12(1):91–93.
- 8. Badshah VH, Gupta OP. Fixed point theorems in Banach and 2- Banach spaces. Jnanabha. 2005;35:73–78.
- 9. Park C. Generalized quasi-Banach spaces and quasi-(2, p)-normed spaces. Journal of the Chungcheong Matematical Society. 2006;19(2):197–206.
- 10. Açikgoz M. A review on 2-normed structures. Int Journal of Math Analysis. 2007;1(4):187–191.
- 11. White AG. 2-Banach spaces. Math Nachr. 1969;42:43–60.
- 12. Kikina L, Kikina K, Vardhami I. Fixed point theorems for almost contractions in generalized metric spaces. Creative Mathematics and Informatics; 2014. In press.
- 13. Kannan R. Some results on fixed points II. Amer Math Monthly. 1969;76:405–408.
- 14. Bianchini RMT. On a problem of S Reich concerning the theory of fixed points. Boll Un Mat Ital. 1972;5:103–108. Italian.
- 15. Rhoades BE. A comparison of various definitions of contractive mappings. Trans Amer Math Soc. 1977;226:256–290.
- 16. Reich S. Some remarks concerning contraction mappings. Canad Math Bull. 1971;14:121–124.

___ *© 2014 Liftaj et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Peer-review history: The peer review history for this paper can be accessed here: http://www.sciencedomain.org/review-history.php?iid=493&id=22&aid=4444