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Abstract

The probabilistic approach to turbulence is applied to investigate density fluctuations in supersonic turbulence. We
derive kinetic equations for the probability distribution function (PDF) of the logarithm of the density field, s, in
compressible turbulence in two forms: a first-order partial differential equation involving the average divergence
conditioned on the flow density, u sá ñ· ∣ , and a Fokker–Planck equation with the drift and diffusion coefficients
equal to u s s-á  ñ· ∣ and u s sá  ñ· ∣ , respectively. Assuming statistical homogeneity only, the detailed balance at
steady state leads to two exact results, u s 0á ñ =· ∣ , and u s s 0á  ñ =· ∣ . The former indicates a balance of the
flow divergence over all expanding and contracting regions at each given density. The exact results provide an
objective criterion to judge the accuracy of numerical codes with respect to the density statistics in supersonic
turbulence. We also present a method to estimate the effective numerical diffusion as a function of the flow density
and discuss its effects on the shape of the density PDF.
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1. Introduction

Supersonic turbulence in molecular clouds plays a crucial
role in the process of star formation. The probability
distribution function (PDF) of density fluctuations in super-
sonic turbulence has been extensively investigated (e.g.,
Vazquez-Semadeni 1994; Padoan et al. 1997; Nordlund &
Padoan 1999; Molina et al. 2012) and widely used in
theoretical models of star formation (Krumholz &McKee 2005;
Hennebelle & Chabrier 2011; Padoan & Nordlund 2011a;
Federrath & Klessen 2012). In star formation models based on
turbulent fragmentation, the shape of the density PDF,
particularly its high-density tail, is of particular importance
due to its impact on the star formation rate and the predicted
stellar initial mass function (e.g., Padoan et al. 1997; Padoan &
Nordlund 2002; Hennebelle & Chabrier 2008; Padoan &
Nordlund 2011a, 2011b). Numerical simulations of isothermal
supersonic turbulence with solenoidal forcing have shown that
the density PDF is generally consistent with a lognormal
distribution, whereas changes in the equation of state (Passot &
Vázquez-Semadeni 1998; Scalo et al. 1998), the forcing pattern
(Federrath et al. 2008, 2010), and the inclusion of gravity
(Collins et al. 2011; Kritsuk et al. 2011) all induce variations in
the PDF shape.

The density PDFs used in star formation models are usually
based on results from numerical simulations. The theoretical
understanding of the origin of such PDFs is still incomplete,
with most interpretations of numerical results being heuristic or
qualitative. For example, the usual argument that the lognormal
distribution is the consequence of a multiplicative process of
successive, independent compressions and expansions is purely
phenomenological. Also, it is not clear how artificial numerical
diffusion that exists in all simulations affects the PDF shape.

In this Letter, we study the density statistics from first
principles, by deriving kinetic equations of the density PDF.

Exact results corresponding to the detailed balance of
probability fluxes at steady state are derived using the
assumption of statistical homogeneity only (Section 2). We
stress that, due to strong nonlinearity, exact results in
turbulence are very rare, with the known examples being
Kolmogorov’s celebrated 4/5 law and similar ones in different
flow cases (e.g., Yaglom 1949; Politano & Pouquet 1998;
Galtier & Banerjee 2011). The exact results are used to test the
accuracy of numerical simulations in Section 3, and our
conclusions are summarized in Section 4.

2. The PDF Equations and Exact Results

2.1. The PDF Equations

Defining the logarithm of the density, s ln r rº á ñ( ), with
rá ñ the average density, the continuity equation reads

u u
s

t
s , 1

¶
¶

+  = -· · ( )

where u is the turbulent velocity. Following the general
procedure of the probabilistic approach for turbulence studies
(e.g., Pope 2000), we define a fine-grained PDF,

x xg t s t; , ,z d z= -( ) ( ( )), where δ is the Dirac delta function
and ζ the sampling variable. The time derivative of g is given
by xg t g s; ,t tz¶ = -¶ ¶z( ) , as g depends on t only through

xs t,z -( ( )). Using Equation (1) for ∂ts yields
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where the last two terms use the fact that u · and u s· are
independent of the sampling variable, ζ.
The coarse-grained PDF is defined as the ensemble average

of g, i.e., x xf t g t; , ; ,z zº á ñ( ) ( ) , over independent flow
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realizations. The ensemble average of the product of any
quantity, x t,f ( ), with g (a delta function) can be written in
terms of a conditional average, x xt s t, ,f d zá - ñ =( ) ( ( ))

x x xt s t f t, , ; ,f z zá = ñ( )∣ ( ) ( ), where x xt s t, ,f zá = ñ( )∣ ( )
is the average of f over the realizations where xs t,( ) equals
the sampling variable (Pope 2000). Ensemble averaging
Equation (2) then gives
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where the last two terms represent the fluxes of probability into
and out of a given s interval by the advection of s and the
divergence, respectively. At steady state, a balance of the
probability flux is expected. We refer to u s zá = ñ· ∣ and
u s s zá  = ñ· ∣ , as the conditional mean divergence and
conditional mean advection, respectively.

An important relation exists between the two conditional
means. Ensemble averaging the equality u ug g =  -· · ( )
u u ug g s g =  +  ¶z· · ( ) ( · ) , and assuming statistical
homogeneity, we find that

u us f s s f . 4z
z

zá = ñ =
¶
¶

á  = ñ· ∣ ( · ∣ ) ( )

Using this relation in Equation (3) leads to two forms of kinetic
equations for xf t; ,z( ), one of which is
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where the PDF evolution is determined by the conditional
mean divergence. The other form is a Fokker–Planck equation,
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where the drift and diffusion coefficients are u s s z-á  = ñ· ∣ and
u s s zá  = ñ· ∣ , respectively. The diffusion term in Equation (6)
tends to broaden the PDF, while the drift term reduces the mean of
s. By analyzing u s s zá  = ñ· ∣ , the Fokker–Planck equation may
be conveniently used to study the development of density
fluctuations and the evolution of the PDF from initial conditions.

Equations (5) and (6) for the PDF of s are exact; however,
they are not closed (hence not directly solvable) because the
conditional means involve two-point, density-velocity joint
statistics, whose evolution relies on three-point joint statistics
and so on. For simplicity, we will drop the sampling variable, ζ,
and write the PDF as f (s; t), and any conditional mean

s zá¼ = ñ∣ as sá¼ ñ∣ .

2.2. Exact Results at Statistically Steady State

At statistically steady state, exact results corresponding to
the balance of probability fluxes can be derived from the PDF
equations. At steady state, Equation (5) is solved by

u s f s C sexpá ñ = -· ∣ ( ) ( ), where C is the integration con-
stant. The integral of u s f sá ñ· ∣ ( ) from -¥ to ¥ is uá ñ· ,
which is zero from homogeneity. This requires C=0, so that

u s 0, 7á ñ =· ∣ ( )

for all s, indicating that, at each given density, the values of the
velocity divergence in expanding and converging regions of a

compressible turbulent flow cancel out exactly. This exact balance
at each density is a detailed version of the overall balance,

u 0á ñ =· , that follows simply from statistical homogeneity.
Combining Equations (7) and (4) gives u s s f C2á  ñ =· ∣ ,

with C2 another integration constant. Considering that
u us s f s ds sò á  ñ = á  ñ

-¥

¥
· ∣ ( ) · and that u s 0á  ñ =· at

steady state (as can be seen by averaging Equation (1)), we
have C2=0 and

u s s 0, 8á  ñ =· ∣ ( )

for all s. Note that our main results, Equations (7) and (8), are
derived exactly, with only assumptions of statistical homo-
geneity and stationarity.
Equations (7) and (8) indicate that the probability fluxes due

to the advection and divergence terms in Equation (3) are
perfectly balanced individually. This individual balance of each
term is not required by Equation (3), which only demands an
overall balance u us s s 0á  ñ + á ñ =· ∣ · ∣ at steady state. It is
the relation in Equation (4) that leads to individual balances of
the two terms. We will refer to both Equation (7) and
Equation (8) as detailed balance.

3. Simulation Results

3.1. Effects of Artificial Numerical Diffusion

The results derived in Section 2 are expected to hold exactly,
as long as the assumed statistical homogeneity and stationarity
are satisfied. However, the artificial numerical diffusion of the
density field, which is unavoidable in simulations but absent in
real flows, may cause departures from the exact results. As the
continuity equation is evolved on a discrete grid, strictly
speaking, the computed density field is not the exact solution.
For example, the length scale of density structures is limited by
the size of the computational cell, and intense structures such as
shocks would appear more diffuse than in real flows. This effect
of discretization is responsible for the departure of the simulation
results from our exact relations, Equations (7) and (8), which may
be used as a tool to evaluate the accuracy of the simulations.
The numerical diffusion in a specific simulation also depends

on the adopted solver and the details of its implementation, such
as the regularization methods used to stabilize the shocks. To
examine the effects of numerical diffusion, we adopt a generic
form, ∇·(κ(ρ)∇ρ), where, for simplicity, the diffusivity κ(ρ)
is assumed to depend only on the density. This assumed form of
the numerical diffusion gives a contribution of κ (∇s)2 +
∇·(κ∇s) to Equation (1), which leads to

u

u

f s t

t s
s s f s s s f

s
s s f s s s f

;

, 9

2

2

2
2

k

k

¶
¶

=
¶
¶

á  ñ - á  ñ

+
¶
¶

á  ñ - á  ñ

( ) ( · ∣ ( ) ( ) ∣ )

( · ∣ ( ) ( ) ∣ ) ( )

which is again a Fokker–Planck equation. We will refer to
s s s2k á  ñ( ) ( ) ∣ as the conditional mean dissipation of s. The

drift and diffusion coefficients indicate a competition between
the conditional mean advection and the numerical diffusion,
which tend to broaden and narrow the PDF, respectively. At
steady state, the two terms must cancel out, i.e.,
u s s s s s2ká  ñ = á  ñ· ∣ ( ) ( ) ∣ , suggesting that the numerical
diffusion of density tends to make the conditional mean
advection positive rather than 0. The relation provides an
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estimate of the effective numerical diffusivity as a function of s,

us s s s s . 102k = á  ñ á  ñ( ) · ∣ ( ) ∣ ( )

The effect of numerical diffusion is expected to decrease with
increasing resolution, so our exact results, Equations (7) and
(8), should be better satisfied at higher resolution.

3.2. Comparison with Simulation Data

We simulated an isothermal, supersonic turbulent flow with
rms Mach number ∼7.5, using the recently developed code
Dispatch (Nordlund et al. 2018). We solved the 3D
hydrodynamic equations without explicit viscosity in a periodic
simulation box of unit size, using the Harten–Lax–van
Leer-Contact (HLLC) approximate Riemann solver (Toro
et al. 1994). The flow was driven with a solenoidal random
force in Fourier space at wavenumbers 1 ≤ 1/2π ≤ 2. The
simulations lasted 15 dynamical times, and we used the last
30 snapshots covering 10 dynamical times for statistical
analysis. In order to examine the dependence on numerical
resolution, we carried out simulations at four resolutions, from
1283 to 10243. Note that our theoretical results are general,
applicable to all compressible flows, and the specific choice of
code and simulation here is intended only to show how to use
our exact results to test the accuracy of simulations and to
illustrate the method to estimate numerical diffusivity.

To compute the conditional statistics, we divide the s space
into bins of different widths, such that the sample size of each
bin is constant, ;6.3 million. We first analyze the conditional
mean advection at steady state. Figure 1 plots u s sá  ñ· ∣ at
different resolutions. The main panel normalizes it to the
overall rms advection in the entire flow. Our theory predicts
that the conditional mean advection vanishes exactly. However,
the existence of numerical diffusion causes u s sá  ñ· ∣ to be
positive at all s, because it is in balance with the positive-
definite conditional mean dissipation s s s2k á  ñ( ) ( ) ∣ at steady
state (Section 3.1). Therefore, the departure of u s sá  ñ· ∣ from
zero reflects the amplitude of numerical diffusion of density.
Figure 1 shows that u s sá  ñ· ∣ is small and almost constant at
small s, and then quickly rises at s1, indicating an increase
of the numerical dissipation with s.

The inset of Figure 1 shows the ratio of the conditional mean
advection to the conditional rms, u s s2 1 2á  ñ( · ) ∣ , in each s bin.
The ratio reflects how close to zero the conditional mean
advection is. The ratio is much smaller than 1; it is only ;0.12
at the lowest resolution, and decreases steadily with increasing
resolution, to about 0.03 for small s at 10243. This continuous
decrease with increasing resolution, without any sign of
convergence, is consistent with our theory that predicts
u s s 0á  ñ =· ∣ in the absence of numerical diffusion, which
can be achieved only toward infinite resolution.
In Figure 2, we plot the conditional mean divergence

u sá ñ· ∣ measured from the simulation data. When normalized
to the overall rms divergence, u 2 1 2á  ñ( · ) (main panel), the
conditional mean divergence is close to zero and almost
constant at small s. It then starts decreasing at s;−1, and
finally becomes negative and deviates significantly from zero at
the largest values of s. The conditional mean divergence was
also predicted to be zero, and like the case of u s sá  ñ· ∣ , its
departure from zero at large s also corresponds to the effect of
numerical diffusion (see below). Intuitively, strong shocks in a
simulation may result in structures that are initially unresolved,
with lower densities than expected, and thus their negative
divergence is artificially assigned to relatively lower densities.
This contributes to the negative mean divergence, u sá ñ· ∣ , at
large s.
The inset of Figure 2 normalizes u sá ñ· ∣ to the conditional

rms, u s2 1 2á  ñ( · ) ∣ , of the divergence. This normalization is a
better indicator of how well the negative and positive parts of
the divergence PDF, which is generally very broad, cancel out
at each given density. Except at the largest values of s, where
the conditional mean to rms ratio reaches ;−0.6, u sá ñ· ∣ is
significantly smaller than u s2 1 2á  ñ( · ) ∣ , especially at high
resolutions. For both normalizations, the conditional mean
divergence gets closer to zero with increasing resolution, again
with no sign of convergence at 10243. It is thus likely that

u sá ñ· ∣ continues to approach zero as the resolution increases
further, consistent with our prediction that, in the absence of
numerical diffusion, the divergence is perfectly balanced at
each density level.
To understand the significant departure of u sá ñ· ∣ from

zero at large s, we make use of Equation (4), which provides a
relation between u sá ñ· ∣ and u s sá  ñ· ∣ . We rewrite the

Figure 1. Conditional mean advection, u s sá  ñ· ∣ , normalized to the rms,
u s 2 1 2á  ñ( · ) , of the advection term. The inset shows the same quantity

normalized to the conditional rms u s s2 1 2á  ñ( · ) ∣ in each s bin. Dotted,
dashed, solid, and blue solid lines show results at 1283, 2563, 5123, and 10243

resolution, respectively.

Figure 2. Conditional mean divergence, u sá ñ· ∣ , normalized to the overall
rms flow divergence, u 2 1 2á  ñ( · ) (main panel), and to the conditional rms

u s2 1 2á  ñ( · ) ∣ (inset) in each s bin.
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relation as u s sá ñ = ¶ á· ∣ u us s s s f slns ñ + á  ñ¶· ∣ · ∣ [ ( )].
The second term, u s s f slnsá  ñ¶· ∣ ( ), is dominant at large s
because the right tail of the density PDF, f (s), decreases very
fast (see Figure 3). Therefore, the decrease of u sá ñ· ∣ below
zero at large s corresponds to the decrease of f (s) and the rise of
u s sá  ñ· ∣ toward large densities. In particular, the fast decrease
of f (s) at large s explains why the departure of u sá ñ· ∣ from
zero is more significant than that of u s sá  ñ· ∣ . The increase of
u s sá  ñ· ∣ at large s is caused by numerical diffusion, therefore
the significant departure of u sá ñ· ∣ from zero at large s also
reflects the effect of numerical diffusion. At small s(−2),
both u sá ñ· ∣ and u s sá  ñ· ∣ appear to be roughly constant
(Figures 1 and 2). For constant u sá ñ· ∣ and u s sá  ñ· ∣ ,
Equation (4) implies that f (s) is exponential, which is
approximately consistent with the left PDF tail shown in
Figure 3. However, the approximately exponential left tail is
not expected in general, as its shape may depend on various
factors, such as the flow Mach number, the driving pattern
(Federrath et al. 2010), and possibly the numerical code.

We have found that, consistent with our theory, u sá ñ· ∣
and u s sá  ñ· ∣ are close to zero at small s, and their departure
from 0, occurring primarily at large s, reflects the artifacts of
numerical diffusion and steadily decreases with increasing
resolution.

Our analytical work provides a way to estimate the effective
numerical diffusivity, κ(s) (Equation (10)). As expected,
Figure 4 shows the measured κ(s) decreases with increasing
resolution. For each factor of 2 increase in resolution, κ(s)
decreases by a factor of ;2 for all s, and the shape of κ(s) as a
function of s appears to be independent of the resolution. The
invariance is likely a result of the fact that Riemann solvers
resolve shocks with a fixed number of cells, corresponding to a
diffusivity that scales linearly with the cell size. Finite
difference solvers with diffusivities proportional to the cell
size are expected to show similar scaling behavior. If so, κ(s)
may be viewed as an intrinsic feature that characterizes each
code. The invariance of the function form of κ(s) with
resolution in our simulation may be partly responsible for the
convergence of the overall shape of the density PDF. As seen
in Figure 3, the shape of f (s) is also largely invariant with
numerical resolution. The effect of increasing resolution is
mainly to extend the PDF to a wider s range.

At all resolutions, κ(s) decreases by a factor of ;3 as s
increases to 1, and then slightly rises as s increases further. The
decrease of κ(s) with increasing s does not imply that the
numerical dissipation, s s s2k á  ñ( ) ( ) ∣ , is weaker at larger s. In
fact, the larger departure from zero of u sá ñ· ∣ and u s sá  ñ· ∣
at large s is due to the increase of the numerical dissipation of s
toward large densities. Although κ(s) at large s is already
2–3 times smaller than at small s, it is still not sufficient to keep
the numerical dissipation of s in dense regions at a satisfactory
level. Adopting adaptive-mesh-refinement methods could help
further reduce the numerical diffusion at large s.
A fundamental question concerning density fluctuations in

supersonic turbulence is how well the density PDF of a
simulation represents the PDF, freal(s), of a real flow. The
convergence of the PDF with resolution does not necessarily
guarantee the PDF is accurate. Numerical diffusion is
unavoidable in simulations, and its dependence on s may leave
an artificial imprint on the density PDF. It is unknown what
function form of κ(s) would give density statistics closest to
freal(s). Furthermore, if the function form of κ(s) with s is
invariant with resolution, as in our case, increasing resolution
may not bring the shape of the PDF closer to freal, as it may
only extend the PDF to a wider density range. According to our
preliminary results (L. Pan et al. 2018, in preparation),
numerical diffusion in simulations may cause a significant
underestimate of the high-density tail of the density PDF. A
semi-analytical approach developed in our new work that
removes the direct effect of the artificial diffusion of the density
field predicts a power-law tail, while numerical simulations
always yield a nearly lognormal tail.
Based on our exact results, we propose to use the departure

from zero of the conditional means, u sá ñ· ∣ and u s sá  ñ· ∣ , at
all values of s, as an objective criterion to evaluate the ability of
numerical codes to reproduce the correct density PDF. This
criterion will be adopted in the context of a future systematic
study of the shape of the density PDF in turbulent flows
simulated with different codes.

4. Conclusions

We have used both analytical and numerical approaches to
investigate density fluctuations in compressible turbulence.
Kinetic equations for the density PDF were derived in two

Figure 3. Probability distribution of s using the same s bins as for the analysis
of the conditional means.

Figure 4. Measured numerical diffusivity, κ(s), as a function of logarithmic
density at different numerical resolutions.
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forms, a first-order partial differential equation (Equation (5))
and a Fokker–Planck equation (Equation (6)) with coefficients
given by the conditional mean divergence, u sá ñ· ∣ , and
advection, u s sá  ñ· ∣ , respectively. With the assumption of
statistical homogeneity only, two exact results were predicted,

u s 0á ñ =· ∣ and u s s 0á  ñ =· ∣ , corresponding to the
detailed balance of probability fluxes at steady state. In
simulations, the departure of the conditional mean divergence
and advection from zero corresponds to the artifacts of the
numerical diffusion of the density field. Our exact results
provide an objective measure for the accuracy of the density
PDF from numerical simulations, suggesting that the codes
yielding smaller departure of u sá ñ· ∣ and u s sá  ñ· ∣ from
zero are to be considered more accurate. A general method is
also developed to measure the numerical diffusivity, κ(s), as a
function of s, which may be used to characterize each
numerical code. A systematic study of the effects of numerical
diffusion on the PDF shape using different codes is being
planned and will be reported in future work.
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