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Abstract

We apply collisionless particle-in-cell simulations of relativistic pair plasmas to explore whether driven turbulence
is a viable high-energy astrophysical particle accelerator. We characterize nonthermal particle distributions for
varying system sizes up to L/2πρe0=163, where L/2π is the driving scale and ρe0 is the initial characteristic
Larmor radius. We show that turbulent particle acceleration produces power-law energy distributions that, when
compared at a fixed number of large-scale dynamical times, slowly steepen with increasing system size. We
demonstrate, however, that convergence is obtained by comparing the distributions at different times that increase
with system size (approximately logarithmically). We suggest that the system-size dependence arises from the time
required for particles to reach the highest accessible energies via Fermi acceleration. The converged power-law
index of the energy distribution, α≈3.0 for magnetization σ=3/8, makes turbulence a possible explanation for
nonthermal spectra observed in systems such as the Crab Nebula.

Key words: acceleration of particles – magnetohydrodynamics (MHD) – plasmas – pulsars: individual (Crab) –
relativistic processes – turbulence

1. Introduction

For many decades, turbulence has been recognized as a
conceivable source of nonthermal energetic particles in
collisionless plasmas. Theoretical works have proposed a variety
of routes toward nonthermal particle acceleration (NTPA),
including diffusive (second-order) acceleration from turbulent
fluctuations (Alfvénic modes, Jokipii 1966; Schlickeiser 1989;
Chandran 2000; Cho & Lazarian 2006; compressive modes,
Schlickeiser & Miller 1998; Yan & Lazarian 2002; Chandran
2003; kinetic modes, e.g., Dermer et al. 1996; Fonseca et al.
2003; Petrosian & Liu 2004; Riquelme et al. 2017) and secular
(first-order) acceleration via intermittent structures (shocks,
Bykov & Toptygin 1982; Blandford & Eichler 1987; current
sheets undergoing magnetic reconnection, Vlahos et al. 2004;
Lazarian et al. 2012; Isliker et al. 2017; see also Beresnyak &
Li 2016). These mechanisms of NTPA are tantalizing theoretical
possibilities, but rely on various assumptions about the nature of
turbulence and nonlinear plasma physics. Due the complexity
and analytic intractability of the problem, the only practical
way to prove the reality of turbulent NTPA (apart from direct
experimental confirmation) is with self-consistent, large-scale
numerical simulations.

Turbulent NTPA has important implications for space
systems such as the solar corona, the solar wind, and planetary
magnetospheres, as well as high-energy astrophysical systems
such as pulsar wind nebulae, X-ray binaries, supernovae
remnants, jets from active galactic nuclei, radio lobes, and
gamma-ray bursts. Observations of broadband radiation spectra
and cosmic rays imply that nonthermal particles are a
significant component of the universe. In this work, we focus
on relativistically hot plasmas with modestly relativistic bulk
velocities.

In Zhdankin et al. (2017), we applied particle-in-cell (PIC)
simulations to demonstrate that driven turbulence can produce
a substantial population of nonthermal particles in relativistic
pair plasmas, with power-law energy distributions that become
harder with increasing magnetization σ (ratio of magnetic
enthalpy to relativistic plasma enthalpy). However, these
simulations also revealed that the distributions become softer
with increasing system size, and were therefore unable to
probe distributions in the asymptotic large-system limit. In
principle, a lack of convergence can arise from inadequate scale
separation, or from the adverse role of physical effects such as
scale-dependent anisotropy, intermittency, damping of relevant
(e.g., compressive) modes, or the inherent inefficiency of
NTPA at magnetohydrodynamic (MHD) scales. Since super-
computers will be unable to simulate systems with sizes
comparable to real astrophysical systems in the foreseeable
future, it is necessary to understand the scaling of NTPA with
system size before applying such simulations to model
astrophysical phenomena.
In the present work, we address the system-size dependence

of turbulent NTPA. Using an ensemble of PIC simulations with
sizes extending beyond those in Zhdankin et al. (2017), we
confirm a weak system-size dependence for nonthermal energy
distributions when measured at a fixed number of large-scale
dynamical times. More importantly, we present evidence that
the distributions converge when compared at different times
increasing with system size (approximately logarithmically or
as a weak power law). Physically, this time dependence arises
from the fact that the distributions do not fully develop until
particles reach the highest accessible energies via Fermi
acceleration. The converged index for the power-law energy
distribution (α≈ 3.0 for the given numerical setup and σ= 3/8)
confirms turbulence as an efficient, viable astrophysical particle
accelerator.
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2. Simulations

We perform simulations with the explicit electromagnetic
PIC code ZELTRON (Cerutti et al. 2013) using charge-
conserving current deposition (Esirkepov 2001). The simula-
tion setup is described in detail in Zhdankin et al. (2018). The
domain is a periodic cubic box of size L3 (consisting of N3

cells) with uniform mean magnetic field = ˆB zB0 0 . We
initialize electrons and positrons from a uniform Maxwell–
Jüttner distribution with combined particle density n0 and
temperature T0=θ0mc

2, where m is the electron rest mass, and
we choose θ0=100 (giving an ultrarelativistic initial mean
Lorentz factor γ0≈300). We then drive strong (δBrms∼B0)
turbulence at low wavenumbers (k=2π/L) by applying a
randomly fluctuating external current density (TenBarge
et al. 2014). For these simulations, we fix the initial
magnetization to s pº =B h4 3 80 0

2
0 , where h0=4n0θ0mc

2

is the initial relativistic enthalpy density. The initial Alfvén
velocity is given by s sº + »[ ( )]v c c1 0.52 ;A0 0 0

1 2 we
perform each simulation for a duration of at least 7.5L/vA0. As
optimized by convergence studies, we set the initial Larmor
radius to ρe0=1.5Δx (where Δx is the cell size), where the
characteristic Larmor radius r g= á ñmc eBe

2
rms is based on the

instantaneous mean particle Lorentz factor gá ñ and total rms
magnetic field Brms. We choose 64 particles per cell for the
main simulations.

We perform a scan over system size L/2πρe0 by varying the
number of cells in each simulation, takingNä{256, 384, 512,
768, 1024, 1536}, soL/2πρe0ä{27.2, 40.7, 54.3, 81.5, 109,
163}. To check reproducibility, we rerun all cases having
N�1024 with a different random seed (for particle initializa-
tion and driving phases); for robustness, we analyze the particle
distributions averaged for each simulation pair at a given size.
We also perform statistical ensembles of sixteen 3843 cases and
eight 7683 cases with 32 particles per cell to investigate
statistical variation.

3. Results

The simulations evolve as discussed in our previous papers
(Zhdankin et al. 2017, 2018): external driving disrupts the
thermal equilibrium and establishes turbulent fluctuations
across a broad range of scales. Turbulence is fully developed

by a few Alfvén times, after which internal energy increases at
a constant rate due to turbulent dissipation. For reference, in
Figure 1, we show the magnetic energy spectrum compensated
by k̂5 3, where k⊥ is the wavenumber perpendicular to B0, for
simulations of varying size, averaged over five snapshots from
3.1�tvA0/L�5.2. Whereas the 5123 case has a spectrum
steeper than ^

-k 5 3, larger cases (7683 and above) have spectra
close to ^

-k 5 3, consistent with classical MHD turbulence
theories (Goldreich & Sridhar 1995; Thompson & Blaes 1998).
The 15363 case exhibits an inertial range from k⊥ρe∼0.06 to
k⊥ρe∼0.4.
We now turn to the particle energy distribution f (γ), where

the Lorentz factor γ=E/mc2 is used interchangeably with
energy E. The evolution of f (γ) for the 15363 simulation is
shown in the top panel of Figure 2. The distribution develops a
power-law tail, f (γ)∼γ−α, over several dynamical times,
attaining an index α≈3.0 at tvA0/L∼7. This power law
extends from energies comparable to the instantaneous mean
( gá ñ ~ ´1.5 103) up to energies limited by the system size
(g º ~ ´LeB mc2 1.5 10max 0

2 5), a factor of ∼50 in energy.
At later times (not shown), particles accumulate at energies
near γmax, causing a high-energy pileup in the distribution.
In the middle panel of Figure 2, we show the energy

distributions at a fixed number of large-scale dynamical times,
taken to be tvA0/L=7.0, for simulations of varying size
(5123–15363). For clarity, we compensate the distributions by
γ3. The nonthermal tail steepens with increasing system size,
ranging from an estimated index of α≈2.7 for the 5123 case
to α≈3.0 for the 15363 case. Thus, when compared at fixed
times, there is no clear evidence for convergence of f (γ) with
system size; although the scaling of α with size is weak
(δα∼0.3 for a factor of 3 increase in size), it can undermine
the viability of turbulent NTPA in astrophysical systems if it
persists to larger sizes.
The interpretation of the data changes, however, when the

energy distributions are compared at different times, chosen to
scale with system size. In the bottom panel of Figure 2, we
show distributions at tvA0/Lä{5.2, 5.8, 6.4, 7.0} for the
simulations with {5123, 7683, 10243, 15363} cells (which is an
approximately logarithmic increase of time with size). When
compared at these times, the 7683, 10243, and 15363

simulations all exhibit converged distributions with an index
near α≈3.0, to within ±0.1 accuracy. Notably, these times
approximately coincide with the initial formation of the pileup
at γmax. This leads to our main proposal, that turbulent NTPA
produces a power-law particle energy distribution that
converges with increasing system size, but the time required
to fully form this distribution slowly increases with system size.
We suggest that the apparent size dependence of the (fixed-
time) index α in our simulations is due to the power laws
becoming contaminated by the pileup at γmax, which develops
earlier for smaller systems. We next provide a physical
motivation for this proposal.
To understand the acceleration process in detail, we tracked

a random sample of 8×105 particles in each simulation. In
Figure 3, we show the energy evolution for the four tracked
particles that attain the highest energies at the end of the 15363

simulation. These four particles are the only tracked particles
with final energies γ>γmax. At early times, particle energies
exhibit rapid oscillations on a timescale comparable to their
Larmor period. The particles occasionally undergo acceleration
episodes in which their energy rapidly increases by a factor of 2

Figure 1. Magnetic energy spectrum compensated by k̂5 3 for varying system
sizes. Power laws with precompensated indices of −5/3 (dashed), −1.75
(dashed–dotted), and −4 (dotted) are shown for reference.
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or more, but the overall acceleration occurs gradually over
several large-scale dynamical times.

In the same figure, we show the average energy evolution for
all tracked particles with final energies γ>105 (yielding 44
particles), denoted gá ñhe. After turbulence is fully developed,
gá ñhe increases at a slightly subexponential rate, until it
approaches γmax. As we now show, this evolution is consistent

with Fermi acceleration with a slowly evolving acceleration
timescale. We suppose that the scattering process causes the
typical energy of the most energetic particles to increase as

g g
t

~ ( )d

dt
, 1

acc

where τacc(t) is the acceleration timescale. For second-order
Fermi acceleration, assuming scattering by large-scale Alfvénic
fluctuations, the acceleration timescale is

t
l

~ ( )
c

u

3

4
, 2acc

mfp

A
2

where s= - =( )u v v c c1A A A
2 2 1 2 1 2 is the Alfvén four-

velocity and λmfp is the scattering mean free path (Longair
2011). In particular, for scattering by classical MHD turbulence
(i.e., a Goldreich–Sridhar spectrum of Alfvén waves), λmfp is
expected to be effectively independent of energy and set by the
largest scale of turbulence (e.g., Schlickeiser 1989; Miller
et al. 1990; Chandran 2000). For time-independent τacc,
Equation (1) leads to an exponential increase in particle
energy. The time required for particles to reach γmax from an
initial energy of γi∼γ0 is then t g g~ ~( )t log iacc max

r( )Llog e0 . In relativistic plasmas with no energy sink,
however, the acceleration timescale evolves with time since
the Alfvén velocity decreases due to turbulent energy
dissipation increasing the relativistic plasma inertia. As
discussed in Zhdankin et al. (2018), for a constant energy
injection rate, g g hsá ñ ~ +( )v t L10 0 A0 (where η≈1 is the
measured injection efficiency for the given simulations), vA(t)
is given by

s
s

g
s g

h

=
+

= +
á ñ

~ +

-

-

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

v

c

c

v

tv

L

1
1

. 3

A

0 0

1 2

2

A0
2

A0
1 2

Figure 2. Top panel: evolution of the particle energy distribution f (γ) for the
15363 simulation. Middle panel: compensated distribution f (γ)γ3, at fixed time
tvA0/L=7.0, for varying system sizes. Power laws with precompensated
index −3.0 (black dashed) and −2.7 (black dashed–dotted) are also shown,
along with the mean energy gá ñ (green dashed–dotted) and system-size cutoff
γmax (green dotted) for the 15363 case. Bottom panel: Similar compensated
distributions at times increasing logarithmically with size. Power laws with
precompensated index −3.0 (black dashed) and −2.9 (black dashed–dotted)
are shown in this case.

Figure 3. Energy evolution of four particles that attain the highest final
energies in the tracked particle sample (colored solid), along with gá ñhe, the
average of particles attaining γ>105 (black solid). The prediction from
second-order Fermi acceleration (Equation (4); black dashed) and the overall
mean energy gá ñ (black dotted) are also shown for reference.
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The energy growth from second-order Fermi acceleration is
then a power law in time (solving Equations (1)–(3)),

g g hs~ +
hl

⎜ ⎟⎛
⎝

⎞
⎠ ( )tv

L
1 . 4i

Lc v

0
A0

4 3 mfp A0

Note that, using + ( )x n x1 expn as  ¥n , this equation
approaches an exponential in the limit ησ0=1, consistent
with time-independent Fermi acceleration. We find that
Equation (4) provides a good fit to gá ñhe, as shown in
Figure 3, if we take λmfp/L=1/2 and γi=0.7γ0 (giving
γ∝t5.1 at late times). These results suggest that second-order
Fermi acceleration can account for NTPA observed in the
simulations; measuring the relative importance of first-order
and second-order mechanisms is left to future work.

Inverting Equation (4) gives the time required for the particle
to reach a given energy γ,

hs
g
g

~ -
hl⎡

⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )tv

L

1
1 . 5

i

v Lc
A0

0

3 4mfp A0

This is used to estimate the time taken for Fermi-accelerated
particles to reach the system size limit (γ∼γmax). Note that
Equation (5) approaches a logarithmic function for ησ0=1.

We now relate Fermi acceleration to the late-time evolution
of the energy distributions. As previously discussed, the
distributions form a power law and subsequently develop a
broad pileup near γmax. It is natural to focus on the distribution
just prior to the pileup formation, when the power law has its
maximum extent. After the power law is fully formed, a pair of
inflection points appear due to the pileup (which makes the
distribution no longer concave down). We define the inflection
time, tinf, as the latest time at which the difference between
local power-law indices a g gº -¶ ¶[ ( ) ]flog log at the two
inflection points [local extrema of α(γ)] is less than 0.1. For
t>tinf, the distributions become influenced by the pileup,
making a power-law index difficult to define precisely.

We show the normalized inflection time tinfvA0/L versus
system size L/2πρe0 in the top panel of Figure 4. We find that
tinfvA0/L increases with size, consistent with particles requiring
a longer number of larger-scale dynamical times to reach
γmax. In fact, tinf is consistent with the second-order
Fermi acceleration timescale calculated in Equation (5) (with
Lmfp/L=1/2 and γi=γ0, giving tinf∝(γmax/γ0)

0.2), also
shown in the top panel of Figure 4. This scaling is close to
logarithmic over the given sizes. We note that the time taken
for the distribution to reach energies slightly beyond γmax

exhibits a similar scaling as for tinf (not shown). The system-
size dependence of the inflection time, and related pileup,
motivates comparing f (γ) at times that increase according to
Equation (5).

In the bottom panel of Figure 4, we show the index α
(measured at the logarithmic center of the power-law segment)
versus system size L/2πρe0 at various times: the inflection time
t=tinf, logarithmic times prµ ( )t Llog 2 e0 , arbitrary fixed
time t=7L/vA0, and times with fixed mean particle energy
g gá ñ ~ 4.2 0 (nominally identical to fixed time, but sensitive to
statistical variations). We find that measuring the distribution at
fixed time or fixed injected energy shows a clear system-size
dependence, although the dependence weakens with size; in
particular, α exhibits an approximately logarithmic dependence
on L/2πρe0 (weaker than suggested in Zhdankin et al. 2017). In

contrast, the distribution at the inflection time or logarithmic
times shows no systematic variation for L/2πρe080. To sum
up, distributions attain the same power-law index, independent
of system size, just prior to pileup formation.
We conclude with a comment about the statistical sig-

nificance of our results. In our simulations, the amount of
energy injected from external driving fluctuates randomly in
time, since driven mode phases are evolved randomly. While
the mean energy injection rate approaches a universal value for
sufficiently long simulations, the distributions presented in this
paper were measured after a limited duration (7L/vA0), and
thus the amount of injected energy at that point can vary
significantly between different runs (by up to ∼30%). In
principle, a larger energy injection may supply a harder
nonthermal population, bringing up an important question: do
the measured nonthermal distributions exhibit significant
statistical variability (from run to run) due to random driving?
To build confidence that our largest simulations are not
statistical outliers, we analyzed ensembles of sixteen 3843

(L/2πρe0=40.7) and eight 7683 (L/2πρe0=81.5) simula-
tions. For the 3843 ensemble, we obtain an average fixed-time

Figure 4. Top panel: time taken for the primary inflection point to appear in the
energy distribution, tinf, vs. system size L/2πρe0. The predicted time for
particles to be Fermi-accelerated to the system-size limit γmax (Equation (5);
black dashed) and a logarithmic scaling (red dotted) are also shown. Error bars
indicate the time intervals between successive measurements of the distribu-
tion. Bottom panel: power-law index α vs. L/2πρe0 measured at various times:
at the inflection time tinf (blue), at times scaling logarithmically with size (red),
at arbitrary fixed time t=7L/vA0 (green), and at times with fixed mean particle
energy, g gá ñ ~ 4.2 0 (magenta). A logarithmic fit is shown for comparison
(black dashed).
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index of aá ñ » 2.53 and rms spread of δαrms≈0.06 (at
t=7L/vA0), with α weakly correlated with injected energy.
For the 7683 ensemble, we find aá ñ » 2.79 and δαrms≈0.07,
indicating that the statistical spread is similar at both sizes and
is less than the size dependence. When measured at logarithmic
times, we find aá ñ » 2.86, δαrms≈0.09 for the 3843 ensemble
(at tvA0/L≈4.2) and aá ñ » 2.94, δαrms≈0.06 for the 7683

ensemble (at tvA0/L≈5.2), in agreement with Figure 4. In
addition, we find that the variations are modest in each pair of
equal-size simulations from our main system-size scan. Hence,
we believe that the trends in our simulations are robust.

4. Conclusions

Based on the simulations presented in this paper, we are
prepared to declare the system-size independence of power-law
indices of particle energy distributions produced by driven,
large-scale turbulence in relativistic collisionless plasmas. We
empirically observe that convergence occurs at times that
depend on system size (approximately logarithmically or as a
weak power law). We propose a physical interpretation for this
dependence: as the size is increased, an increasing number of
scatterings is required for particles to acquire the highest
accessible energies via Fermi acceleration. The energy
distribution becomes fully developed only once particles reach
the energy limit γmax due to finite system size, and
subsequently the distributions experience a high-energy pileup
that may complicate measurements of the power law.

The pileup forms in our simulations due to continuous
energy injection into a closed system, which is a convenient
benchmark scenario but unrealistic in nature. In general,
particle energies may be limited by other physics, such as open
boundaries or radiative cooling, which may cause a similar
pileup (Schlickeiser 1984; Stawarz & Petrosian 2008). At
present, we can only postulate that, regardless of the physical
mechanism that sets the high-energy cutoff, distributions will
attain the converged index measured in this Letter during
transient evolution.

This work demonstrates that accurately measuring the
converged power-law index is feasible with modestly large
PIC simulations of turbulence (with L/2πρe80). We find a
converged index α≈3.0 at magnetization σ=3/8 and
turbulence amplitude δBrms∼B0; as discussed in Zhdankin
et al. (2017), NTPA becomes more efficient with increasing σ,
leading to smaller α and faster formation of the nonthermal
population (as implied by Equation (5)). Whether the
converged index is universal with respect to other system
parameters remains to be seen. A similar converged value of
the index, for comparable plasma parameters, is measured in
PIC simulations of relativistic magnetic reconnection (e.g.,
Werner & Uzdensky 2017); steeper indices are measured for
relaxation of magnetostatic equlibria (Nalewajko et al. 2016).
Likewise, our measured index is consistent with to the value
≈3.2 inferred from the continuum synchrotron spectrum in the
Crab Nebula, where a magnetization below unity is expected
(Meyer et al. 2010).
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