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Abstract.	  To	  measure	  directly	  the	  wavefront	  aberration	  coefficients,	  we	  propose	  to	  use	  
the	   multi-‐order	   diffractive	   element	   fitted	   with	   the	   set	   of	   Zernike	   polynomials.	  
Polynomials	   of	   lowest	   degree	   describe	   defocusing	   (ametropy)	   and	   astigmatism.	  
Coefficients	  of	  highest	  degree	  correspond	  to	  the	  spherical	  aberration	  of	  oblique	  rays	  that	  
occurs	  as	  a	  consequence	  of	  misalignment	  of	  the	  crystalline	  lens	  and	  foveola,	  as	  well	  as	  
deflection	   at	   the	   periphery	   of	   the	   crystalline	   lens.	  Multi-‐order	   elements	   allow	   several	  
tens	   of	   expansion	   coefficients	   to	   be	   measured	   simultaneously,	   which	   will	   enable	   to	  
investigate	   insufficiently	   known	   high-‐order	   aberrations	   for	   the	   differentiated	  
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1 Introduction 
Wave aberrations of the eye can be measured using 
various subjective and objective methods. The 
subjective methods are based on the collection of the 
patient’s visual responses, while the objective methods 
do not require the cooperation with the patient and are 
based on the image recording after the double-pass 
through the ocular lens. Among the methods developed 
over the years, the following methods can be singled 
out: the Vernier method – alignment [1], 
aberroscopy [2], the Foucault knife-edge method [3] and 
the method for phase retrieval from the retina image [4]. 

Existing clinical aberrometers provide sufficiently 
accurate measurements of deflection of the eye’s 
wavefront [5-8]. In this case high-order aberrations are 
measured to assess the personal deflections of the 
wavefront, including those related to the professional 
activity or age-related changes, in order to optimise the 
optical (with contact or intraocular lenses) or surgical 
correction of the human eye. 

Currently, the most widely used method for the 
measurement of the eye aberration is the Hartmann-
Shack wavefront sensor [9, 10]. The sensor consists of a 
microlens array optically conjugated to the pupil and a 
camera located in the focal plane of the microlens array. 
If a plane wavefront reaches the microlenses then the 
perfectly regular grid of light spots is formed on the 
camera. However, if the wavefront is distorted by 
aberrations, the light spots are located irregularly. The 
displacement of each spot from the reference position is 
proportional to the wavefront derivative in each 
microlens area. Thus, the wavefront is reconstructed 
from the displacements of the light spots recorded by 
the Hartmann-Shack sensor, and then the aberrations are 
calculated. 

A common representation of the wavefront is a set 
of Zernike polynomials, which correspond to different 
wavefront aberrations [11, 12]. Coefficients for the 
expansion of the wavefront in orthogonal Zernike 
polynomials make it possible to determine the root 
mean square error of the deflection from an ideal 
wavefront. The coefficients with high absolute value 

automatically indicate to the aberrations that distort the 
wavefront in the highest degree and consequently allow 
to significantly speed up and simplify the analysis of 
patient’s vision [13]. 

In this paper, we propose to use diffractive optics 
methods for the direct optical measurement of 
amplitudes of coefficients for the expansion of the 
individual visual system wavefront in Zernike 
polynomials [14]. 

The diffractive optical elements (DOE) forming 
simultaneously several laser beam modes in different 
diffraction orders (so-called multi-order or multi-
channel elements) are successfully used as a spatial 
filters for the analysis of a set of laser beam transverse 
modes [14-17]. 

Similar multi-order DOE fitted with the set of 
Zernike polynomials can be used in the wavefront 
analysis and reconstruction [18-20].  

In this paper, wavefront aberrations are analysed 
using a phase spatial filter, with orthogonal circular 
Zernike polynomials used as a basis of the light field 
expansion. Note that in this case, not the phase field but 
the complex amplitude is expanded into the Zernike 
basis, with the intensity generated in the spatial plane of 
Fourier-spectrum and proportional to the field 
expansion coefficients. The coefficient modules 
measured are then used for computing the argument of 
the light field complex amplitude. We are also 
concerned with iterative algorithms for computing the 
Zernike filter phase and the phase of light field complex 
amplitude. 

2 Theoretical bases 
There is a complete set of orthogonal functions with 
angular harmonics in a circle of radius r0. These are the 
circular Zernike polynomials [21]: 

Ψnm r,ϕ( ) = AnRnm r( )exp imϕ( ) ,   (1)  

where  
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m r( )  are the radial Zernike polynomials: 

Rn
−m r( ) = Rnm r( ) ,         Rn±1 r0( ) =1,          

R2k+1
2l r( ) = 0, R2k

2l+1 r( ) = 0 , m ≤ n , R0
0 r( ) =1 ,  

and (r,ϕ) are polar coordinates. 
The expansion of the light field with complex 

amplitude E(r,ϕ) into a series in terms of the functions 
in Eq. (1) is given by 

E r,ϕ( ) = CnmΨnm r,ϕ( )
m=−n

n

∑
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∞

∑ ,   (2)  
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In the plane of a spatial Fourier-spectrum that may 
be generated by a spherical lens of focal length f ,  the 
light field complex amplitude F(ρ,θ) takes the form  

F ρ ,θ( ) = k
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×
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where k=2π/λ is the wavenumber of light, λ is the 
wavelength, and (ρ,θ) are the polar coordinates. Based 
on Eq. (2), the light field expansion, Eq. (4), in terms of 
the Zernike polynomials of Eq. (1) is given by 

F ρ,θ( ) =
= k
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In deriving Eq. (5), we made use of the integral 
representation of the Bessel functions of the first kind 
and m-th order: 

Jm x( ) = i
m

2π
exp −ix cost + imt( )

0

2π

∫ dt.   

The integral in Eq. (5) may be taken explicitly [21]: 

Wnm ρ( ) = Rn
m r( )Jm kf −1rρ( )rdr

o

r0

∫ =

= −1( ) n−m( )/2
r0
2
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   (6)  

From Eq. (6), one can see that at n>0 the complex 
amplitude at central points ρ=0 is equal to zero: 

Wnm ρ = 0( ) =
0,n > 0,
r0
2

2
,n = 0.

⎧

⎨
⎪

⎩
⎪

  

Hence, at n > 0 the intensity distribution in 
diffraction orders of the Fourier-plane will be circular in 
structure. 

An optical configuration of the spectral Zernike 
analyser to illustrate the use of a phase Zernike filter in 
analysis of the wavefront of amplitude E(r,ϕ) is shown 
in Fig. 1. Similar to the Hartman-Shack wavefront 
sensor [9, 10], the Zernike filter is mounted directly in 
the plane of the wavefront to be studied, with a 
spherical lens L of focal length f placed immediately 
behind it. A photoreceiver array matched to the 
computer PC is placed in the rear focal plane of the lens 
L. 

In our formulation of the problem, lens aberrations 
are not included. We believe they will be substantially 
less than the analysed aberrations of an eye. 

	  
Fig. 1 Optical configuration of the Zernike analyser: ZF 
is the Zernike filter, L is a spherical lens, PA is a 
photoreceiver array, and PC is a computer. 

3 Design of the phase-only multi-order 
Zernike filter 

In order for the transmission function of the ZF to be 
phase-only: 

τ r,ϕ( ) = exp iS r,ϕ( )⎡⎣ ⎤⎦    (7)  
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it should be sought for in the form 

τ r,ϕ( ) =

=
Ψnm
* r,ϕ( )×

×exp ikf −1rρnm cos ϕ −θnm( )+ νnm⎡⎣ ⎤⎦ ,m=−n

n

∑
n=0

N

∑
   (8)  

where (ρnm,ϕnm) are the vectors of the carrier spatial 
frequencies in polar coordinates and νnm are  the free 
parameters of the task to be fitted in such a manner as to 
make Eq. (8) an exact equality. Once the light intensity 
proportional to the squared modulus of the expansion 
coefficients in Eq. (2), 

Inm = Cnm
2
   (9)  

has been measured at discrete points of the Fourier-
plane (see Fig. 1), one must perform additional 
computation  in order to find the light field phase from 
Eq. (2): 

Q r,ϕ( ) = arg E r,ϕ( ) .   (10)  

To do this, one may use an algorithm similar to the 
algorithm of Eqs. (3) and (4) and find the phase estimate 
of light field in the (k+1)-th iteration in the form 

Qk+1 r,ϕ( ) =
= arg InmΨnm r,ϕ( )exp iνnm( k )⎡⎣ ⎤⎦
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where νnm
k( )  are the free parameters in the k-th iteration 

derived from the equation 

νnm
k( ) = arg exp iQk r,ϕ( )⎡⎣ ⎤⎦Ψnm
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where Qk r,ϕ( )  is the sought-for phase estimate in the 
k-th iteration. 

Since the wavefront aberrations met with in optical 
systems are described by even functions relative to the 
azimuth angle ϕ [21], the wave field E(r,ϕ) may be 
written as 

E r,ϕ( ) = exp i BnmRn
m r( )cos mϕ( )

m=−n

n

∑
n=0

N

∑⎧
⎨
⎩

⎫
⎬
⎭
.   (13)  

In this connection, instead of the general expansion 
in Eq. (9) one should use the expansion in terms of the 
even functions 

E r,ϕ( ) = CnmΨnm r,ϕ( )
m=−n

n

∑
n=0

∞

∑ ,  

Ψnm r,ϕ( ) = εm
n +1
π r0

2 Rn
m r( )cos mϕ( ) ,  

where εm =
2, m ≠ 0,
1, m = 0.

⎧
⎨
⎪

⎩⎪
 

For small aberrations, the relation between the 
expansion coefficients Bnm and Cnm is linear 

1+ iB00 =
C00
πr0

2
, iBnm = εm

Cnm
πr0

2
  .  

For arbitrary aberrations, the relation between Bnm  
and Cnm is non-linear and on measuring the modules 

C00
2
 one has to use the algorithm of Eqs. (11) and (12) 

in order to derive the phase Q(r,ϕ) of Eq. (10). Then, 
using Eq. (13) one derives the wave aberration 
coefficients, Bmn. 

Note that since R0
0 r( ) =1 , the Zernike polynomial 

basis contains the unit as an expansion term, which 
means that when illuminated by a plane wave of 
amplitude E(r,ϕ)=const, the Zernike filter yields only 
one non-zero coefficient of the expansion in Eq. (10): 

C00
2
≠ 0 .  

From Eq. (6) it also follows that the diffraction orders 
corresponding to the basis functions with different 
numbers m, but with the same numbers n, will have 
similar diffraction patterns (circular structures  at n > 0 ) 
in the Fourier-plane: 

Wnm ρ( ) = r02
Jn+1 kf

−1r0ρ( )
kf −1r0ρ( )   .  

The simulation parameters were as follows: 256 
pixels on the radius r and 256 pixels on the angle ϕ, 
r0  = 1 mm, k = 104 mm-1, f = 100 mm. We designed a 
25-channel filter [18] that generates diffraction orders 
for the basis functions with the numbers (n,m): m ≤ 8 
and n ≤ 8, propagated at some angles to the optical axis. 

Figure 2 depicts: (a) the half-tone Zernike filter 
phase (black colour corresponds to the phase value of 0 
and white to 2π), (b) 25 diffraction orders generated in 
the lens frequency plane (negative), and (c) the 
correspondence between the numbers (n,m) and 
diffraction orders. 
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(a)	  

	  
(b)	  

	  
(c) 

Fig. 2 (a) The half-tone phase of the Zernike filter, (b) 
the intensity distribution in the lens focal plane, and (c) 
the correspondence between the numbers (n,m) and 
diffraction orders. 

The filter is assumed to be illuminated by a plane 
wave. In this case, the analyser “splits” the incident 
beam onto 25 beams of approximately the same energy. 
80% of the total illuminating beam energy is accounted 
for by these diffraction orders. From Fig. 2(b) the 
intensity is seen to be zero at all central points of the 
Fourier plane except for the zero order, (0,0), so 
meaning that the illuminating wavefront is aberration-
free. 

Figure 3 depicts the result of operation of the same 
25-channel Zernike filter illuminated by the beam 
composed of three basis Zernike functions with the 
same weights and numbers, (n,m): (2,0)+(5,3)+(7,7). 

Shown in Fig. 3 are: (a) the illuminating beam intensity 
and (b) the diffraction pattern in the Fourier plane. 

When compared with the distribution of mode 
numbers between the orders (Fig. 2(c)), Fig. 3(b) 
suggests that the intensity is non-zero (black spots in 
Fig. 3(b)) at the central points of the diffraction orders 
with the numbers (2,0), (5,3), and (7,7). Table 1 gives 
the corresponding averaged values in the vicinity of the 
central points for all orders (the vicinity size is 3x3 
pixels). 

	  
(а) 

	  
(b) 

Fig. 3 Operation of the Zernike filter (see Fig. 2(a)): (a) 
the illuminating beam intensity and (b) the diffraction 
pattern in the Fourier plane. 

Table 1 Averaged intensity values in the vicinity of 
central points for the Fourier-plane orders. The Zernike 
filter (Fig. 2(a)) is illuminated by a beam composed of 
three modes: (2,0)+(5,3)+(7,7). 

(7,1) 
     0,011 

 (6,6) 
      0,028 

 (6,4) 
      0,005 

 (6,2) 
      0,006 

 (6,0) 
      0,035 

 (7,3) 
      0,103 

 (3,1) 
       0,013 

(2,2) 
      0,018 

 (2,0) 
       0,977 

 (5,5) 
       0,008 

 (7,5) 
      0,004 

 (3,3) 
       0,007  

 (0,0) 
       0,059 

 (1,1) 
       0,003 

 (5,3) 
       1,000 

 (7,7) 
       0,683 

 (4,0) 
        0,056 

 (4,2) 
       0,000 

 (4,4) 
        0,001 

 (5,1) 
       0,001 

(8,0) 
        0,004 

 (8,2) 
        0,014 

 (8,4) 
       0,018 

 (8,6) 
        0,006 

 (8,8) 
       0,026 

 

(7,1)

(7,3)

(7,5)

(7,7)

(8,0)

(6,6)

(3,1)

(3,3)

(4,0)

(8,2)

(6,4)

(2,2)

(0,0)

(4,2)

(8,4)

(6,2)

(2,0)

(1,1)

(4,4)

(8,6)

(6,0)

(5,5)

(5,3)

(5,1)

(8,8)
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One can see from Table 1 that the coefficients with 
the same weights in the input beam of the Zernike 
analyser possess different weights at the output: 

C20
2
= 0,977 , C53

2
=1,000 , C77

2
= 0,683.   

In addition, the intensity in the other orders is not 
zero. This is due to the fact that in an effort to obtain a 
purely phase filter in Eqs. (7) and (8), the amplitude is 
replaced by a constant value. Thus, the squared modules 
of coefficients at the Zernike analyser output are seen to 
have been measured with a relative error of 20%. There 
are two ways for reducing the error: a more exact 
computation of the Zernike filter phase combining 
different algorithms [14] and more accurate localisation 
of the diffraction order centres in which the coefficient 
modules are measured. In this section, an averaging 
value on area of 3x3 pixels was used. Such approach is 
less demanding for localisation but leads to a greater 
error. In the following section, we use another algorithm 
for centres’ localisation. 

4 Wavefront reconstruction using a multi-
order Zernike filter 

If in image recognition it suffices to compute the 
modules of the coefficients expanded in some 
orthogonal basis, this procedure is insufficient when 
reconstructing the light field complex amplitude. The 
unique reconstruction of the light field also requires the 
knowledge of the phase of the expansion coefficients. 

We can reconstruct the coefficient phases if to the 
filter in Eq. (8) some linear combination of 
neighbouring basis functions is added [19]: 

snm r,ϕ( ) = Ψnm
∗ r,ϕ( )+Ψn' m'

∗ r,ϕ( ){ }×
× exp ikf −1rρ'nmcos ϕ −θ'nm( )+ ν'nm⎡⎣ ⎤⎦ ,

pnm r,ϕ( ) = Ψnm
∗ r,ϕ( )+ iΨn' m'

∗ r,ϕ( ){ }×
× exp ikf −1rρ''nmcos ϕ −θ''nm( )+ ν''nm⎡⎣ ⎤⎦ .

  

In this case, the light intensity in the additional 
channels corresponding to the Fourier-spectrum points 
with spatial frequencies (ρ'nm , θ'nm) and (ρ''nm , θ''nm) are  
as follows: 

Snm = Cnm
2
+ Cn'm'

2
+ 2 Cnm Cn' m' cos φn' m' − φnm( ) ,

Pnm = Cnm
2
+ Cn'm'

2
+ 2 Cnm Cn' m' sin φn' m' − φnm( ) ,

  

thus allowing the derivation of the phases φnm, for 
example, assuming φ00=0. 

The recursive relationship for the sought-for phases 
may be written in the form 

φn' m' − φnm = tan
−1 Pnm − Inm − In' m'
Snm − Inm − In' m'

⎛

⎝⎜
⎞

⎠⎟
.  

Thus, the optical method under consideration makes 
it possible to find the complex coefficients of the light 
field expansion in terms of an orthogonal basis and to 
reconstruct this field. 

We designed a 25-channel Zernike filter that can 
generate modes in different diffraction orders with the 
numbers (n,m): n ≤ 4 and m ≤ 4 (nine modes altogether) 
and their linear combination (8+8 altogether). 

	  
(a) 

	  
(b) 

	  
(c) 

Fig. 4 (a) The half-tone amplitude and (b) phase of the 
Zernike filter, and (c) the distribution of modes 
numbered (n,m) and their linear combinations between 
the orders.  
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Figure 4 depicts (a) the half-tone amplitude and (b) 
the phase of the Zernike filter, and (c) the distribution of 
modes with the numbers (n,m) and their linear 
combinations between the orders. 

(а) 	  	  	  

 (b) 	  	  	  

(c) 	  	  	  

(d) 	  
Fig. 5 (a) The intensity of the beam under analysis, (b) 
the diffraction pattern in the Fourier-plane produced by 
a purely-phase Zernike filter (shown in Fig. 4(a), (b)), 
(c) the light field reconstructed by an amplitude-phase 
filter, and (d) the light field reconstructed by the purely-
phase filter.  

Figure 5 depicts how such a 25-channel Zernike 
filter operates when illuminated by a beam composed of 
three modes with the coefficients Cnm: C11=exp(i0), 

C33=exp(iπ/2) and C42=exp(iπ). Shown in Fig. 5 are (a) 
the intensity of the beam under analysis, (b) the 
diffraction pattern in the Fourier plane for a phase-only 
filter, (c) the light field reconstructed by an amplitude-
phase filter, and (d) the light field reconstructed by the 
phase-only filter. 

Intensities of expansion coefficients are shown in 
Table 2. To measure coefficients’ values, we search the 
maximum value in the defined vicinity of diffractive 
orders’ localisations. Such approach gives a smaller 
error of coefficients measurement than the averaging 
used in the previous section. In particular, for phase-
only filter the error has decreased from 20 % to 9 %. 
Thus, it is shown that correct definition of positions of 
diffractive orders is very important for correct solution 
of the problem. 

The example suggests that in a wavefront analysing, 
when it will suffice to measure the modules of 
expansion coefficients, a phase-only filter may be used 
to advantage. When diffractive orders are localised 
sufficiently correct the error in measuring the modules 
of the expansion coefficients is less than 9%. At the 
same time, reconstructing the full information about the 
light field also requires the knowledge of the phase of 
the expansion coefficients. In this case, an amplitude-
phase filter should be used. 

5 Conclusions 
Multi-ordered diffractive element fitted with the set of 
Zernike polynomials was proposed to use for the direct 
measurement of the wavefront aberration coefficients of 
eye optical system. 

Investigations suggest that in a wavefront analysing, 
when it will suffice to measure the modules of 
expansion coefficients, a phase-only filter may be used 
to advantage (the error in measuring the modules of the 
expansion coefficients is less than 9% when diffractive 
orders are localised sufficiently correct). At the same 
time, reconstructing the full information about the light 
field also requires the knowledge of the phase of the 
expansion coefficients. In this case, an amplitude-phase 
filter should be used. 

Thus, it is shown numerically that multi-order phase 
diffractive elements allow to confidently and 
simultaneously detect several tens of expansion 
coefficients. We conducted simulation experiments with 
different coefficients corresponding to aberrations of 
both low and high orders. Therefore, we do not expect 
significant variations in the measurement error due to 
the presence of large number of modes in the wave 
front. This will enable to investigate insufficiently 
known high-order aberrations for the differentiated 
diagnostics of eye diseases. 
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Table 2 Results of reconstructing the complex coefficients by an amplitude-phase and phase-only filters. 

Coefficients C11
2

 C33
2

 C42
2

 Error φ33 − φ11  φ42 − φ33  

     Initial  1 1 1  1,57 1,57 
Reconstructed by 
the amplitude-
phase 
     filter  

0,272 0,274 0,279 3,1% 1,46 1,54 

Reconstructed by 
    the phase-only 
filter  

12,12 14,83 14,59 8,6% 0,95 1,53 

	  
  

 

 


