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ABSTRACT 
 

Objective of this paper is verification of newly developed formula of charge storage in capacitor as   
q = c*v, in RC circuit, to get validation for ideal loss less capacitor as well as fractional order 
capacitors for charging and discharging cases. This new formula is different to usual and 
conventional way of writing capacitance multiplied by voltage to get charge stored in a capacitor   
i.e. q = cv. We use this new formulation i.e.   q = c*v in RC circuits to verify the results that are 
obtained via classical circuit theory, for a case of classical loss less capacitor as well as fractional 
capacitor. The use of this formulation is suited for super-capacitors, as they show fractional order in 
their behavior. This new formula is used to get the ‘memory effect’ that is observed in self-
discharging phenomena of super-capacitors-that memorizes its history of charging profile. Special 
emphasis is given to detailed derivational steps in order to clarity in usage of this new formula              
in the RC circuit examples. This paper validates  the new formula of   charge   storage  in  capacitor  
i.e. q = c*v. 
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1. INTRODUCTION 
 
This is continuation of our earlier deliberations 
regarding verification of the new formula

q(t) c(t)*v(t) ; [1,39]. This paper is from 

deliberations regarding usage of this formula in 
Project: Design & Development of Power-packs 
with Aerogel Supercapacitors & Fractional Order 
Modeling BRNS Sanction No. 
36(3)/14/50B/2014-BRNS/2620 dated 
11.03.2015; where we wish to use this new 
developed formula [40]. Recently this new 

formula got q(t) c(t)*v(t) used in experiment 

with super-capacitors [38], showing non-linear 
charge voltage relations in fractional order 
elements called CPE (constant phase elements) 
and super-capacitors. Thus as advantage we can 

say this q(t) c(t)*v(t) gives the real non 

linear effect of supercapacitors capacity varying 
with applied voltage or current-that effect the 
charge stored function. In this paper stress is 
given to detailed derivations and step wise 
explanation for verification of the formula 

q(t) c(t)*v(t)  in RC circuit application, 

therefore justifying the long length of the 
deliberation.   
 
The voltage change when it appears at a 
capacitor, it reacts or relaxes via relaxation 

current. That we write as i(t) the relaxing current 

or
t

-
q(t) = i(τ)dτ

 the charge stored as following 

convolution integrals [1], [11], [37], [39]  
 

 
t t

(1)

- -

d d
q(t) = c(t)*v(t) = c(t - τ)v(τ)dτ i(t) = c(t)*v(t) = c(t - τ)v (τ)dτ

dt dt  
       

(1) 
 

The symbol * is the convolution operation; the 
above formula Eq. (1) is derived and used in 
detail in [1], and verified in [39].  The time varying 

capacity function c(t)  is the one that defines the 

response function of the system; and by principle 

of causality [1] we write q(t) c(t)*v(t)  where 

v(t)  voltage appearing across capacitor.  This is 

different to usual formula q(t) c(t)v(t) . This 

new formulation is deliberated in detail with c(t)

as for ideal loss less capacitor case, as well as 

time varying capacity function (fractional 
capacitor case) in [1,39].   
 
We will validate and verify this new formula

q(t) c(t)*v(t)  in circuit theory with RC 

circuit, in this paper. The aim of the paper is not 
to show profiles of circuit voltage current or 
charge, with variation ofα ; but rather validate the 

new formula q(t) c(t)*v(t) , with that of 

solution obtained by circuit theory techniques. 
We will also validate self-discharge mechanism 
of fractional capacitor (super-capacitor) exhibiting 
memory effect, by using this new formula

q(t) c(t)*v(t) . Self-discharge mechanism, is 

where the fractional capacitor is charged to a 

voltage mV  for a time cT , then kept in open 

circuited condition. We observe the open 

circuited voltage ocv (t) decays with time; and 

the decay curves depend on history of charging 

time i.e. cT .  That is as though the fractional 

capacitor is memorizing its history of charging 
pattern! We will use the formula 

q(t) c(t)*v(t) to derive this self-discharge 

decay ocv (t) that depends on cT . For these 

phenomena we plot the simulated curves of

ocv (t) as well as experimental curves, obtained 

for supercapacitor self discharge. We will show 

that for ideal loss less capacitor mV is held for 

infinite time, and oc mv (t) V , that is a zero-

memory case.  
 

In this paper Section 2 gives idea about fractional 
order capacitors-that is also observed in all 
super-capacitors [8], [9], [15]-[22], [30], [36], [38], 
[40], [41]. In Section-3 we verify the new formula 

q(t) c(t)*v(t) for an ideal loss less capacitor, 

charging in RC circuit, and continue the same 
verification for charging and discharging of a 
fractional capacitor, in section-4. In Section-5, we 
do asymptotic approximations to the obtained 
results of Section-4, to get the charge 
accumulating for large time of voltage holding 
and show that coulombs of charge stored is more 
when the float time voltage is more, though the 
terminal voltage is kept at a constant value. In 

Section-6 we use q(t) c(t)*v(t) to derive 
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self-discharge open-circuit voltage ocv (t) for a 

fractional capacitor, and with the same steps we 

show that ocv (t) is held at constant value for 

loss less ideal capacitor, in Section-7. In Section-
8 we stress though the term self discharge is 

used for the decay of ocv (t) , but that is 

misnomer in actual case. In Section-9 we apply 
the concept derived in earlier sections and apply 
especially to super capacitor case for getting 
charge discharge in RC circuit thus validating 

usage of new formulaq(t) c(t)*v(t) . We use 

this new formula and get the results for a 
constant current step input excitation to RC 
circuit, thus validating its correctness in Section-
10, and follow this with square wave current 
pulses in Section-11. We conclude the analysis 

of verification of q(t) c(t)*v(t) in RC circuit in 

Section-12, with voltage input as square and 
triangular pulses to RC circuit taking R as zero 
ohms for a fractional capacitor and ideal loss less 
capacitor, followed by Conclusion and 
References. Appendix is provided with summary 
of all the formulas of fractional calculus that we 
used in our detailed derivation in this paper. 

 
2. THE FRACTIONAL ORDER 

CAPACITORS 
 
A fractional order capacitor (or fractional 
capacitor) follows fractional derivative in its 

constituent equation i.e.
α

ti(t) D v(t) , 0 < α <1

[6]-[10] whereas the classical ideal loss less 

capacitor follows the relation
(1)

ti(t) D v(t) . For 

both the cases the charge stored in time domain 
we express by the new expression

q(t) c(t)*v(t) , where c(t) is time varying 

capacity functions and v(t) is the voltage stress 

on the device, that is described in detail in [1].  
The capacity function, for a practical capacitor (a 

fractional capacitor) i.e. c(t) is the function which 

decays with time, and has the form
-αc(t) t ; 

0 1 and acts only at the time of application 

of voltage change [1], [39]. For ideal case of loss-
less capacitor the capacity function is

c(t) (t)  ; [1], [39].  This power-law decay 

function is in singular at origin and is in tune with 
singular power law decay relaxation current 
given by Curie-von Schweidler (Universal 
Dielectric Relaxation UDR law) [2]-[5]. In this 
universal dielectric relaxation law, the relaxing 

current is a decaying power-law as i(t) t , 

when uncharged system of dielectric is stressed 
by a constant voltage. The use of this universal 
dielectric relaxation law gives current voltage 
relation of a capacitor as given by fractional 
derivative [6]-[10]. The non-singular decaying 
function gives all together different form of 
current voltage relations in capacitor is discussed 
in [11], [37]. The use of non-singular kernel in 
integration for the formula for fractional derivative 
and application is developing topic. This concept 
is used and studied in pioneering works [23]-[36], 
for several dynamic systems.   
 

Here we are taking singular function c(t) as ‘time 

varying capacity function’, as because the same 
gets derived from basic universal dielectric 

relaxation law i(t) t of Curie-von Schweidler 

[1,11,37,39].  In this paper we will take capacitor 

with time varying capacity function c(t) C t

(i.e. a fractional capacitor), and will use the 
formula [1,11,37,39] where the voltage excitation 

v(t) is applied at time t = a to an uncharged 

capacitor 
 

t t

a a
q(t) c(t)*v(t) c(t )v( )d c( )v(t )d                                                                  

(2) 
 
For ideal loss less capacitor we take

c(t) = Cδ(t) , [1]. With this new formula

q(t) c(t)*v(t)  applied we discuss various 

cases of q(t)  i.e. charge stored in capacitor and

i(t) , the circuital current etc. for RC 

charging/discharging circuit with ideal capacitor 
and fractional capacitor; and various interesting 
phenomena like that of self-discharge.   

 

We note a priori that the constant C  in the 

relation c(t) C t  is proportionality constant 

of the relation of time varying capacity function 

i.e. c(t) t  , and not Fractional Capacity. The 

fractional capacity of a fractional capacitor or 

super-capacitor we will represent as FC  which 

has units of
1Farad / sec 

, and we will use 

F αC C Γ(1-α)   to relate the two [1], [39].  

 
The current through the capacitor while there is 
voltage impressed across it we write from 
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general formulation of charge stored as

 1

ti(t) = D c(t)*v(t) . With 
-α

αc(t) = C t  for a 

lossy capacitor or a fractional capacitor we get

   1

ti(t) = c(t) v(0) + c(t)*D v(t) ; [1]. The 

equation of current and voltage, and impedance 
for fractional capacitor is given by fractional 

derivative
α α α

tD d / dt  [6,7,8,12,13]; comes 

from q(t) c(t)*v(t) , [1]. The fractional 

derivative operator is Riemann-Liouville type 
(Refer Appendix) as derived in [1]; and in many 
researchers [6,7].  
 

F

F

d v(t) 1
i(t) C ; Z(s) ; 0 1

dt s C



  



    

 
                                                                   (3) 

 

With limit 1  we get classical ideal loss less 

capacitor that is following 
 

d v(t) 1
i(t) C ; Z(s)

dt s C
                  (4) 

 

The fractional capacitor appears in studies with 
super-capacitors and other memory based 
relaxation phenomena [14]-[22]. We assume that 
the fractional capacitor has no resistance, (like 
ideal capacitor has no resistance) and is excited 
by ideal voltage sources (that has zero output 
impedance), in the RC charging circuits. We will 
use Laplace Transform technique in all our 
analysis. In all the cases in subsequent sections, 

we will apply this new formula q(t) c(t)*v(t)

and give the validity justification.  
 
Let us have a capacitor with capacity function in 

time as power-law c(t) C t  (0 1 ), [1], 

[39] that is fractional capacitor, is charged via 

resistance R. Let a voltage inv (t)  or current

ini (t)  be applied to an uncharged capacitor in 

the RC circuit at time t 0 . Then charge function 

in time is given as convolution (* ) operation as

0q(t) c(t)*v (t) , with 0v (t)  is the voltage 

profile on the capacitor, in the RC circuit of Fig. 

1. This charge q(t)  is also 
t

0
q(t) = i(τ)dτ  , 

where i(t) is current flowing through the 

capacitor in the RC circuit. This i(t)  comes from 

normal circuit theory application, and we will 

show that this 0q(t) c(t)*v (t) is same that we 

get from normal circuit theory. For each case we 
also study the ideal loss less capacitor given by 

capacity function as c(t) C (t)  , [1], [39] and 

apply 0q(t) c(t)*v (t) , thus validating this     

new relation, for ideal as well as fractional 
capacitors.  

 

3. CHARGE STORAGE q(t)  BY STEP 

INPUT VOLTAGE in mv (t) = V u(t)  

EXCITATION TO RC CIRCUIT WITH 
IDEAL LOSS LESS CAPACITOR-THUS 
VERIFICATION OF NEW FORMULA 

q(t) = c(t)* v(t)  

 
In classical circuit theory, if we charge an ideal 

capacitor, C  that is initially uncharged (
0v (0) = 0 ) 

through a resistor R , via a step input voltage 

in mv (t) = V u(t) (Fig. 1) we get voltage across 

capacitor as exponential rise as
t /RC

0 mv (t) V (1 e )  ; t 0 . In Fig. 1 consider

1Z (s) R  , and 2Z (s) is ideal capacitor with 

capacity function asc(t) C (t)  , [1], [39].  We 

have following impedance function 
 

   2

1 1 1
Z (s)

s c(t) s C (t) sC
  

L L
            (5) 

 

The above Eq. (5) is new way of writing Z(s) for 

capacitor (ideal or fractional) that we got from 

application of formulaq(t) c(t)*v(t) ; [39]. Eq. 

(5) we got by differentiating this                     

convolution expression to get i(t)  and then 

taking Laplace transform to arrive at

  
1

Z(s) V(s) / I(s) s c(t)


  L .  

 
From circuit theory applied at Fig. 1 we write the 

expression for  0 0V (s) Δv (t)  L  , where 

represents change in voltage across 2Z  , 

with 0v (0) as the initial voltage at 2Z

 

0v (t)
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2 m
0 in 0 in m in

1 2

m 0
0 m 01 1

RC RC

Z (s) V
V (s) v (t) v (0) , v (t) = V u(t) , v (t)

Z (s) Z (s) s

V v (0) 1 1
V (s) (V v (0))

RCs s s s

   


 
     

  

L L
                (6)       

t = 0

mV
1Z (s)

2Z (s)

0V (s)

inv (t)

ov (t)

 
Fig. 1. The constant voltage charging RC circuit 

 
The inverse Laplace Transform of Eq. (6) gives following voltage charging equation for capacitor 
 

t /RC

0 m 0 0

t /RC

0 m

t/RC

0 0 0 0 m 0

v (t) (V v (0))(1 e ); t 0, v (0) 0

v (t) V (1 e )

v (t) v (0) v (t) v (0) (V v (0))(1 e )







     

  

      

                                                   (7) 

 

We have 0 mt
lim v (t) V


  . The change in current i(t) flowing in the RC circuit at t 0 is the 

following 

    m 0 m 0

1 1
Cs RC

(V /s)-(v (0)/s) (V v (0))1 1 t /RCm 01
RR s

t /RCm
0

V v (0)
i(t) e

R

V
e , v (0) 0

R

  

 




   

 

L L

                                 (8)              

 

This change in current will be manifested as change in coulomb charge q(t)  in capacitor. Therefore 

the change in charge function q(t) is q(t)  given as following expression 

 

t t
/RCm 0

0 0

t /RC t /RC

m 0 m 0

t /RC

m 0

V v (0)
q(t) i( )d e d

R

(V - v (0))C(1 e ) V C(1 e ); t 0, v (0) 0

q(t) q(0) (V - v (0))C(1 e )



 




      

     

  

 

                         (9) 

 

We apply the formula q(t) c(t)*v(t) to ideal capacitor given by c(t) C (t)  across which we are 

having a voltage profile as
t /RC

0 m 0 0v (t) (V v (0))(1 e ) v (0)    , to write following 
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0

t /RC

m 0 0

1 1 1
m 0 0s (s+1/RC) s

m 0 01
RC

Q(s) c(t) v (t)

C (t) (V v (0))(1 e ) v (0)

C (V - v (0)) - + v (0)

1 1 1
C(V v (0)) Cv (0)

s s s





    



   
          

L L

L L

                                               (10) 

 
The inverse Laplace transform of Eq. (10) above gives 
 

t /RC

m 0 0

t /RC

m 0

q(t) C(V v (0))(1 e ) Cv (0); t 0

CV (1 e ); v (0) 0





    

  
                                                             (11) 

 

Eq. (11) is same as Eq. (9) that we got via circuit theory applying
t

0
q(t) q(0) i( )d     , with 

identifying 0q(0) Cv (0) , as initial coulombs of charge held by capacitor in the RC circuit.   

 

We differentiate Eq. (11) to write m 0V -v (0)dq -t /RC

0dt R
i(t) = = Cv (0)δ(t) + e . The first part is Dirac delta 

impulse current
t=0

i(t)  what is true for uncharged capacitor excited by constant step voltage, in this 

case 0v (0)u(t) , and the second part isΔi(t) Eq.(8), that is via RC circuit theory.  This gives validation 

of formula q(t) c(t)*v(t) for classical ideal loss less capacitor case. 

 

4. CHARGE STORAGE q(t)  BY STEP INPUT VOLTAGE in mv (t) = V u(t)  EXCITATION TO 

RC CIRCUIT WITH FRACTIONAL CAPACITOR-THUS VERIFICATION OF NEW 

FORMULA q(t) = c(t)* v(t)  

 

In Fig. 1 consider 1Z (s) R  , and 2Z (s) is fractional capacitor with capacity function as c(t) C t  

with 0 < α <1 . Therefore we have following impedance function [39] 

 

     
2 1

F

F

1 1 1
Z (s)

s c(t) s C t s C (1 )s

1 1
; C C (1 )

s C (1 ) s C

 

 

  

 

  
 

    
 

L L
                                                     (12) 

 

Here we will use a constant voltage excitation of mV  from time t 0 , to time ct T  (as charging 

phase, through a known resistor R )  and thereafter we will switch to discharging phase i.e. voltage 

source will be made zero, inv (t) = 0  for ct > T  . By this we record the charging and discharging 

profile 0v (t) , and then apply 0q(t) c(t)* v (t)  to get charge, and then current.  

 

4a. Charging phase equations-and verification of new formulaq(t) = c(t)* v(t)   

 
From the circuit diagram of Fig. 1, we write the following [36] 
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F

2 m
0 in 0 in m in

1 2

1

m 0 m 0

1
FF RC

Z (s) V
V (s) v (t) v (0) , v (t) = V u(t) , v (t)

Z (s) Z (s) s

V v (0) (V - v (0))ks 1
; k

(s k) RCRC s s







   



  



L L

        (13)                     

 

Now use  
α-β

α

p!sαp+β-1 (p) α

α,β s -a
t E (at ) =L [10,12,13] to get  -1

α

1 α αs
α,α+1s -a

= t E (at )L , by putting p 0 ,

α = α ,β = α +1 , where the 
α

α,βE (at ) is two parameter Mittag-Leffler function (Refer Appendix); as 

defined in infinite series in following expressions 
 

m α m
α

α,β α,(α+1)

m=0 m=0

m

α,1 α

m=0

(x) (-kt )
E (x) = , E (-kt ) =

Γ(αm+β) Γ(mα +α +1)

(x)
E (x) = E (x) =

Γ(αm+1)

 



 



                                       (14) 

 
With this we obtain the following from inverse Laplace transform of Eq. (13) 
 

   α
m 0

F-α

(V -v (0))k1 α m 0 t
0 m 0 α,α+1 α,α+1 RCs(s k)

F

(V v (0))
v (t) (V - v (0))kt E (-kt ) t E -

RC


  





   L      (15)                                                 

4b. Alternative method to get inverse Laplace transforms  
 
We have alternate derivation via power series expansion [13], [36] as follows 
 

 
1

-1 2 3m 0 m 0 k
0 1 s

2 3 2 3

m 0
m1 2 3 1 2 1 3 1

(V - v (0))k (V - v (0))k
V (s) 1 ; (1+ x) = 1- x + x - x +...

s(s k)

(V - v (0))k k k k k k k
1 ... V ..

s s s s s s s

s




 

      

   


   
           

   

         (16) 

 

Use Laplace pair  n+1

(n 1) nt
s

 
 L to invert term by term the above Eq. (16) to get following 

 
2 2 3 3

0 m 0

2 2 3 3

m 0

n

m 0

n 0

α

m 0 α m 0

kt k t k t
v (t) (V - v (0)) ...

( 1) (2 1) (3 1)

kt k t k t
(V - v (0)) 1 1 ...

( 1) (2 1) (3 1)

( kt )
(V - v (0)) 1

(n 1)

(V - v (0)) 1- E (-kt ) = (V - v

  

  





 
     

         

  
                  

 
  

   

   



 α

F-α

t
α RC

(0)) 1- E - 
 

                       (17) 
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Where, αE (x) is one parameter Mittag-Leffler function (Refer Appendix) used in Eq. (17), with

x

1E (x) = e . Therefore for classical ideal capacitor with limit 1 , we have normal exponential 

charging
t/RC

0 m 0v (t) (V - v (0))(1 e )   ; writing F 1
C C 

 .   

 

For voltage charging expression for fractional order impedance
-α 1

2 FZ (s) s C

  , Eq. (12) we have 

from Eq. (15) and Eq. (17) the following 
 

    

    

α α

F-α F-α

α α

F-α F-α

αm 0t t
0 m 0 α α,α+1RC RC

F-α

αm 0t t
0 0 m 0 α 0 α,α+1RC RC

F-α

(V - v (0))
v (t) = (V - v (0)) 1- E - = t E -

RC

(V - v (0))
v (t) = v (0) + (V - v (0)) 1- E - = v (0) + t E -

RC



       (18)           

           

We have 0 mt
lim v (t) V


 . For charging current I(s)  of circuit of Fig. 1 with 

1Z = R and

α
F-α

1
2 s C

Z (s) = , we have 1 2Z(s) = Z (s) + Z (s) and write the following 

 

  F-α
F-α

α-1

0 m 0 m 0m

α 11
RC

s C

v (0) V v (0) V v (0)V1 s
I(s) =

Z(s) s s R s +s R + 

   
           

                            (19) 

 

Using  
n-1

n

n s
n s -a

E (at ) L , [10], [12], [13] we get inverse Laplace transform of above Eq. (19) as 

 

 α

F-α

m 0 t
α RC

V - v (0)
i(t) = E -

R
                                                                                                (20) 

 

Clearly for ideal case i.e. in limit α 1 case we get m 0V -v (0) -t /RC

R
i(t) = e .  Therefore the change in 

charge q(t) is from Eq. (20) the following with q(t) = q(0) +Δq(t)   

 

 

 

α

F-α

α

F-α

t t
m 0 τ

α RC0 0

t
m 0 τ

α RC0

V - v (0)
q(t) = i(τ)dτ = E dτ

R

V - v (0)
q(t) = q(0) + E - dτ

R

-  


                                                                (21) 

 

4c. Application of q(t) = c(t)* v(t) to the RC circuit to get charge stored in fractional capacitor 

 

We apply the formula q(t) c(t)*v(t) , i.e.      0Q(s) c(t) v (t) L L  to fractional capacitor 

given by c(t) C t across which we are having a voltage profile as

  α

F-α

t
0 0 m 0 α RC

v (t) = v (0) (V v (0)) 1- E -  , to write following steps 
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α

F-α

0 m 0

F-α

F-α

F-α

0

t
0 m 0 α RC

v (0) (V -v (0))k1 1 0

s s(s k)

1
m 0 F-α RC

2-α α 1
RC

2
1 0 m 0

α 1
RC

α

Q(s) c(t) v (t)

C t v (0) + (V - v (0)) 1 E

v (0)
C (1 )s C (1 )s

s

(V - v (0))C

s s +

v (0) V v (0) s
C (1 )s

s R s +

= C Γ(1-α)







 

 








  

      



 
     

 

L L

L L

 

 
 

   

        

F-α

α

F-α

α

F-α

α-1
-1 α-1 -1m 0

0 α 1
RC

-α

-1 -1m 0 t
α 0 α RC

-1 -α -1m 0 t
α 0 α RC

V - v (0) s
v (0)s s + s

R s +

t V - v (0)
C Γ(1-α)v (0) s + s E -

Γ(1-α) R

V - v (0)
C v (0) s t + s E -

R

  
       

  

   
       

 
  

 

L
L

L L
                           (22) 

 

We used
F-α

1
RC

k = , F-αC

(1 )
= C  ,  

-1s
α s k

E ( kt )







 L and  α-1 -α1

Γ(1-α)
s = tL  in above steps in Eq. 

(22).  Taking inverse Laplace transform of Eq. (22) by recognizing  
t

1

0
f(τ)dτ s F(s)L we write 

 

 

 

α

F-α

α

F-α

α

F-α

t t
-α m 0 τ

α 0 α RC0 0

t
1-αα 0 m 0 τ

α RC0

t
1-αF-α m 0 τ

0 α RC0

V - v (0)
q(t) = C v (0) τ dτ + E - dτ

R

C v (0) V - v (0)
t E - dτ

1-α R

C V - v (0)
v (0)t E - dτ; 0 < α <1

(1-α)Γ(1-α) R

 

 

 





                         (23) 

 

The same result as in Eq. (21) we got by using 
t

0
q(t) = i(τ)dτ  validates the verification of formula

q(t) c(t)*v(t) ; where F-α 0C v (0) 1-α

(1-α)Γ(1-α)
q(0) t  . Note here that q(0) is function of time, this 

phenomena we will describe shortly. 
 

In limit 1  in Eq. (23) and we get ideal loss-less capacitor with F-αC C , and 
x

1E (x) e to write 

the following case 
 

 

 

α

F-α

t
m 0 τ

0 α RC0
1

t
-τ/RC -t /RCm 0

0 0 m 0
0

V - v (0)
q(t) Cv (0) E dτ

R

V - v (0)
Cv (0) e dτ Cv (0) C(V - v (0)) 1- e

R

-


 

   





                      (24) 
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We take the integration of Mittag-Leffler function as    
t

α

α α,2
0

E kτ dτ = t E ( kt )-   with 

m(x)

α,β (αm )m 0
E (x)



 
   (Refer Appendix for proof). So we have charge build up function on a 

fractional capacitor in RC charging circuit as follows from Eq. (23) 
 

 

 

 

α

F-α

t
1-αF-α m 0 τ

0 α RC0

1-αF-α m 0
0 α,2 F-α

m
α,2 F-α 0

C V - v (0)
q(t) v (0)t E - dτ

(1-α)Γ(1-α) R

C V - v (0)
v (0)t t E ( t / RC ) ; t 0

(1-α)Γ(1-α) R

V
t E ( t / RC ) , v (0) = 0

R





 

   

 



                       (25) 

 

Verify this for limit 1 , taking from Eq. (25), with 0v (0) = 0  where we get

 m

F-α

V t

α,2 F-αR
1;C C

q(t) E ( t / RC )

 
  .Using 

m m αm( 1) a x

α,2 (αm 2)m 0
E ( a x )

 

 
  we get the charge 

profile as  t /RC

mq(t) V C 1 e  , for 0v (0) = 0   by simple algebraic manipulations and tricks that we 

are not describing.  
 

Thus we have verified the validity of formula q(t) c(t)*v(t) in RC charging circuit with fractional 

capacitor. 
 

4d. Interpretation of initial charge q(0) as a 
function of time due to initial voltage v(0) 
present in fractional capacitor 

 

The above Eq. (24) is charge build up relation for 
ideal-loss less capacitor, same as Eq. (9) and 

Eq. (11). Interestingly as t   for a fractional 

capacitor Eq. (23) 
t

lim q(t) =


while for ideal 

loss less capacitor mt
lim q(t) = CV


Eq. (24). 

We note that α 0C v (0) 1-α

1-α
q(0) = t is growing 

function of time. Differentiating Eq. (23) we write

 α
m 0

F-α

V -v (0)dq(t) -α t
α 0 αdt R RC

i(t) = = C v (0)t + E - . 

This current component has first part as power 

law decay current
-α

α 0C v (0)t , as per Curie-von 

Schwiedler (UDR) law. This component is always 
flowing in a fractional capacitor when impressed 

by a constant voltage in this case 0v (0)u(t)

appearing across fractional capacitor                      
directly (that is without resistance), the second 

part is i(t) , given by RC circuit theory Eq.    

(20).  
 

The growing function α 0C v (0) 1-α

1-α
q(0) = t unlike a 

constant coulomb in case of ideal loss less 
capacitor, is due the fact that – for a fractional 
capacitor when a constant voltage is connected 
for charging, there will be growing build up of 

charges as the time grows, and steady                          
state will never be reached [1], [6], [7],                        
[39]. That is explained due to roughness and 
pores in electrodes for fractional capacitor,             
giving notion of infinite capacity. The          
analogy with pitcher with porous walls holding 
water is to this phenomenon is given in [1]. 
Therefore we observe initial charge as 

1-αq(0) t , 0 < α <1a growing function in time-

as initial condition in case of fractional 
capacitors.    

 
5.  CHARGE HOLDING AT LARGE TIMES 

FOR FRACTIONAL CAPACITOR VIA 
ASYMPTOTIC EXPANSION 

 

We have from Eq. (25) at ct = T  the charge 

stored is    mV

c c α,2 c F-αR
q(T ) T E ( T / RC )  , 

for uncharged capacitor i.e. 0v (0) = 0  . Now we 

see if we keep the unit step voltage 

in mv (t) = V u(t) for large time say cT   for a 

fractional capacitor, that is 

   m

c c

V

T c T c α,2 c F-αR
lim q(T ) lim T E ( T / RC )

 

  , 

that we analyze. Whereas for classical ideal 
capacitor c

c c

-T /RC

T c T m mlim q(T ) lim CV (1- e ) = V C
 

 , 

is a constant independent of ct = T . 
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This we study from recurring property of α,βE (x) which is 1 1
α,β α,β-αx xΓ(β-α)

E (x) = E (x) -  and from 

which Poincare asymptotic expansion is n

1
α,β n=1 x Γ(β-nα)

E (x) -


  valid for x  (Refer 

Appendix).  In the expression asymptotic expansion of α,2 c F-αE ( T / RC ) taking cx kT   , where

F-α

1
RC

k =  we write for cT   as following 

 

c

-α -2α -3α -α

c c c c
α,2 cT 2 3

T T T T
lim E ( k T ) - - -...

kΓ(2 -α) k Γ(2 - 2α) k Γ(2 -3α) kΓ(2 -α)




                     (26) 

 
We approximate above infinite series Eq. (26) by neglecting higher powers exponents of power law, 
as the higher terms will be decaying much faster than the first term. Therefore we write the following 
 

   m

c c

V

T c T c α,2 c F-αR

-α
1-αc m F-αm

c c

1-αm F-α
c

lim q(T ) lim T E ( T / RC ) ; 0 < α <1

T V CV
T T ; Γ(m+1) = mΓ(m)

R kΓ(2 -α) Γ(2 -α)

V C
T

(1-α)Γ(1-α)

 

 

 
 

 

  

                                  (27) 

 

In [1] we got
1-α

α mC V t

1-α
q(t) = for a fractional 

capacitor with capacity function -α

αc(t) = C t as a 

charge build up formula for a fractional capacitor. 

In [1] we showed 
t

lim q(t) =


 by use of formula 

q(t) = c(t)*v(t) for an uncharged fractional 

capacitor, charged directly from ideal voltage 

source (i.e. in RC of circuit Fig. 1 with R 0  ).  
 

Here in RC circuit case we see that steady state 
of charge holding will be never obtained (as we 
get steady state value for an ideal loss less 
capacitor). For the fractional capacitor case, the 
charge will keep growing to infinity, leading to 
electro-static break down of capacitors [1], [6], 

[7]. Using F-α αC = C Γ(1-α)  in the derived 

formula for large times in RC charging in 
asymptotic approximation is 

m F-α m αV C V C1-α 1-α

(1-α)Γ(1-α) (1-α)
q(t) t t that is same that 

we got in [1]. Here if we put limit 1 , we 

have classical ideal capacitor

F-α αC = C Γ(1-α) C  and thus mq(t) = V C for 

any t 0 ; that is true for classical ideal capacitor 

case. 
 

In case of classical capacitors, we have
-t /RC

mq(t) CV (1-e )  and here we get steady-state 

at mt
lim q(t) V C


 . This is fundamental to 

memory effect as observed in a fractional 

capacitor case [39].  There is no memory effect 
in the classical capacitor cases the charge store 

is steady constant mq(t) = CV for any holding 

time cT    for in mv (t) = V u(t) . While the 

charge storage in a fractional capacitor depends 
on holding time for step voltage, more the 
holding time more the charge stored in fractional 
capacitor [1], [39]. 
 

6. SELF-DISCHARGING A FRACTIONAL 
CAPACITOR AFTER HOLDING A STEP 
INPUT VOLTAGE FOR A LONG TIME 
AND THEN PUT ON OPEN-CIRCUIT 
CONDITION: THE MEMORY EFFECT, 
EXPLAINED BY THE FORMULA q = c*v 

 
A fractional capacitor (that is uncharged) is 

charged from time (say) ct = -T to time t with a 

constant step input in m cv (t) = V u(t - (-T )) . That 

is step voltage applied at time ct = -T . The 

charging current we get is from general               
charge equation expression i.e.

 
t

CHq (t) = c(t)*v(t) c(t - x)v(x)dx


  ; [1].  For 

a fractional capacitor with capacity function 
-α

αc(t) = C t we write the convolution expression 

with lower limit of integration as c-T that is the 

time where the voltage change is applied, [1]. 
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c c

tt -α

CH α-T -T
q (t) = c(t)*v(t) = C (t - x) v(x)dx                                                                 (28) 

 

Where in Eq. (28), v(t) is voltage across the capacitor to be at mV for ct = -T , and v(t) = 0 , for

ct < -T .  This assumption is valid when we say ct >> -T , that is neglecting the rise part of the 

charging equation   
α

c

F-α

(t+T )

c m α RC
v(t + T ) = V 1- E - is c mv(t + T ) V  for ct T  . The charging 

current is following 
 

 
c

c c

t -αCH
CH α-T

x=t t
-α

α α αx=-T -T

dq (t) d
i (t) = = c(t)*v(t) , c(t) = C t

dt dt

d d v(x)dx
= C (t - x) v(x)dx C

dt dt (t - x)
 

                                                 (29) 

 

The integration by parts for term 
c

t
-α

-T
(t - x) v(x)dx in Eq. (29) gives following result  

 

c c

c

c

c

c

x=t
t t

(1)

α α α-T -T
x=-T

x=t
1-α 1-α

t
(1)

-T

x=-T

(1)
t

1-α 1-αc
c

-T

v(x)dx dx dx
= v(x) - v (x) dx

(t - x) (t - x) (t - x)

(t - x) (-1)(t - x)
= v(x) - - v (x) dx

1-α 1-α

v(-T ) v (x)
= (t + T ) (t - x) dx

1-α 1-α

   
  

   

   
   
   



   





                                        (30) 

 
Using the derivation of Eq. (30) and using the definition of fractional derivative Riemann –Liouville 

(RL) 
α

a tD and Caputo
C α

a tD  for order0 < α <1 (Refer Appendix) we write the following steps      

                     

 

c c

c

c

(1)
t t

1-α 1-αc
CH α α cα-T -T

1-α (1)
t

1-αc
α c α

-T

(1)
t

c
α αα α-T

c

α

v(-T )d v(x)dx d v (x)
i (t) = C = C (t + T ) (t - x) dx

dt (t - x) dt 1-α 1-α

(t + T )d v (x) d
= C v(-T ) + C (t - x) dx

dt 1-α 1-α dt

v(-T ) v (x)
= C + C dx

(t + T ) (t - x)

C Γ(1-α)

 
 

 

   
   

  



 





 

  

  

c

c

c

(1)
t

c
α F-αα α-T

c

C αF-α c
F-α -T tα

c

α

F-α -T t

v(-T )1 v (x)dx
+ , C Γ(1-α) = C

Γ(1-α) (t +T ) (t - x)

C v(-T )
C D v(t)

Γ(1-α) (t +T )

C D v(t) , 0 < α <1

  
   

  

 
  

 





    (31) 
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We set c mv(-T ) V and for ct T we write 
(1)v (t) = 0 i.e. for a constant voltage mv(t) = V for 

ct T and get the following from Eq. (31) 

 

 
c

(1)
t

c α m
CH α α α α-T

c c

v(-T ) C V1 v (x)dx
i (t) C Γ(1-α) +

Γ(1-α) (t +T ) (t - x) (t +T )

  
    

  
                         (32) 

The above CHi (t) in Eq. (32) is Curie-Von Schewdler relaxation current power law for dielectric 

relaxation when the dielectric is stressed by a constant voltage at time (in this case) ct T  . This we 

get by other method too as depicted below by using  
c

α

CH F -T ti (t) C D v(t)  , i.e. RL fractional 

derivative of voltage 

 
c

c

c

t=t
α

α m
CH F -T t F-α F-α αα

t=-T

t
α

-αm m
α α cα

-T

m
α cα

c

d V
i (t) C D v(t) C , C = C Γ(1-α); 0 < α <1

dt

d V V
C Γ(1-α) C Γ(1-α) (t - (-T ))

dt Γ(1-α)

V
= C 0 < α <1 (t +T ) > 0

(t + T )

 

 
   

 
                 (33) 

 

In above steps of Eq. (33) we used formula for RL fractional derivative of a constant K  as
-α(x-a)α

a x Γ(1-α)
D K = K , with ca = -T that is start point of fractional differentiation process, and x = t , and 

mK = V  (Refer Appendix). We note that
C α

a xD K = 0 , that appears in Eq. (32). 

 

At t = 0 the voltage source in mv (t) = V u(t) is disconnected, or we keep the charged fractional 

capacitor at open-circuited condition, after keeping this on voltage source for a long-long time from

ct = -T   . There will be a self-discharging of the charged fractional capacitor, and the self discharge 

current will be proportional to decaying open circuited voltage ocv (t) , given as follows from time t = 0  

the time the fractional capacitor was kept open circuited, to time t 0 . The self-discharging current 

(the notional current) we write as follows  α

DIS F-α 0 t oci (t) = C D v (t) , that is 

 
t=t t=t

α α

oc oc
DIS F-α αα α

t=0 t=0

d v (t) d v (t)
i (t) = C = C Γ(1-α)

dt dt
                                                            (34) 

 

We will see in subsequent section that DISi (t) of Eq. (34) is not the conventional current of discharge 

that flows out to a shunt resistance put for discharging the stored charge, but gives a notion due to 
spatial re-distribution of charges inside a spatially distributed system infinite RC circuit-we call it 
notional discharge current (we will discuss later).  
 

The coulomb of charge CHq (t) pumped into the capacitor plus self-discharged coulombs of charge 

say DISq (t)  is zero that is CH DISq (t) = -q (t) . Differentiating this we get CH DISi (t) + i (t) = 0  which 

gives the following.  
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c

CH DIS

α α

F -T t F-α 0 t oc

i (t) + i (t) = 0

C D v(t) C D v (t) 0  
                                                                            (35) 

 
That is the following we get using Eq. (32) or Eq. (35) 
 

α

ocm
α αα α

c

d v (t)V
C + C Γ(1-α) = 0

(t + T ) dt
                                                                                (36) 

 

Our interest is finding ocv (t) , from t 0 that is in self-discharge phase.  We do the fractional 

integration i.e. 
α

0 tI  (from time0  to time t ) of the above Eq. (36) and write the following 

 

α
α α ocm

0 t α α 0 tα α

c

d v (t)V
I C + C Γ(1-α) I = 0

(t + T ) dt

    
     

    

                                                       (37) 

 

For the second term we write   tα α

0 t 0 t oc oc oc oc0
I D v (t) v (t) = v (t) - v (0)    with oc mv (0) = V   and 

then write the following from Eq. (37) 
 

 α m
0 t α α oc mα

c

V
I C + C Γ(1-α) v (t) -V = 0

(t + T )

 
 
 

                                                                (38) 

 

To the first term of Eq. (38) on LHS we apply Riemann formula of Fractional Integration (Refer 

Appendix) that is   1-α

t
f(x)dxα 1

0 t Γ(α) (t-x)0
I f(t) =  and get 

 
t

α m α oc α mα 1-α0
c

1 dx
C V + C Γ(1-α)v (t) -C Γ(1-α)V = 0

Γ(α) (T + x) (t - x)                           (39) 

 

Rearranging the Eq. (39) we write the following expression  
 

t
m

oc m α 1-α0
c

V dx
v (t) = V -

Γ(α)Γ(1-α) (T + x) (t - x)                                                                    

(40) 
 

In Eq. (40) put cT + x = τ , dx = dτ , therefore for x = 0 , cτ = T and x = t , cτ = T + t we have 

following simplified representation 
 

c

c

c

c

T +t
m

oc m α 1-α α 1-αT
c c

T +t
m

m
T

V dτ 1
v (t) = V - ; F(τ)

Γ(α)Γ(1-α) τ (T + t - τ) τ (T + t - τ)

V
= V - F(τ)dτ

Γ(α)Γ(1-α)





                     (41) 
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Now we break
c

c

T +t

T
F(τ)dτ  as 

c c

c c

T +t 0 T +t

T T 0
F(τ)dτ = F(τ)dτ + F(τ)dτ   and call the second term as

NI (t) . We write 
cT +t

N
0

I (t) = F(τ)dτ in terms of convolution of two functions, as demonstrated in 

steps of Eq. (42).  With substitution cT + t = t we write as follows by using definition of convolution  

c cT +t T +t t

N α 1-α α 1-α α 1-α0 0 0
c

dτ dτ 1 1
I (t) = F(τ)dτ = = = *

τ (T + t - τ) τ (t - τ) t t

   
   
   

                       (42) 

 

Now we use Laplace pair   m+1

Γ(m+1)m

s
t =L to write        -α -(1-α)

N NI (t) I (s) = t tL L L as 

following 
 

 
 N -α+1 -(1-α)+1

Γ -(1-α) +1Γ(-α +1) Γ(1-α)Γ(α)
I (s) = =

s ss

  
  

  
                                                        (43) 

 

Recognizing   -1u(t) = sL , we write  1

N NI (s) I (t) L , and write 

 

N

Γ(1-α)Γ(α) ; t 0
I (t) =

0 ; t < 0





                                                                                             (44) 

 

Therefore we have
c c

α 1-α
c

T +t T +t
dτ

τ (T +t-τ)0 0
F(τ)dτ Γ(1-α)Γ(α)   , for t 0 .  

 

Now we write the expression for open circuit voltage ocv (t)  for a charged fractional capacitor that is 

charged for a long time cT to voltage mV and at t = 0 kept at self-discharge mode i.e. 

 

 

c

c

c

c

c

c

T +t 0
m

oc m
0 T

0
m m

m
T

0 T
m m

T 0

T
m

α 1-α0
c

V
v (t) = V - F(τ)dτ + F(τ)dτ

Γ(1-α)Γ(α)

V V
V - Γ(1-α)Γ(α) - F(τ)dτ

Γ(1-α)Γ(α) Γ(1-α)Γ(α)

-V V
F(τ)dτ = F(τ)dτ

Γ(1-α)Γ(α) Γ(1-α)Γ(α)

V dτ

Γ(1-α)Γ(α) τ (T + t - τ)

 
  







 



 



                                (45) 

 

In Eq. (45) ocv (t) is the voltage over open 

capacitor at self discharge mode (oc).  This

ocv (t) is the decay function is a function of time t

and depends on the total time cT   the capacitor 

has been on the voltage source of constant 

voltage mV . More the cT more CH cq (T ) and 

more time ocv (t) will take to self-discharge, from 

charged voltage mV . This formula for self 

discharge voltage i.e. 

c
m

α 1-α
c

TV dτ
oc Γ(1-α)Γ(α) τ (T +t-τ)0

v (t)   is noted in [6]; here 

we derived the same by using the concept

q(t) = c(t)*v(t) . 

We mention here the formula for self discharge 
as described above Eq. (45) is only valid for a 
constant voltage excitation or a step input case. 

For a triangular voltage impressed at ct = -T  
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reaching voltage mV at time cmT described as 

 m cm cV / T (t + T ) will be having different ocv (t)

self-discharge profile, as the charge storage will 
be in both the cases will be different [39]. 
 
Fig. 2 gives simulated plot a in linear scale a; and 

log scale b; for the ocv (t) self-discharge decay 

function, with chosen α = 0.5  , mV 2.5V , kept 

afloat for cT = 57600sec , cT = 28800sec and 

cT =14400sec for charging, and then kept at 

open circuit condition. The curves show different 
decay thereby giving the idea of memorizing the 
charging history. For ideal loss less capacitor 

ocv (t) = 2.5V , and will not exhibit any 

memorized decay. This we will discuss in next 
section. 
 
The Fig. 3 shows self discharge of a super-
capacitor when charged with different times, 

showing memory effect. Here cT is 4hr, 8hr and 

16hr, charged to mV 2.2  (Courtesy: BRNS 

Funded joint Project CMET Thrissur-BARC 
Development of CAG Super-capacitors and 
application in electronics circuits); [40,41]. The 

Fig. 2 shows that self discharging curves ocv (t)  

for each cT is different, indicating memory          

effect. 
 

ocv (t)

t (seconds)

log(t)

ocv (t)

a. Linear Scale

b. Log Scale

mα = 0.5, V 2.5

cT
m

oc α 1-α0
c

V dτ
v (t)

Γ(1-α)Γ(α) τ (T + t - τ)
 

cT 57600

cT 28800

cT 14400

 
Fig. 2.  Simulated plots for Self-Discharge Decay function a. linear scale and b. log Scale of 

time 

cT = 4hr

cT = 8hr

cT =16hr
ocv (t)

 
 

Fig. 3. Experimentally recorded self-discharge decay for a super capacitor 25F 2.7V  showing 
more time we place fractional capacitor on a constant voltage more time it takes decay: 

Memorizing the charging history 
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7. SELF DISCHARGING OF A CLASSICAL IDEAL CAPACITOR: ZERO MEMORY 
EFFECT, EXPLAINED BY THE FORMULA q = c * v 

 

We have a constant voltage source applied at ct = -T for an ideal loss less capacitor case with 

capacity function as c(t) = Cδ(t) , [1]. For this case we have the relation Eq. (46) i.e.

   (1)

CH c ci (t) = Cδ(t +T ) v(-T ) +C v (t) ; that we derive from formula CHq (t) = c(t)*v(t) .  Compare 

what we got for a fractional capacitor with 
-α

αc(t) = C t  i.e.
(1)

c

α α
c c

tv(-T ) v (x)

CH α α(t+T ) (t-x)-T
i (t) = C + C dx , Eq. 

(32).  We follow following steps 
 

 

  

      

c

c

c c

c c

t
CH

CH -T

x=t

c
x=-T

t -T t -T

c c c

ct=-T t>-T

dq (t) d
i (t) = = c(t)*v(t) , c(t) = Cδ(t)

dt dt

d d
= Cδ(t - x)v(x)dx C v(t) , t -T

dt dt

dC dv(t)
v(t) + C

dt dt

dv(t) dv(t)
v(t) C δ(t +T ) +C = C v(-T )δ(t +T ) +C

dt dt

i(t) + i(t) , t -T

 

 





 



                     (46) 

 

The first term at RHS of above Eq. (46) i.e. ci(-T )   indicate the value of current at ct = -T . The 

constant function starting at ct = -T i.e. C when differentiated gives cCδ(t +T ) . This unit delta 

functions at ct = -T , i.e. 
cδ(t +T ) when multiplied by v(t) gives

c cv(-T )δ(t +T ) . This comes from 

property   0 0δ(x - x) f(x) dx = f(x ) , differentiation of this property gives

  d
0 0 0dx

δ(x - x)f(x) = f(x ) = f(x )δ(x) . Thus at ct = -T we have c ci(-T ) = Cv(-T ) and 
ci(-T ) = 0 for

ct > -T . Compositely we write  
c

c 1 c ct=-T
i(-T ) = i(t) = C v(-T ) δ(t +T ) , i.e. specifying its value at only

ct = -T . The second term is i(t) for ct -T , that is
c

(1)

t>-T
i(t) = Cv (t)  . The obtained expression

   (1)

CH c ci (t) = Cδ(t +T ) v(-T ) +C v (t) , Eq. (46) is by using the formulationq(t) = c(t)*v(t) .  

 

As an example, we take m cv(t) = V u(t + T ) a step input at time ct = -T , to an uncharged capacitor. 

We have 
(1)v (t) = 0 for ct > -T ; and at ct = -T we have c mv(-T ) = V  . Using this we get

 c m ci(-T ) = CV δ(t +T ) ; this makes  CH m c ci (t) = CV δ(t +T ) , t -T .  

 

At any time t  the coulomb CHq (t) pumped charge into the capacitor plus self-discharged coulombs of 

charge say DISq (t)  is zero that is CH DISq (t) = -q (t) . Differentiating this we get CH DISi (t) + i (t) = 0  

which gives CH DISi (t) + i (t) = 0 .  That is the following 

 

  oc
m c

dv (t)
CV δ(t +T ) +C = 0

dt
                                                                                         (47) 
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Our interest is finding ocv (t) , from t 0 self-discharge phase.  We do the integration
1

0 tI  (from time 0  

to time t ) of the above Eq. (47) and write the following 

 

  
t t

oc
m c

0 0

dv (τ)
dτ CV δ(τ +T ) + dτ C = 0; t 0

dτ

 
 

 
                                                     (48) 

 
The first integration term of LHS in Eq. (48) is zero since the delta function is outside of the region of 

integration, thus   
t

m c
0

C dτ V δ(τ +T ) 0 . For the second term of LHS in Eq. (48) we have

   
t t(1)

oc oc oct=00
C v (τ)dτ C v (t) C v (t) - v(0)  . The value mv(0) = V  that is ideal capacitor is 

charged to full value of voltage. Using these results we have for ideal loss less classical capacitor

oc mv (t) = V , from Eq. (48). This is very true observation. That an ideal loss less classical capacitor, 

once charged to mV Volts would retain its charge that is finite and equilibrium value mCV coulombs; 

and the terminal voltage ocv (t) will be held constant indefinitely.  

 

Now if a resistance is shunted across the charged capacitor, say R , this voltage oc mv (t) = V will 

decay as   -t /RC

DIS ocv (t) v (t) e or
-t/RC

DIS mv (t) V e , for t 0 from the time the resistance was 

shunted. Similarly for a case of fractional capacitor the self discharge voltage say

c
m

α 1-α
c

TV dτ
oc Γ(1-α)Γ(α) τ (T +t-τ)0

v (t)   , Eq. (45) will additionally discharge if the fractional capacitor is shunted 

by R , and we will record for a fractional capacitor DISv (t) as following expression 

 

     α αc

F-α F-α

T
mt t

DIS oc α αRC RCα 1-α0
c

V dτ
v (t) v (t) E - E -

Γ(1-α)Γ(α) τ (T + t - τ)

 
   

 
                  (49) 

                   

The term  α

F-α

t
α RC

E - is the discharge decay 

function of Mittag-Leffler, for a fractional 
capacitor (that we will derive in subsequent 

section), is similar to decay function 
-t /RCe                    

as for the case for a classical loss less capacitor. 
 

8. THE TERM ‘SELF-DISCHARGE’ OF 
FRACTIONAL CAPACITOR IS A 
MISNOMER 

 
While we keep the charged fractional capacitor in 
ideal open circuit condition, (assume ideal infinite 
open circuit resistance or the ideal case this 
fractional capacitor having no leakage 
resistance), then we question why shall the 

terminal voltage ocv (t)  once charged to mV

Volts, decay as function of time t . In ideal case 

while shunt resistances are infinite there is no 

discharge current DISi (t)  flowing out of fractional 

capacitor. Yet we observe decay of ocv (t)  as 

c
m

α 1-α
c

TV dτ
oc Γ(1-α)Γ(α) τ (T +t-τ)0

v (t)    for different cT  

pumping various amounts of charge cq(T ) .  

 

A fractional capacitor is like lossy semi-infinite 
transmission line-that is electrode structure being 
porous [8,9,10,16,40]. This infinite transmission 

line is composed of per unit series resistance ur  

and shunt capacitance uc , giving terminal 

relation of current and voltage as, [10] 
 

α

u u1
F-α2α

u u

c cd v(t)
i(t) = ; α = , C =

r dt r
   (50) 

 

Therefore the fractional capacitor we say is 
spatially distributed system too, having infinite 
elements. When we connect a voltage source 

mV to this semi infinite transmission line, though 
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the first capacitor (say u-1c  gets charged to mV , 

yet, the charging current keeps flowing to charge 

infinite number of u-2c , u-3c …, cu ,(charges 

diffuse spatially). Therefore at time cT   , we 

have coulomb charge CHq ( )   , with all the 

voltages at each distributed capacitors of infinite 

numbers at mV . This system with CHq ( )  

when kept in open ideal circuit condition will 

maintain oc mv (t) = V .  

 

But see the actual case, we have a limited

cT   , but large enough that gives the terminal 

voltage, say to capacitor u-1c  almost mV with 

other capacitors u-2c , u-3c ….., which are 

spatially farther away, with lesser terminal 

voltage m(< V )  as compared to the first 

capacitor u-1c . While in ideal open circuited 

condition-this unequally charged semi-infinite 
transmission line, will have internal spatial 
charge distribution, to have voltage balancing to 
equal voltage to all the unit capacitors that are 
spatially distributed. This gives the notion as if  

ocv (t)  is self-discharging or decaying, though 

there is no real discharge current flowing out of 
the fractional capacitor. Since this semi-infinite 
lossy transmission line has infinite elements, thus 
this process goes on infinitely for a long time, to 
have infinite capacitors have infinitesimal small 
charges and adding up to zero-and while the 
charge balancing is at play. At open circuited 
condition the current that flows in all the section 

will dissipate the stored electrostatic energy.  
Therefore, a fractional capacitor is a truly lossy 
capacitor, unlike an ideal loss-less capacitor 
which holds the stored charge and thus the open 
circuit voltage) indefinitely. This analysis is 
assuming that ideal capacitor or fractional 
capacitor doesn’t to have any leakage 
resistance. Therefore, self-discharging term is 
misnomer; actually it is voltage redistribution 
taking place spatially-via diffusion process. 
 

9. CHARGING/DISCHARGING A SUPER-
CAPACITOR IN RC CIRCUIT-THUS 
VERIFICATION OF NEW FORMULA 

q(t) = c(t)* v(t)  
 

A super-capacitor is modeled as Equivalent 

Series Resistance (ESR) i.e. sR  series with 

impedance of a Fractional Capacitor of order  

i.e. α
F-α

1

s C
 [15]-[22]. 

 

9a. Charging Phase-and verification of new 

formulaq(t) = c(t)* v(t)  
 

We now consider a lumped ESR ( sR ) for super-

capacitor, thus for Fig. 1 we have 
α

s F-α

α α
F-α F-α

s R C +11
2 s s C s C

Z (s) R   while charging 

impedance remains at 1Z (s) R . Therefore for 

any input voltage  in inV (s) = v (t)L , we write 

the charging current (in Laplace domain) as 

following considering initial voltage across F-αC  

as zero, i.e. cv (0) = 0  

 

α
F-α

α

F-α inin
CH α1

s F-α ss C

s C V (s)V (s)
I (s) = =

R + R + s C (R + R ) +1
                                                                    (51) 

 

Output voltage across 2Z (s) in Laplace domain is therefore is therefore as follows 

 

  

α
in sin

F-α s s

F-α s

F-α s

α α

in F-α s F-α
0 CH 2 α α

F-α s F-α

V (s)s RV (s)α
C (R+R ) (R+R )in in s F-α m

inα α 1
F-α s C (R+R )

m

α 1
F-α s C (R+R

V (s)s C s R C +1
V (s) I (s) Z (s)

s C (R + R ) +1 s C

+V (s) + V s R C V
put V (s) =

s C (R + R ) +1 s + s

V 1

C (R + R ) s s +

  
    

  

 

 
  
    F-α s

α-1

m s

α 1
s C (R+R ))

V R s

R + R s +

    
           

              (52) 
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To get 0v (t) we do inverse Laplace transform of Eq. (52) as following 

 

 
   

α-1
m sm

α α1 1
F-α s sC (R+R ) C (R+R )F-α s F-α s

V R sV1 1 1

0 0 C (R+R )s s + (R+R ) s +
v (t) = V (s)     

    
   

L L L                          (53) 

 

Use formula  
α-β

α

αp+β-1 (p) α s
α,β s -a

t E (at ) p!L . [10], [12], [13] with p = 1 , α = α , β = α +1  and p = 0 , 

α = α ,β =1 , to write from Eq. (53) the inverse Laplace as 
 

   α α

F-α s F-α s

αm R st t
0 α,α+1 α,1C (R+R ) C (R+R )

F-α s s

V V R
v (t) t E E

C (R + R ) R + R
                                  (54) 

 

Let us keep the step input from time t = 0 to ct = T  , and then at time ct = T , the output voltage is 

 

   
α α
c c

F-α s F-α s

α
T TR c R s

0 c α,α+1 α,1C (R+R ) C (R+R )

F-α s s

V T V R
v (T ) E E

C (R + R ) R + R
                                  (55) 

 

The charge q(t) will be held only in the element F-αC . We calculate now the voltage profile cv (t)  and 

then voltage at ct = T , i.e. c cv (T )   for only fractional impedance part i.e. α
F-α

1

s C
of the impedance 

2Z (s) comprising of sR plus this fractional impedance α
F-α

1

s C
. The voltage across F-αC   is thus, with 

cv (0) = 0 no initial voltage at F-αC  

 

 
F-α s

α

F-α in m
c CH inα α α

F-α F-α s F-α

m

α 1
F-α s C (R+R )

s C V (s) V1 1
V (s) I put V (s) =

s C s C (R + R ) +1 s C s

V 1

C (R + R ) s s +

    
     

    

  
   
   

            (56) 

Using the Laplace identity of Mittag-Leffler function  
n-1

n

n s
n s -a

E (at ) L , [10], [12], [13] we write 

 

 

  

α

F-α s

α

s F-α

αm t
c α,α+1 C (R+R )

F-α s

t
c m α c(R+R )C

V
v (t) t E -

C (R + R )

v (t) V 1 E , 0 t T



    

                                                                     (57) 

 

At ct = T we thus have the voltage at the fractional impedance F-αC as  

 

    
α α
c c

F-α s s F-α

α
T Tm c

c c α,α+1 m αC (R+R ) (R+R )C

F-α s

V T
v (T ) E - V 1 E

C (R + R )
                                     (58) 

 

9b. Application of formula q(t) = c(t)* v(t)  to get charge function in charging phase  
 

The charge q(t) is cq(t) = c(t)*v (t) with fractional capacitor with capacity function as
-α

αc(t) = C t   

having voltage profile and that is   α

s F-α

t
c m α (R+R )C

v (t) V 1 E    as following 
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α

s F-α

1
m F-α(R+R )C s F-αs F-α

1
F-α

(R+R )Cs F-α
s F-α

s F-α

c

t
m α (R+R )C

11
V (R+R )Cm F-α (R+R )C1

C2-α αs s 1
(R+R )C (1 )

2 -1

m
αα 1

s (R+R )C

Q(s) c(t) v (t)

C t V 1 E

k =V C
C (1 )s ;

s s + , C

V s s
E ( kt )

R + R ss +

s









 
 

 




  

 
     

 

 
   
 

L L

L L

L

 

   

s F-α

α

s F-α

1
1m

α 1
s (R+R )C

1m t
α (R+R )C

s

k

V s
s

R + R s +

V
s E

R + R










   
    

      

 
  
 

L

        (59) 

Taking inverse Laplace transform of Eq. (59) by recognizing  
t

1

0
f(τ)dτ s F(s)L we write 

 

   
α

s F-α

t
m mτ

α α,2 s F-α(R+R )C
0

s s

V V t
q(t) E dτ = E ( t / (R R )C )

R + R R + R
-                            (60) 

 

We used    
αt
τ

α α,2k0
E dτ = t E ( t / k)-   in Eq. (60), refer Appendix. Therefore at ct = T we have 

charge as 
 

 c

s F-α

Tm c
c α,2 (R R )C

s

V T
q(T ) = E

R + R




                                                                                       (61) 

 

For 1
2 s sC

Z (s) = R  i.e. and with an ideal capacitor with ESR, we have the following expression 

 

     

     
 

 

 
 

 

t
(R+R )Cs

1
m (R+R )C ss

1
(R+R )Cs

ss

t
(R+R )Cs

c c

m

1
V m (R+R )C

m 1s s 1
(R+R )C(R+R )C

m

Q(s) c(t) v (t) , v (0) 0

Cδ(t) V 1 e

V C 1 1
C V C

s ss s +

q(t) = CV 1 e







 

 
  

 

  
          



L L

L L

                               (62) 

 

Charge at the end of ct = T is  

 

 
Tc

(R+R )Cs

c mq(T ) = CV 1 e


                                                                                                    (63) 
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The charging current is following from Eq. (62) 
t

(R+R )Csm
CH c

s

Vdq(t)
i (t) = e , 0 t T

dt (R + R )


                                                                   (64) 

 

The voltage at the end of ct = T is

Tc
(R + R )Cs

c c mv (T ) = V (1 e )


 .  

 

9c. Discharging Phase-and verification of new formulaq(t) = c(t)* v(t)  

 

After ct T we make the voltage inv (t) 0 i.e. we are draining out the stored charge i.e. 

 c sT / (R+R )C

c mq(T ) = CV (1 e )


 during the discharge phase ( ct T ). In the discharge phase for ideal 

loss less capacitor the voltage c cv (T ) will decay as   st /(R+R )C

c c cv (t ) = v (T ) e
 , for ct T , writing

ct = t - T . At this point the capacity function c(t ) Cδ(t )   will again appear, as there is sudden 

change (differentiability is lost) in voltage from mV to 0 at t 0  (i.e. ct T ). Therefore the charge 

profile while discharging i.e. q(t ) we write as cq(t ) c(t )*v (t )   is as follows in Eq. (65) with initial 

charge as c c cq(t = 0) = q(T ) = Cv (T ) .  

 

We apply general equation, with changing of t t  derived Eq. (11), i.e.
t /RC

m 0 0q(t ) C(V v (0))(1 e ) Cv (0)
     , with sR R + R  , 0 cv v . Here we put mV 0 , that is 

making inv (t) 0 at ct T ; t = 0  where we have ct = t - T . So we have from Eq. (11), the derived 

expression s-t /(R+R )C

0 0q(t ) = -Cv (0)(1-e ) +Cv (0)
 , with 0 c cv (0) v (T ) .we get 

s-t /(R+R )C

c cq(t ) = Cv (T )e
   .  

 

9d. Application of formula q(t) = c(t)* v(t)  to get charge function in discharging phase for 

deal loss less capacitor 
 

We get the same in the following steps Eq. (65), by using cq(t ) c(t )*v (t )   or

   cq(t ) = c(t )*v (t )  L L  

     

      

 
 

 
 

s

s

Tt c
(R+R )C (R+R )Cs s

Tc t
(R+R )C (R+R )Cs s

c c

t /(R+R )C

c c

c c

1
(R+R )C

c c c c m

m c

Q(s) c(t ) v (t ) , t > T

C (t ) v (T ) e

v (T )
C

s

q(t ) = Cv (T )e ; v (T ) V 1 e

CV 1 e e ; t > 0; t > T







 

 

 

 

 
  

  

  

 

L L

L L

                                                        (65)              

               

At initial time t = 0 , we get c cq(t ) = Cv (T ) . For limit t   after the ideal capacitor charged to

c cCv (T ) coulombs, the discharge amount of coulomb from Eq. (65) 
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t
(R+R )Cs

-

c ct t
lim q(t ) = lim Cv (T )e = 0



  
  . Obvious that all charge is drained out, from ideal loss less 

capacitor. The discharging current ct T  or t 0  is as follows, by differentiation  

 

 s

t
(R+R )Cs

t
(R+R )Cc c s

s

-t /(R+R )C

DIS m c c c c m

-c c
c c

s

DIS DISt 0 t 0

-v (T )

DIS c c DIS (R+R )t 0 t 0

dq(t ) d
i (t ) = C(V - v (T ))(1- e ) + Cv (T ) , V = 0

dt dt

v (T )
- e + Cv (T )δ(t )

(R + R )

i (t ) i (t )

i (t ) Cv (T )δ(t ) i (t ) - e







  

  


 

 



  

   

                    (66)           

                

In Eq. (66) we have DISi (0) is the remnant charging current that is given by Eq. (64) i.e. 

Tc
(R+R )Cm s

s

-V

CH c (R+R )
i (T ) = e i(0)  .   The negative sign in Eq. (66), for DIS t 0

i (t )


   indicates that the 

discharge current is opposite to that of charging current. This DISi (t ) current will be flowing through 

R the discharge resistor, thus discharge voltage across the impedance 1
2 s sC

Z (s) = R + is the 

voltage appearing across 1Z (s) = R is   c c s

s

Rv (T ) -t /(R+R )C

DIS DIS R+R
v (t ) = R i (t ) = e

  . While we have 

decay of c cv (T ) i.e. through sR + R as s-t /(R+R )C

c s DIS c cv (t ) = (R +R )i (t ) = v (T )e
  ; i.e. voltage 

measured across sR + R .  

 

The Eq. (66) can also be from writing  c c

s

v (T )1
DIS R+R +(1/sC) s

I (s) = - for t > 0 , where the initial voltage 

c c cv (t = 0) = v (T ) appears as step input at t = 0 i.e. c c cv (t ) = v (T )u(t )  , with Laplace transform 

as c c cV (s) = v (T ) / s  . By inverse Laplace transform we obtain
t

(R+R )Cc c s

s

-v (T )

DIS (R+R )t >0
i (t ) = - e




 , that is the 

first term of Eq. (66). Well, look at Eq. (46) which says if applied the voltage at t = 0 we have current 

as 
dv(t )

c dt
i(t ) = Cv (0)δ(t )+C




  for ideal capacitor; which is 

t 0 t 0
i(t ) i(t ) i(t )

  
     . At t = 0 , we 

have c c cv (0) = v (T ) , that is we are shorting the voltage source, therefore we are in a way applying a  

c c cv (t ) = -v (T )u(t )  to a capacitor charged to a voltage c cv (T ) . Thus c ct 0
i(t ) Cv (T )δ(t )


  .The 

second term of (46) gives differentiation of voltage as the current, we thus have for a decaying voltage

s-t /(R+R )C

c c cv (t ) = v (T )e
  , s-t /(R+R )Cd

c cdtt >0
i(t ) = C v (T )e




 or c c s

s

v (T ) -t /(R+R )C

(R+R )t >0
i(t ) = - e




 . The 

components of Eq. (66) are recovered for the case of ideal capacitor. Here we have

t >0
lim i(t ) 0

t



 
  . 

 

9e. Charge function and discharge current in discharging phase for supercapacitor  
 

From Eq. (23) we write  α
α 0 m 0

F-α

tC v (0) V -v (0)1-α τ
α(1-α) R+R (R+R )C0

q(t ) = (t ) + E - dτ
s s



   , by changing t t  , 

sR R + R , F-α αC = C Γ(1-α) , here we put mV = 0 , 0 c cv (0) v (T ) , to write 

 α
α c c c c

s s F-α

tC v (T ) v (T )1-α τ
α(1-α) R+R (R+R )C0

q(t ) = (t ) - E - dτ


    , which we also write as 

  α
α c c c c

s s F-α

C v (T ) v (T )1-α t
α,2(1-α) R+R (R+R )C

q(t ) = (t ) - t E -     is the discharging profile. By using Asymptotic 
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expansion for Mittag-Leffler function we can see that 

  
1-αα

c c c c α

s s F-α

v (T ) v (T )C (t )t
α,2R+R (R+R )C 1-αt t

lim t E - = lim


  
   . This limit is same as first term in q(t ) , 

which is α c cC v (T ) 1-α

(1-α)
(t ) and the limit is  . Thus 

t
lim q(t ) = 0


 . 

 

Now we carry on with the above logic for a fractional capacitor with impedance as α
F-α

1
2 s s C

Z (s) = R 

where the value   
α
c

s F-α

T

c c m α (R+R )C
v (T ) V 1 E    ; Eq. (58) becomes the initial voltage while we 

discharge the super-capacitor with time defined as ct = t - T , for discharge phase with inv (t ) 0    . 

Now we see the discharge profile, as the charged fractional capacitor F-αC  with above value c cv (T )  

Eq. (58) discharges through R . The discharge current is now for t > 0 , negative to the charging 

current is following 
 

 α
αF-α

F-α s

1

c c c c
DIS t >0 1 α 1

s s C s s C (R+R )

v (T ) / s v (T )s
I (s)

R + R + (R + R ) s




   


                                              (67) 

 

The inverse Laplace transform of Eq. (67) gives discharge current for ct > T as following 

 

    

α-1
c c

1 α
s α F-α ss CF-α

α-1

α 1
C (R+R )F-α s

αα
c

s F-α s F-α

v (T )/s1 1 s
DIS c c F-αR+R +t >0 s C (R+R )+1

1 c c s

s +
s

T(t )c c
α c c c m α(R+R )C (R+R )C

s

i (t ) v (T )C

v (T )

(R + R )

v (T )
E ; t > T , v (T ) V 1 E

R R

 







 
     

 

 
  

 

     


L L

L               (68) 

 

For t    , we have DIS t >0
lim i (t ) 0

t



 
   .This DISi (t )  for t > 0  is real discharge current flowing 

out of the capacitor, unlike notional discharge current that we used in explaining the self discharge 

phenomena for ocv (t) . 

 
The negative sign in Eq. (68) indicates that discharge current is opposite to that of charging current. 

This DISi (t ) current will be flowing through R the discharge resistor, thus discharge voltage across 

the impedance α
F-α

1
2 s s C

Z (s) = R + is the voltage appearing across 1Z (s) = R is

   
α

c c

s s F-α

Rv (T ) (t )

DIS DIS αR+R (R+R )C
v (t ) = R i (t ) = E

   . While we have decay of c cv (T ) i.e. through sR + R

as  
α

s F-α

(t )

c s DIS c c α (R+R )C
v (t ) = (R + R )i (t ) = v (T )E

   ; i.e. measured across sR + R  . 

 

For limit 1 we have for ideal loss less capacitor F-αC C from Eq. (68) 

 

 
Tt c

(R+R )C (R+R )Cc c s s
1

s sC

v (T )/s1 c c
DIS c c c mR+R +

s

v (T )
i (t ) e ; t > T , v (T ) V 1 e

R R

   
       

  
L        (69) 

 

The discharging profile of q(t ) with initial charge cq(0) = q(T ) for ideal capacitor is 
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τ τ
(R+R )C (R+R )Cs s

t
(R+R )Cs

t
(R+R )Cs

τ=tt
c c

c c c
0 τ=0s

c c c c c c

c c

v (T )
q(t ) = e dτ Cv (T )e ; t T

R R

Cv (T )e Cv (T ) , q(0) Cv (T )

q(t) = q(0) + q(t ) = Cv (T )e





  





    
  

  





                                               (70) 

 

 Eq. (70) is same that we obtained in Eq. (65). Thus we get q(t ) for ct T with ct = t - T as following 

 

 
Tt c

(R+R )C (R+R )Cs s

c c c c m cq(t ) Cv (T )e ; v (T ) V 1 e ; t T
 

                                                (71) 

 

The voltage profile across the fractional capacitor, the discharge voltage across sR + R is cv (t )

while discharge voltage DISv (t )  measured across R is following  

 

    

 

αα
c

s F-α s F-α

α

s F-α

T(t )

c c c α c c c m α(R+R )C (R+R )C

(t )c c
DIS α c c(R+R )C

s

v (t ) v (T )E , t T , v (T ) V 1 E

Rv (T )
v (t ) = E - , t T ; t = t - T

R + R





      

 

                (72) 

 

9f. Discharging voltage modulated by self-discharging decay voltage for supercapacitor 
 

We mention here that Eq. (72) is only having discharge though shunt resistor sR + R  while neglecting 

the self discharge phenomena that we described for fractional capacitor.  If we consider the self-
discharge phenomena of the fractional capacitors, then we have from earlier derivation 
 

 
αTc

α (R+R )C αs F-α c

α 1-α
s F-αc

αTc
α (R+R )C αs F-α c

α 1-α
s sc

1 E T
(t )dτ

c m αΓ(1-α)Γ(α) (R+R )Cτ (T +t -τ)0

R 1-E - T
(t )dτ

DIS m α(R+R )Γ(1-α)Γ(α) (R+R )τ (T +t -τ)0

v (t ) V E ; t 0

v (t ) = V E -

  
   

  



  
  

  



 
    
 
 

 
 
 
 



  
F-αC

; t 0 

                                       (73)    

       

The self discharge part due to spatial charge diffusion into distributed structure, is a very-very slow 
process, thus we generally avoid that while calculating the discharge profiles through external shunt 
resistance. The Eq. (73) is nominal discharge phenomena through resistance are getting modulated 
by this self-discharge phenomenon.  
 

9g. Applying  q(t) = c(t)* v(t)  to discharge phase of supercapacitor and verification 
 

The charge q(t )  profile during the discharge phase is cq(t ) = c(t )*v (t )   for ct T is by utilizing the 

steps of Eq. (65), we write the following 
 

   

     

      

 

α

s F-α

s F-α s F-α

c c

c

(t )

c c α F-α α(R+R )C

-1 1
1 1c c

F-α c c1 1
(R+R )C (R+R )C

1

F-α c c

q(t ) c(t )* v (t ) , q(t ) = c(t )* v (t )

Q(s) c(t ) v (t )

C (t ) v (T )E ; C = C Γ(1-α)

v (T )s s
C (1 )s C v (T )s

s s

C v (T ) s





 
 

  



     

 

 

 
    

   



L L

L L

L L

L  α

αE ( kt )

                                  (74)         
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We used 
F-α

1
(R+R )C

k =
s

and  
α-1

α

α s
α s +k

E ( kt ) =L in the above steps of Eq. (74). In Eq. (74) placing 

limit α 1 and F-αC C , we write   -kt

c cQ(s) Cv (T ) e


 L . Inverse Laplace transform yields

-kt

c cq(t ) = Cv (T )e
 ; where

s

1
(R+R )C

k = . This is same as that of Eq. (65), obtained for ideal loss less 

capacitor. 
 

Consider the Caputo fractional derivative operator
C α

tD . We have the Caputo fractional derivative of 

Mittag-Leffler function 
α

αE (λx )  as
C α α α

0 x α αD E (λx ) E (λx )  ; [13] (refer Appendix). Using this and 

relation     C α α α-1

0 tD f(t) = s f(t) -s f(0), 0 < α <1L L  i.e. Laplace transform of Caputo Fractional 

Derivative (refer Appendix) we write the following from Eq. (74) 
 

  

       

   
  

F-α

1 α 1
F-α c c α (R+R )C

1 α α α C α α-1

F-α c c α 0 t

-1 C α α 1 α α

F-α c c 0 t α α αt =0 t =0

1 C α α

F-α c c 0 t α F-α c

Q(s) C v (T ) s E ( kt ) ; k =

C v (T )s s E ( kt ) ; s f(t) D f(t) + s f(0)

C v (T )s D E (-kt ) + s E (-kt ) ; E (-kt ) 1

C v (T )s D E (-kt ) C v (T

s








 





 

  

   

 

L

L L L

L

L  

    

-1 α-1 α-1 -α1
c Γ(1-α)

-1 α -1 -αF-α c c
F-α c c α

)s s , s = t

C v (T )
C v (T )s -kE (-kt ) s t

Γ(1-α)
  

L

L L

                   (75)              

            

We justify the use of 
C α

0 tD f(t) the Caputo derivative operator on function f(t) , in Eq. (75). That is 

because it is easy to be using Caputo derivative, rather using Riemann-Liouville (RL) fractional 
derivative, where initial states are of fractional order which presently hard to realize [10], [12]. The 

point that Caputo derivative works for a differentiable function f(t) , and 
α

αf(t) = E ( kt ) is 

differentiable for t > 0 . 
 

Recognizing in Eq. (75)    
t

-1

0
s f(t) = f(τ)dτL L and taking inverse Laplace Transform of Eq. (75) 

we have  
 

  F-α

t t
α -αF-α c c 1

F-α c c α (R+R )C0 0

t
α 1-αc c F-α c c

α c
0

t
1-αF-α c c

DIS DIS
0

C v (T )
q(t ) C v (T ) kE ( k )dτ τ dτ; k =

Γ(1-α)

v (T ) C v (T )
E ( k )d (t ) ; t T

(R + R ) (1- )Γ(1-α)

C v (T )
i (τ)dτ + (t ) ; i

(1-α)Γ(1-α)

s

s

 





 
       

 

 
       

 

 
  

 

 




αc c

αt >0
s

v (T )
(t ) = - E (-kt )

(R + R )
 

          (76)               

 

The same result of Eq. (76) we will get by applying Eq. (22) and Eq. (13) with t t , sR R + R , 

0 c cv (0) v (T ) , setting mV = 0 , and using F-α αC = C Γ(1-α) . 
 

Where we have  m c c

s s F-α

V T T

c α,2R+R (R R )C
q(0) = q(T ) = E




 and   

α
c

s F-α

T

c c m α (R+R )C
v (T ) V 1 E   . 

Differentiating Eq. (76) we get F-α c cC v (T )dq(t ) -α

DISdt Γ(1-α)t >0
i(t ) = i (t ) (t )



 
     , with

c c

s

v (T ) α

DIS α(R+R )t >0
i (t ) = - E (-kt )


   . 



 
 

 
 

Das; AJR2P, 2(2): 1-39, 2019; Article no.AJR2P.47668 

 

 

 
27 

 

From Eq. (31) we have current in a fractional capacitor as   F-α cC v (0) -α C α

F-α 0 t cΓ(1-α)
i(t ) (t ) C D v (t )
    , 

when a voltage cv (t ) is applied at t = 0 . With  αc c c αv (t ) = v (T )E k(t )  , and

   C α α α

0 t α αD E k(t ) kE k(t )
     
 

 and also c c cv (0) = v (T ) , we write

 F-α c c c c

s

C v (T ) v (T )-α α

αΓ(1-α) R+R
i(t ) (t ) - E (-kt    for, same that we got by differentiating  Eq. (76). 

 

We use    
t

α

α α,2
0

E kτ dτ = t E ( kt )-  (Refer Appendix) and write the following 

 

 

  

α

s F-α

s F-α

t
1-αF-α c c c c τ

α c(R+R )C0

1-αF-α c c c c t
α,2 (R+R )C

C v (T ) v (T )
q(t ) (t ) E d ; t T

(1- )Γ(1-α) (R +R )

C v (T ) v (T )
(t ) t E

(1- )Γ(1-α) (R +R )

s

s









  
        

   

          


               (77) 

 

Here we point out that the charging curve though similar to exponential charging of a text book 

capacitor
-t/RC

0v (t) (1 e )  , but it is not so, for fractional capacitor that is described via Mittag-Leffler 

function. Similarly the discharge profile though similar to exponential decay
-t/RC

0v (t) e , but is not 

so for fractional capacitor; here too described by Mittag-Leffler function.  All the relations we obtained 

and also verified our formula q(t) = c(t)*v(t) .  

 

10. CHARGE STORAGE q(t)  BY STEP INPUT CONSTANT CURRENT in mi (t) = I u(t)  

EXCITATION TO RC CIRCUIT WITH FRACTIONAL CAPACITOR AND IDEAL 

CAPACITOR-AND VERIFICATION OF NEW FORMULAq(t) = c(t)* v(t)  
 

In the Fig. 1 we take 1Z (s) = R , α
F-α

1
2 s C

Z (s) = and instead of in mv (t) = V u(t) , that is voltage source, 

we take, that as an ideal constant current source i.e. in mi (t) = I u(t) . This constant current charging 

we apply to initially uncharged fractional capacitor, with capacity function
-α

αc(t) = C t . The fractional 

capacitor will develop a voltage across it by law governed by fractional derivative and fractional 
integral as follows 
 

 
α

t α -α

F-α tα 0
F-α F-α

d v(t) 1 1
i(t) = C ; v(t) = i(τ) dτ D i(t); 0 1

dt C C
                              (78) 

 

Therefore, for constant current mi(t) = I the voltage is fractional integral of a constant mI   

 

-α -α αm
t t m

F-α F-α F-α

1 1 I
v(t) D i(t) = D I t ; t 0

C C C (1 )
  

  
                                               (79) 

for t 0 [12,13,37].  We used formula
Γ(m+1)-n m m+n

t Γ(m+1+n)
D t = t  in Eq. (79), (Refer Appendix) Therefore 

the charge function q(t) is q(t) c(t)*v(t)  as follows 
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n+1
F-α

+1
F-α

c

(n 1)α n1
m C (1 )

( 1)1 1
m F-αC (1 ) s

m

2

Q(s) c(t) v (t)

C t I t ; t

C (1 )s I ; C (1 ) C

I

s

s



 

  

 

  



 

     



L L

L L L

                             (80) 

 
Thus we have charge function by taking Laplace inverse of above Eq. (80) as 
 

mq(t) = I t ; t 0                                                                                                                  (81) 

 

The Eq. (81) can be expressed as mq(t) = I r(t) , where r(t)  is unit ramp function at t = 0 . That is 

r(t) = t for t 0 and r(t) = 0 for t < 0 . This Eq. (81) is matter of fact is the current flowing through R

and F-αC is mi(t) = I for t 0 , and thus the charge will be 

 
t t

m m m
0 0

q(t) = i(τ)dτ = I dτ = I t = I r(t); t 0                                                                    (82) 

 

For an ideal capacitor with c(t) = Cδ(t) the voltage is m
t I1

mC C0
v(t) = I dτ = t so the charge is

q(t) c(t)*v(t) as follows 

 

     

         

  

2

2

c

1 1
m C s

m1
m 2Cs

m m

Q(s) c(t) v (t)

C (t) I t ; t r(t)

I
C I

s

q(t) = I t = I r(t); t 0



   

 



L L

L L L L

                                              (83) 

 

Thus in the case of constant current charging, we verified the validity of q(t) c(t)*v(t) as for any 

capacitor fractional or ideal loss less capacitor, the mq(t) = I t ; that is always integration of current 

function, i.e. 
t

0
q(t) = i(τ)dτ  , for t 0 . 

 

11. CHARGE STORAGE q(t)  BY STEP INPUT CURRENT OF A SQUARE PULSE ini (t)  

TO RC CIRCUIT WITH FRACTIONAL CAPACITOR AND IDEAL CAPACITOR-AND 

VERIFICATION OF NEW FORMULAq(t) = c(t)* v(t)  

 
Let the square pulse of current be described as follows 
 

m m c m di(t) = I u(t) - 2I u(t - T ) + I u(t - T )                                                                                (84) 

Where u(t - T) = 1 for t T and u(t - T) = 0 for t < T , i.e. unit step function at time t = T  .Then with 

identity   -sTf(t -T) = e F(s)L  with f(t - T) = 0 for t < T ; we write 
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  c d-sT -sTm m mI 2I I
I(s) = i(t) - e + e

s s s
L                                                                               (85) 

 

We have voltage across α
F-α

1
2 s C

Z (s)  as follows 

c d c d

2

-sT -sT -sT -sTm m m m m m

α α+1 α+1 α+1

F-α F-α F-α F-α

V(s) = Z (s)I(s)

I 2I I I 2I I1
- e + e - e + e

C s s s s C s C s C s

  
   

  

       (86) 

 

Then taking inverse Laplace of Eq. (86) we get voltage profile across F-αC as 

 
α αα

m c m dm
c d

F-α F-α F-α

m m c m d

F-α F-α F-α

2I (t - T ) I (t - T )I t
v(t) = u(t) - u(t - T ) + u(t - T )

C Γ(α +1) C Γ(α +1) C Γ(α +1)

I r (t) 2I r (t - T ) I r (t - T )
- +

C Γ(α +1) C Γ(α +1) C Γ(α +1)

  

                           (87) 

 

We note that  1 -sTe F(s) f(t -T) L , where f(t - T) = 0 for t < T . We can write explicitly

 1 -sTe F(s) f(t -T)u(t -T) L , where u(t - T) is unit step function at  t = T   . This we used in Eq. 

(87). Also in Eq. (87) we define function r as 
α

αr (t - τ) = (t - τ) for t   and αr (t - τ) = 0 for t < τ . The 

Laplace transform of r  is,   -(α+1)

αr (t) = Γ(α+1)sL therefore we have the identity   

  -sτ -(α+1)

αr (t - τ) = e Γ(α +1)sL , which is used in Eq. (86) to get Eq. (87). 

 

The charge function is q(t) c(t)*v(t) as follows, when the voltage profile v(t) ; Eq. (86) is across a 

fractional capacitor
-α

αc(t) = C t . This
-α

αc(t) = C t  gets applied at t = 0 , ct = T and dt = T ; that is 

where there is sudden change of state of v(t) ; (that is at points where the differentiability of v(t) is 

lost). We write 
 

       

 

n+1

c d

c d

c d

(n 1) n

F-α

-sT -sT1 m m m

α+1 α+1 α+1

F-α F-α F-α

-sT -sT1 1m m m
F-α F-αα+1 α+1 α+1

F-α F-α F-α

-sT -sTm m m

2 2 2

m

Q(s) C t v(t) ; t ; C C (1 )

I 2I I
C (1 )s - e + e

C s C s C s

I 2I I
C s - C s e + e

C s C s C s

I 2I I
- e + e

s s s

q(t) = I

s
 

 





 

    

 
    

 





L L L

m c c m d d

m m c m d

t - 2I (t - T )u(t - T ) + I (t - T )u(t - T )

I r(t) - 2I r(t - T ) + I r(t - T )

                          (88) 

In Eq. (88) we define unit ramp function r as r(t - τ) = (t - τ) for t   and r(t - τ) = 0 for t < τ . The 

Laplace transform of r  is,   -2r(t) = sL therefore we have the identity     -sτ -2r(t - τ) = e sL , which is 
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used in Eq. (88). This shows verification of our formula q(t) = c(t)* v(t) . In similar way we can 

analyze the ideal loss less capacitor c(t) = C (t) , for this wave form of current pulse. 

 
 

12. CHARGING/DISCHARGING WHEN R IS ZERO OHMS IN RC CIRCUIT WITH 

VOLTAGE PULSES-AND VERIFICATION OF NEW FORMULAq(t) = c(t)* v(t)  

 

In this case Fig. 1 has 1Z (s) = 0 . Therefore the voltage source directly gets connected to the 

fractional or ideal capacitor represented by impedance 2Z (s) . This case we have studied for step, 

ramp and sinusoidal voltage excitation in [39]. Here we take square wave case and triangular wave 
case, as extension of what we analyzed in [39].    
 

12-a) Charge storage q(t) in a square wave voltage-on for time cT and thereafter zero 

 
The following excitation of a square wave pulse is applied to uncharged capacitor 
 

m c

c

0 , t 0

v(t) V , 0 t T

0 , t T




  
 

                                                                                                  (89) 

 

We construct the above Eq. (89) excitation with u(t - τ) =1 for t   and u(t - τ) = 0 for t < τ ; that is 

unit step function at t =   as m m cv(t) = V u(t) - V u(t - T ) . The Laplace transform is 

 

    c-sTm m
m m c

V V
V(s) = V u(t) V u(t - T ) - e

s s
 L L                                                          (90) 

 

We used    d d-st -st

df(t - t ) e f(t) e F(s) L L  with df(t - t ) = 0 for dt < t in above Eq. (90). When 

this voltage is applied to a time varying capacity function 1c(t) = C δ(t) i.e. ideal loss less capacitor we 

write from q(t) = c(t)* v(t) the following 
 

          c

c

-sTm m
1

-sTm 1 m 1

V V
Q(s) = q(t) = c(t) v(t) = C - e

s s

V C V C
= - e

s s

 
 
 

L L L

                                        (91) 

 

Taking inverse Laplace transform of Eq. (91) we get 
 

m 1 m 1 c m 1 c

c

0 , t < 0

q(t) = V C u(t) - V C u(t - T ) = V C , 0 t T

0 , t > T




 



                                                  (92) 

 

Now when this square-wave is applied for a time varying capacity function as 
-α

αc(t) = C t i.e. for 

fractional capacitor we write from q(t) = c(t)* v(t) the following expression 
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        c

c

-sTα m m

1-α

-sTm α m α

2-α 2-α

C Γ(1-α) V V
Q(s) = q(t) = c(t) v(t) = - e

s s s

V C Γ(1-α) V C Γ(1-α)
= - e

s s

  
  
  

L L L

                          (93) 

 
Taking inverse Laplace Transform of above Eq. (93) we obtain 
 

1-α 1-α
m α m α c cV C t u(t) V C (t-T ) u(t-T ) 1-αm α

c1-α 1-α

1-α 1-αm α m α
c

0 , t < 0

V C
q(t) = - = t , 0 t T

1-α

V C V C
t - (t - T) , t > T

1-α 1-α






 





              (94)             

     

The charge at ct = T is
1-α

m α cV C T

c 1-α
q(T ) = , charge at c ct = 2T > T

1-α
m α cV C T 1-α

c 1-α
q(2T ) = (2 -1) , charge at 

ct = 3T is
1-α

m α cV C T 1-α 1-α

c (1-α)
q(3T ) = (3 - 2 ) . We observe that for a fractional capacitor while the voltage is 

zero, after ct = T , there still is charge holding, as compared with ideal capacitor Eq. (92). The current 

wave form is 
 

-α -α -α

m α c m α c

-α -α

m α c c

0 , t < 0
dq(t)

i(t) = = V C (t - (t - T ) ) = V C t , 0 t T
dt

V C (t - (t - T ) ) , t > T




 



                     (95) 

 
12-b) Charge storage by voltage as triangular input of voltage 
 

The following excitation of a square wave pulse is applied to uncharged capacitor 
 

m

m m

0 , t < 0

V
t , 0 t T

T
v(t) =

V 2V
t - (t - T) , T t 2T

T T

0 , t 2T



  


  

 

                                                                    (96) 

 

We can write the Eq. (96) as    m mv(t) = V / T r(t) - 2V / T r(t - T) for 0 t 2T  . With r(t) unit 

ramp at t = 0 and is zero for t < 0  and r(t - T) as unit ramp at t = T and zero at t < T . With this 

applied to a ideal capacitor, with 1c(t) = C δ(t)  , we get the following by application of 

q(t) = c(t)* v(t)  

 

          -sTm m
1 2 2

-sTm 1 m 1

2 2

V 2V
Q(s) = q(t) = c(t) v(t) = C - e

Ts Ts

V C 2V C
= - e

Ts Ts

 
 
 

L L L

                                      (97) 
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Doing inverse Laplace transform of Eq. (97) we get 
 

m 1

m 1 m 1

m 1 m 1

0 , t < 0

V C
t , 0 t T

V C 2V C T
q(t) = r(t) - r(t - T) =

V C 2V CT T
t - (t - T) , T t 2T

T T

0 , t 2T



  


  

 

           (98) 

 

Current is got by differentiation of above Eq. (98) i.e. 
 

m 1

m 1 m 1

m 1

0 , t < 0

V C
, 0 t T

dq(t) V C 2V C T
i(t) = u(t) - u(t - T) =

V Cdt T T
- , T t 2T

T

0 , t 2T



  


 
  

 

                        (99) 

 

We take a fractional capacitor and do the following as done above as in Eq. (99) by applying the 

formula q(t) = c(t)* v(t)  
 

        -sTα m m

1-α 2 2

-sTm α m α

1+(2-α) 1+(2-α)

C Γ(1-α) V 2V
Q(s) = q(t) = c(t) v(t) = - e

s Ts Ts

V C Γ(1-α) 2V C Γ(1-α)
= - e

Ts Ts

  
  
  

L L L
                       (100) 

 

We take inverse Laplace transform of above Eq. (100) with following definition of a function mr (t - τ)

defined as 
 

 
m -sτ

m m 1+m

(t - τ) , t τ e Γ(1+m)
r (t - τ) = ; r (t - τ) =

s0, t < τ

 



L                                             (101) 

 

Thus the charge function q(t)  is following from Eq. (100) and Eq. (101) 

 

   m α m α

1+(2-α) 1+(2-α)

V C Γ(1-α) 2V C Γ(1-α)1 1 -sT

Ts Ts

m α m α
2-α 2-α

m α m α
2-α 2-α

q(t) = - e

V C Γ(1-α) 2V C Γ(1-α)
r (t) - r (t - T)

TΓ(3-α) TΓ(3-α)

V C 2V C
= r (t) - r (t - T)

T(1-α)(2 -α) T(1-α)(2 -α)

 



L L

                                            (102) 

 

We used Γ(1+m) = m (m) in above Eq. (102). We re-write above Eq. (102) using Eq. (101) 

m α 2-α m α 2-α

2-α
V C r (t) 2V C r (t-T) m α

T(1-α)(2-α) T(1-α)(2-α)

2-α 2-α

m α m α

0 , t < 0

V C t
q(t) = - = , 0 t T

T(1-α)(2 -α)

V C t 2V C (t - T)
- , T t 2T

T(1-α)(2 -α) T(1-α)(2 -α)






 



 


            (103)       
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We have at t = T , 
1-α

m αV C T

(1-α)(2-α)
q(T) = at t = 2T , 

1-α 2-α
m αV C T (2 -2)

(1-α)(2-α)
q(2T) = .We observe that at t = 2T , the 

voltage is zero, but we have charge as non-zero. Withα 1 , we get q(2T) 0 , Eq. (103) that we 

have analyzed for an ideal loss less capacitor. Differentiating Eq. (103) we write current as 
 

1-α

m α

1-α 1-α

m α m α

0 , t < 0

dq(t) V C t
i(t) = = , 0 t T

dt T(1-α)

V C t 2V C (t - T)
- , T t 2T

T(1-α) T(1- α)






 



 


                                         (104) 

 

Thus we verified q(t) = c(t)* v(t) the formula in 

RC circuits with charging resistance as zero, for 
triangular and square pulse of voltage excitation. 
 

13. CONCLUSIONS 
 

This formula q(t) c(t)*v(t) is a new 

development.  We have not yet applied this to 
practical cases in our project as this theoretical 
development very new, but plan to have further 
experimental and theoretical studies on this new 
formula, like application in estimation state of 
charge (SOC) in supercapacitors charge 
discharge applications, parameter extraction by 
Hysteresis plot where use this formula for 
supercapacitors, the insight into new way of 
defining loss-tangent as we obtained from this 
formula, and applications to several dielectric 
relaxation experiments where memory is 
observed.  In this paper however we have 
applied this new formula of charge storage i.e. 

via convolution operation q(t) c(t)*v(t) , of 

time varying capacity function and voltage stress 
for a fractional capacitor and ideal loss-less 
capacitor; for verification in RC 
charging/discharging circuit; with dc voltage and 
current sources. We have also shown the effect 
of memory in self-discharging cases for a 
fractional capacitor, by this formula. This new 
formulation is different to the earlier used formula 
of multiplication of capacity and voltage function. 
The circuit analysis that we described for each 
cases verifies this formula. Thus this new 
formulation of stored charge via convolution 
operation is applicable, and can be taken as 
general formula applicable to fractional capacitor 
as well as ideal capacitor. The objective of this 
paper was verification of formula

q(t) c(t)*v(t) , and giving elaborate 

mathematical steps with justification in RC circuit 

application of charge/discharge; which we have 
accomplished. Advantage we can say this

q(t) c(t)*v(t) gives the real non linear effect 

of supercapacitors fractional capacitors constant 
phase elements (CPE) capacity varying with 
applied voltage or current-that effect the charge 
stored function, and in future will see several 
applications in energy/power store research. 
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APPENDIX 
 

A. Preliminaries of fractional calculus 
 

For a function f(t) for t 0 , the Riemann-Liouville fractional integration of order 
 is defined as  

 

 
t

υ υ-1

0 t
0

1
I f(t) = (t - τ) f(τ)dτ

Γ(υ) 
                                                                                          A1 

 

Where Γ(υ) is Euler’s Gamma function, is generalization of factorial function we haveΓ(υ) = (υ -1)!. 

The formula Eq. (A1) is    
υ-1υ t

0 t Γ(υ)
I f(t) = *f(t) is convolution operation, with power-law memory 

kernel. This is 
υ-1t

υ Γ(υ)
k (t) = and is singular function for case 0 < υ <1  . We have

υ-1t
υ 0 υ υ 0 Γ(υ)

lim k (t) = lim = δ(t)  , which gives  0

0 tI f(t) = f(t) .The formula Eq. (A1) is appearing as 

generalization of Cauchy’s multiple integration formula of m fold integration  where m given as 

follows 
 

 
t

m m-1

0 t
0

1
I f(t) = (t - τ) f(τ)dτ; m =1,2,3,....

(m -1)!
                                                         A2 

 

The fractional derivative of order  for 0 1   by Riemann-Liouville (RL) formula is 

 

 
t

β -β

0 t
0

1 d
D f(t) = (t - τ) f(τ)dτ; 0 < β <1

Γ(1-β) dt 
                                                            A3 

 

The Eq. (A3) is fractionally integrating the function by order (1-β) by formula Eq. (A1) and then 

followed by one-whole differentiation. We note that Eq. (A7) is also having convolution operation and 

with singular kernel as
-βt

β Γ(1-β)
k (t) =  .We have thus

-βt
β 1 β β 1 Γ(1-β)

lim k (t) = lim = δ(t)   and 

   d f(t)β

β 1 0 t dt
lim D f(t) =  . 

 

There is reverse operation called Caputo’s fractional derivative, where we have a function f(t) defined 

for t 0 and is differentiable i.e. 
(1)f (t) exists for t 0 . The Caputo fractional derivative for fractional 

order 0 1   is given as 

 

 
t

C β -β (1)

0 t
0

1
D f(t) = (t - τ) f (τ)dτ; 0 < β <1

Γ(1-β) 
                                                              A4 

 

Thus for Eq. (A4) we need to get first the one-whole order derivative that is
(1)f (t)  , and then carry out 

fractional integration for order 1-β , by formula  Eq. (A1).  The formula Eq. (A4) also employs singular 

kernel as
-βt

β Γ(1-β)
k (t) = , and we have   C β (1)

β 1 0 tlim D f(t) = f (t)
.  The Caputo and Riemann-

Liouville (RL) fractional derivative are related by 
 

   β C β -β

0 t 0 t

f(0)
D f(t) = D f(t) + t ; 0 < β <1

Γ(1-β)
                                                                   A5 
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We write (A5) as following, with non-zero as start point of fractional differentiation process 
 

 

 

t
β

a t βa

(1)
t

β βa

(1)
t

β βa

-β C β

a t

1 d f(x)
D f(t) = dx , 0 β 1

Γ(1-β) dt (t - x)

1 f(a) f (x)
= + dx ; t > a
Γ(1-β) (t - a) (t - x)

f(a) 1 f (x)
= + dx

(t - a) Γ(1-α) Γ(1-α) (t - x)

f(a)
= (t - a) + D f(t)
Γ(1-β)

 

 
 
 






                                                   A6 

 

We mention that both the fractional derivatives are equal when initial value is zero i.e. f(0) = 0 . We 

note that fractional derivative of constant is not zero in RL sense, but is a power function (and that is 

singular at start point) i.e.   β -βK
0 t Γ(1-β)
D K = t . Whereas the Caputo’s fractional derivative of a 

constant is zero, i.e.  C β

0 tD K = 0 . 

 
The fractional integration and fractional differentiation of delta function is as follows  
 

υ υ-1 υ -υ-1

0 t 0 t

1 1
I δ(t) = t ; D δ(t) = t , 0 < υ <1

Γ(υ) Γ(-υ)
                                                     A7 

 

Fractional derivative and fractional integration of power function 
pf(t) = Kt is 

 

υ p p+υ υ p p-υ

0 t 0 t

Γ(p +1) Γ(p +1)
I Kt = K t , D Kt = K t , p > -1

Γ(p + υ+1) Γ(p - υ +1)
                           A8 

 
The Laplace transform of fractional integral operation is  
 

 υ -υ

0 tI f(t) = s F(s)L                                                                                                               A9 

 

Laplace transform of Caputo fractional derivative for fractional order 0 < υ <1 is   

 

 C υ υ υ-1

0 tD f(t) = s F(s) -s f(0)L                                                                                              A10 

 

Laplace transform of Riemann-Liouville fractional derivative of order 0 < υ <1is 

 

 υ υ (υ-1)

0 tD f(t) = s F(s) - f (0)L                                                                                             A11 

 

In (A11)  (υ-1) 1-υ

t 0 0 tf (0) = lim I f(t)
; that initial states required in (A11) for RL fractional derivative is 

of fractional order, types 
(υ-1)f (0) whereas initial states required (A10) for Caputo type fractional 

derivative is integer order (classical) type f(0) . 
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B. Mittag-Leffler Function 
 

Like in classical calculus, we have exponential function
ze ; similarly, in fractional calculus we have 

Mittag-Leffler function. The series definition Mittag Leffler function is  
 

 
n

α,β 0

(z)
E (z) , z ; Re α,β > 0

Γ(αn +β)n




                                                           B1 

 

For 1  we have
α,1 αE (z) = E (z) ; is called One-Parameter Mittag-Leffler function. The Laplace 

transformation of Mittag-Leffler function is following 
 

 
α-1

α

α α

s
E (λt ) =

s - λ
L                                                                                                                B2 

 

We observe that for 
α -bt

α α=1
E (-bt ) = e   , and

α

α α=2
E (-at ) = cos at   .  

 

We point here that
α

αf(t) = E (λt ) is eigen-function for fractional differential equation with Caputo 

derivative i.e. 
C α

0 tD f(t) = λf(t)  ; and 
α-1 α

α,αf(t) = t E (λt ) is eigen-function for fractional differential 

equation with RL fractional derivative i.e. 
α

0 tD f(t) = λf(t) . 

 

Recurring property of α,βE (x)  is  

 

α,β α,β-α

1 1
E (x) = E (x) -

x xΓ(β -α)
                                                                                          B3 

 

For one parameter Mittag-Leffler function  
 

   
α α,1 α,1-α

1 1
E (x) = E (x) = E (x) -

x xΓ(1-α)
                                                                              B4 

 

We use (B3) and write following steps 
 

 

α,β α,β-α α,β-2α

α,β-2α2 2

α,β-3α2 3 3

1 1 1 1 1 1
E (x) = - + E (x) = - + - + E (x)

xΓ(β -α) x xΓ(β -α) x xΓ(β - 2α) x

1 1 1
= - - + E (x)

xΓ(β -α) x Γ(β - 2α) x

1 1 1 1
- - - E (x)

xΓ(β -α) x Γ(β - 2α) x Γ(β -3α) x

 
 
 

 

          B5 

 

From (B5) we get Poincare asymptotic expansion of α,βE (x) as 

 

 
α,β nn=1

1
E (x) -

x Γ(β - nα)



                                                                                                B6 

 
valid for x  . 
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C. Proof of formula    
t

α α

α α,2
0
E -kτ dτ = t E (-kt )  

 

We verify the formula used    
t

α

α α,2
0

E kτ dτ = t E ( kt )-  as in following steps 

 

 
α 2 2α 3 3α

t t
α

α
0 0

α+1 2 2α+1 3 3α+1

α 2 2α 3 3α

α,2

kτ k τ k τ
E -kτ dτ = 1- + - + .... dτ

Γ(α +1) Γ(2α +1) Γ(3α +1)

kt k t k t
t ...

(α +1)Γ(α +1) (2α +1)Γ(2α +1) (3α +1)Γ(3α +1)

kt k t k t
t 1 ... , (m 1) m (m)

Γ(α + 2) Γ(2α + 2) Γ(3α + 2)

t E (-

 
 
 

    

 
         

 



 

 
m

α

α,β

m 0

(x)
kt ) ; E (x)

(αm )
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