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ABSTRACT

This computational study assessed ten density functionals that include CAM-B3LYP, LC-wPBE,
M11, M11L, MN12L, MN12SX, N12, N12SX, wB97X, and wB97XD related to the Def2TZVP basis
set together with the SMD solvation model. These are assessed in calculating the molecular
properties and structure of the pyrrolopyrrole-2-carbaldehyde molecule (PPA) in water. The
chemical reactivity descriptors for the systems are calculated via the Conceptual Density Functional
Theory. The choice of active sites applicable to nucleophilic, electrophilic as well as radical attacks
is made by linking them with Fukui functions indices, electrophilic Parr functions, and condensed
dual descriptor Af(r).
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The predicted Maximum absorption wavelength tends to be considerably accurate relative to the
experimental value. The study found the MN12SX and N12SX density functionals to be the most
appropriate in predicting the chemical reactivity of this molecule.

Keywords: PPA; conceptual DFT, chemical reactivity theory; Parr function; maximum absorption

wavelength.

1 INTRODUCTION

Visual color in processed foods is largely due
to colored products of Maillard or nonenzymic
browning reactions. In spite of the longstanding
aesthetic and practical interest in Maillard derived
food coloring materials, relatively little is known
about the chemical structures responsible for
visual color [1]. These chemical structures are
known as Colored Maillard Reaction Products
and can be isolated at intermediate stages during
the melanoidins formation process.

Besides their interest as dye molecules which
may be useful as food additives, but also as
dyes for dye-sensitized solar cells (DSSC), these
compounds have also antioxidant capabilities.
Thus, they are amenable to be studied by
analyzing their molecular reactivity properties.

One of these isolated molecules is called PPA
(pyrrolopyrrole-2-carbaldehyde) [2] which has
interesting properties as a colored compound
and fluorescent dye and we believe that it
could be of interest to study its molecular
reactivity by using the ideas of Conceptual
DFT, in the same way of our previous works
[3,4,5,6,7,8,9,10,11,12,13, 14, 15].

Electronegativity X =
Global Hardness
Electrophilicty w=
Electrodonating Power w™
Electroaccepting Power wt

Net electrophilicity

17:

Thus, in this computational study we will
assess ten density functionals in calculating
the molecular properties and structure of the
PPA intermediate melanoidin pigment in water.
Following the same ideas of previous works, we
will consider fixed range-separated hybrid (RSH)
density functionals instead of the optimally-tuned
RSH density functionals that have attained great
success [16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35].

2 THEORETICAL
GROUND

BACK-

The theoretical background of this study is similar
to the previous conducted research presented
[3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15], and will
be shown here for complete purposes, because
this research is a component of a major project
that it is in progress.

If we consider the KID (Koopmans in DFT)
procedure presented in our previous works
together with a finite difference approximation,
then the global reactivity descriptors can be
written as:

—%(I-FA)%%(GL-FEH) [36]
(I—A) = (er —en) [36]

4= i ~ e BT

= GGty ~ s e8]

= {Gry ~ gt e

AwF =wh — (—w ) =wh +w™  [39]

where ey and e, are the energies of the highest occupied and the lowest unoccupied molecular

orbitals (HOMO and LUMO), respectively.
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Applying the same ideas, the definitions for the local reactivity descriptors are:
Nucleophilic Fukui Function  f*(r) = pn41(r) — pn(r)  [36]

Electrophilic Fukui Function  f~(r) = pn(r) — pn—1(r) [36]

Dual Descriptor Af(r) = (aaff(vr)) () 1401
Nucleophilic Parr Function P~ (r) = p5°(r) [41]
Electrophilic Parr Function PT(r) = pi*(r) [41]

where pn+1(r), pn(r), and pn—1(r) are the electronic densities at point r for the system with N + 1,
N, and N — 1 electrons, respectively, and p%°(r) and p;*(r) are related to the atomic spin density
(ASD) at the r atom of the radical cation or anion of a given molecule, respectively [42].

3 SETTINGS AND COMPUTATIONAL METHODS

Following the lines of our previous work , the computational studies were performed with the Gaussian
09 [43] series of programs with density functional methods as implemented in the computational
package. The basis set used in this work was Def2SVP for geometry optimization and frequencies,
while Def2TZVP was considered for the calculation of the electronic properties [44, 45]. All the
calculations were performed in the presence of water as the solvent by doing Integral Equation
Formalism-Polarized Continuum Model (IEF-PCM) computations according to the Solvation Model
Density (SMD) solvation model [46].

For the calculation of the molecular structure and properties of the studied systems, we have chosen
ten density functionals which are known to consistently provide satisfactory results for several structural
and thermodynamic properties:

CAM-B3LYP  Long-range-corrected B3LYP by the CAM method  [47]
LC-wPBE Long-range-corrected wPBE density functional [48]

M11 Range-separated hybrid meta-GGA [49]
M11L Dual-range local meta-GGA [50]
MN12L Nonseparable local meta-NGA [51]
MN12SX Range-separated hybrid nonseparable meta-NGA  [52]
N12 Nonseparable local NGA [53]
N12SX Range-separated hybrid NGA [52]
wB97X Long-range corrected density functional [54]
wB97XD wB97X version including empirical dispersion [55]

In these functionals, GGA stands for generalized 4 RESULTS AND DISCUSSION

gradient approximation (in which the density
functional depends on the up and down spin
densities and their reduced gradient) and NGA
stands for nonseparable gradient approximation
(in which the density functional depends on
the up/down spin densities and their reduced
gradient, and also adopts a nonseparable form).

The molecular structure of the PPA
molecule was taken from  PubChem
(https://pubchem.ncbi.nim.nih. gov), a website
that acts as the public repository for information
pertaining chemical substances together with the
biological activities they are associated with.The
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pre-optimization of the systems was done
using random sampling that involved molecular
mechanics techniques and inclusion of the
various torsional angles via the general MMFF94
force field [56, 57, 58, 59, 60] through the
Marvin View 17.15 program that constitutes an
advanced chemical viewer suited to multiple and
single chemical queries, structures and reactions
(https://www.chemaxon.  com).  Afterwards,
the structure that the resultant lower-energy
conformer assumed for this molecule was
reoptimized using the ten density functionals
mentioned in the previous section together with
the Def2SVP basis set as well as the SMD
solvation model using water as the solvent.

The analysis of the results obtained in the
study aimed at verifying that the KID procedure
was fulfilled. On doing it previously, several
descriptors associated with the results that
HOMO and LUMO calculations obtained are
related with results obtained using the vertical
| and A following the ASCF procedure. A
link exists between the three main descriptors
and the simplest conformity to the Koopmans’
theorem by linking ey with -I, ¢, with -A, and
their behavior in describing the HOMO-LUMO

gap as Jr = lem + E4(N — 1) — Egs(N)|,
Ja = ez + Egs(N) — Eg(N + 1)), and
Jur = V/Jr? + Ja%. Notably, the Ja descriptor

consists of an approximation that remains valid
only when the HOMO that a radical anion has

(the SOMO) shares similarity with the LUMO
that the neutral system has. Consequently, we
decided to design another descriptor ASL as the
difference between the orbital energies of the
SOMO and the LUMO, to guide in verifying how
the approximation is accurate.

The results of the calculation of the electronic
energies of the neutral, positive and negative
molecular systems (in au) of PPA, the HOMO,
LUMO and SOMO orbital energies (also in au),
Jr, Ja, Jur, and ASL descriptors calculated with
the ten density functionals and the Def2TZVP
basis set using water as a solvent simulated with
the SMD parametrization of the IEF-PCM model
are presented in Table 1.

As presented in previous works [3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15], we consider four
other descriptors that analyze how well the
studied density functionals are useful for the
prediction of the electronegativity x, the global
hardness 7, and the global electrophilicity w,
and for a combination of these Conceptual DFT
descriptors, considering only the energies of
the HOMO and LUMO or the vertical | and A:
Jx = Ix = xkl, Jn = In — 1k, Jo = |w — wk],
and Jeprr = /JZ+ J2+ J2, where CDFT
stands for Conceptual DFT. The results of the
calculations of Jy, J,, Ju, and Jeprr for the low-
energy conformer of PPA in water are displayed
in Table 2.

Table 1. Electronic energies of the neutral, positive, and negative molecular systems (in au)
of PPA, the HOMO, LUMO, and SOMO orbital energies (in eV); and J;, Ja, Jur, and ASL
descriptors calculated with the ten density functionals and the Def2TZVP basis set using
water as solvent simulated with the SMD parametrization of the IEF-PCM mode

Eo E+ E- HOMO LUMO SOMO J(I) J(A) J(HL)  ASL
CAM-B3LYP -1177.8455 -1177.6458 -1177.9149 -6.8584 -0.4076 -3.3574 1.4215 1.4786 2.0511 2.9497
LC-wPBE -1177.6339 -1177.4282 -1177.7105 -8.1186 0.4806 -4.6382 2.5217 2.5667 3.5982 5.1188
M11 -1177.7707 -1177.5627 -1177.8436 -7.9322 0.3382 -4.2962 2.2729 2.3243 3.2509 4.6344
M11L -1177.7358 -1177.5232 -1177.8170 -5.4505 -2.5269 -1.8474 0.3375 0.3176 0.4634 0.6795
MN12L -1177.2943 -1177.0926 -1177.3596 -5.1713 -2.0373 -1.4996 0.3162 0.2586 0.4085 0.5377
MN12SX -1177.3580 -1177.1498 -1177.4294 -5.6214 -1.9192 -1.9639 0.0433 0.0255 0.0503 0.0446
N12 -1178.1808 -1177.9909 -1178.2420 -4.7626 -2.0711 -1.2482 0.4052 0.4063 0.5739 0.8229
N12SX -1177.8289 -1177.6301 -1177.8973 -5.4121 -1.8128 -1.8942 0.0011 0.0476 0.0476 0.0814
wB97X -1178.0821 -1177.8802 -1178.1522 -7.8152 0.4544 -4.2657 2.3205 2.3635 3.3122 4.7201
wB97XD -1178.0049 -1177.8025 -1178.0750 -7.4807 0.1181 -3.9275 1.9741 2.0272 2.8296 4.0455
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As Tables 1 and 2 provide, the KID procedure
applies accurately from MN12SX and N12SX
density functionals that are range-separated
hybrid meta-NGA as well as range-separated
hybrid NGA density functionals respectively. In
fact, the values of J;, Ja, and Ju are actually
not zero. Nevertheless, the results tend to be
impressive especially for the MN12SX density
functional. As well, the ASL descriptor reaches
the minimum values when MN12SX and N12SX
density functionals are used in the calculations.
This implies that there are sufficient justifications
to assume that the LUMO of the neutral
approximates the electron affinity. The same
density functionals follow the KID procedure in
the rest of the descriptors such as J,, Jy, Ju,
and JeprT.

In the past, various TDDFT studies of molecules
of different size have used optimally-tuned RSH
density functionals with great success [16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35]. The considerable success of the
approach is however undermined by the issue of
the tuning optimization being system dependent.
Therefore, focus should be on establishing the
effectiveness of the behaviors of the fixed RSH
density functionals in describing the excitation
characteristics. In his works, Becke has recently
mentioned that the adiabatic connection and the
ideas of Hohenberg, Kohn, and Sham apply
only to electronic ground states is a common
misconception [61]. Furthermore, consistent with
Baerends et al., KS model is not appreciated for
being superior because of its lowest excitation

energy in molecules. Physically, it amounts
to an excitation of the KS system rather than
electron adittion as would be the case in Hartree-
Fock. Thus, it can be effectively be used as a
measure of the optical gap and is an effective
approximation to the gap (in molecules) [62]. In
their conclusion, van Meer et al. advanced that
the HOMO-LUMO gap associated with the KS
model tends to be an approximation of the lowest
excitation energy, a desirable characteristic with
no concerns regarding it [63].

In this work, the determination of the maximum
absorption wavelength of the PPA molecule
in water is performed by conducting ground
state calculations with the mentioned ten density
functionals obtaining the HOMO-LUMO gap
which are compared with TDDFT calculations
using the Def2TZVP basis set. Fig. 1 provide an
illustration that compares graphically the results
involved in the ground-state approximation
derived from the HOMO-LUMO gap together with
TDDFT results and the experimental value of 348
nm in water. A similar comparison is shown in
Table 3.

Having verified that the MN12SX/Def2TZVP
model chemistry is a good choice for the
calculation of the global reactivity descriptors
and the prediction of the Maximum absorption
wavelength from the ground state calculation of
the HOMO and LUMO, we now present the
optimized molecular structure of PPA in water in
Fig. 2. Meanwhile, the calculated bond lengths
and bond angles are shown in Tables 4 and 5.

Table 2.7J,, J,, J., and Joprr for the PPA molecule in water

Jy Jy Jo Jeprr
CAM-B3LYP 0.0281 2.9053 0.8672 3.0321
LC-wPBE 0.0217 5.0863 1.2515 5.2381
M11 0.0247 4.5943 1.1149 4.7278
M11L 0.0085 0.6518 0.4865 0.8134
MN12L 0.0282 0.5775 0.2950 0.6491
MN12SX 0.0337 0.0202 0.0238 0.0459
N12 0.0006 0.8104 0.5025 0.9536
N12SX 0.0228 0.0511 0.0494 0.0746
wB97X 0.0202 4.6833 1.0903 4.8086
wB97XD 0.0260 3.9990 1.0173 4.1264




Frau and Glossman-Mitnik; CSIJ, 22(4): 1-14, 2018; Article no.CSIJ.41452

Table 3. Maximum absorption wavelength ()\.....) of the PPA molecule calculated from the
HOMO-LUMO gap and from TDDFT results in comparison with the experimental value

Amaz(HL) A(HD) Amaz(TDDFT) A(TDDFT)
CAM-B3LYP 192 45 303 13
LC-wPBE 144 59 292 16
M11 150 57 306 12
M11L 424 22 352 1
MN12L 396 14 331 5
MN12SX 335 4 318 9
N12 461 32 379 9
N12SX 345 1 324 7
wB97X 150 57 294 16
wB97XD 163 53 301 14

Table 4. Calculated bond lengths (in A) of the PPA molecule with the MN12SX density
functional using water as the solvent simulated with the SMD solvation model

Bond Distance Bond Distance Bond Distance Bond Distance

R(1-2) 1.393 R(7-28) 1.439 R(15-21) 1.441 R(28-35) 1.515
R(1-6) 1.387 R(8-9) 1.094 R(17-19) 1.122 R(31-32) 1.213
R(1-25) 1.438 R(8-10) 1.411 R(17-20) 1.117 R(31-33) 1.374
R(2-3) 1.389 R(10-11) 1.455 R(17-23) 1.439 R(33-34) 0.985
R(2-14) 1.501 R(11-12) 1.227 R(21-22) 0.984 R(35-36) 1.218
R(3-4) 1.093 R(11-13) 1.143 R(23-24) 0.980 R(35-37) 1.382
R(3-5) 1.424 R(14-15) 1.530 R(25-26) 1.109 R(37-38) 0.982
R(5-6) 1.406 R(14-16) 1.111 R(25-27) 1.114 R(12-30) 1.963
R(5-7) 1.370 R(14-39) 1.112 R(25-31) 1.537

R(6-8) 1.407 R(15-17) 1.526 R(28-29) 1.117

R(7-10) 1.392 R(15-18) 1.130 R(28-30) 1.116

Table 5. Calculated bond angles (in ) of the PPA molecule with the MN12SX density functional
using water as the solvent simulated with the SMD solvation model

Bond Angle Bond Angle Bond Angle Bond Angle
A(2-1-6) 108.0 A(3-5-7) 143.5  A(11-12-30) 102.9  A(26-25-27) 107.0
A(2-1-25) 126.4 A(6-5-7) 108.0  A(15-14-16) 108.8  A(26-25-31) 109.0
A(1-2-3) 110.0 A(5-6-8) 108.9  A(15-14-39) 108.7  A(27-25-31) 109.4
A(1-2-14) 120.8 A(5-7-10) 108.5  A(14-15-17) 113.1 A(25-31-32) 123.2
A(6-1-25) 125.6 A(5-7-28) 1258  A(14-15-18) 1079  A(25-31-33) 114.7
A(1-6-5) 107.6 A(6-8-9) 128.8  A(14-15-21) 109.4  A(29-28-30) 107.5
A(1-6-8) 143.5 A(6-8-10) 105.6  A(16-14-39) 106.1 A(29-28-35) 109.1
A(1-25-26) 108.4 A(10-7-28) 1256.7  A(17-15-18) 108.5  A(30-28-35) 110.4
A(1-25-27) 110.8 A(7-10-8) 109.1 A(17-15-21) 109.0  A(28-30-12) 134.6
A(1-25-31) 112.1 A(7-10-11) 1241 A(15-17-19) 110.6  A(28-35-36) 126.3
A(3-2-14) 129.2 A(7-28-29) 110.6  A(15-17-20) 111.2  A(28-35-37) 113.0
A(2-3-4) 125.4 A(7-28-30) 107.8  A(15-17-23) 107.3  A(32-31-33) 122.1
A(2-3-5) 105.8 A(7-28-35) 111.4  A(18-15-21) 108.9  A(31-33-34) 108.9
A(2-14-15) 113.9 A(9-8-10) 125.6  A(15-21-22) 105.4  A(36-35-37) 120.7
A(2-14-16) 109.4 A(8-10-11) 126.8  A(19-17-20) 107.5  A(35-37-38) 107.8
A(2-14-39) 109.6  A(10-11-12) 1247  A(19-17-23) 110.3
A(4-3-5) 128.8  A(10-11-13) 1142  A(20-17-23) 109.9
A(3-5-6) 108.6  A(12-11-13) 121.1 A(17-23-24) 107.8
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Fig. 1. A graphical comparison of the results for the calculation of the )\,,,, of the PPA
molecule between the HOMO-LUMO gap prediction, TDDFT values, and experimental data

=

Fig. 2. A schematic representation of the optimized structure of the PPA molecule calculated
with the MN12SX density functional showing the numbering of the atoms



Frau and Glossman-Mitnik; CSIJ, 22(4): 1-14, 2018; Article no.CSIJ.41452

Table 6. Global reactivity descriptors for the PPA molecule with the MN12SX density
functional using water as the solvent simulated with the SMD solvation model

Electronegativity (x)

Chemical Hardness ()

Electrophilicity (w)

3.7703 3.7021 1.9199
Electrodonating Power (w™) Electroaccepting Power (w™) Net Electrophilicity (AwT)
3.5024 2.1218 5.6242

As a summary of the previous results, the
global reactivity descriptors for the PPA molecule
calculated with the MN12SX/Def2TZVP model
chemistry in water are presented in Table
6(above).

The calculations of the condensed Fukui
functions and dual descriptor are done by using
the Chemcraft molecular analysis program to
extract the Mulliken and NPA atomic charges [64]
beginning with single-point energy calculations
involving the MN12SX density functional that
uses the Def2TZVP basis set in line with the
SMD solvation model, and water utilized as the
solvent.

Considering the potential application the PPA
molecule as an antioxidant, it is of interest to

get insight into the active sites for radical attack.
A graphical representation of the radical Fukui
function £° (as an average of the nucleophilic and
electrophilic Fukui functions) calculated with the
MN12SX/Def2TZVP model chemistry in water is
presented in Fig. 3.

The condensed electrophilic and nucleophilic
Parr functions P; and P, over the atoms of the
PPA molecule in water have been calculated by
extracting the Mulliken and Hirshfeld (or CM5)
atomic charges using the Chemcraft molecular
analysis program [64] starting from single-point
energy calculations of the ionic species with the
MN12SX density functional using the Def2TZVP
basis set in the presence of the solvent according
to the SMD solvation model.

Fig. 3. A graphical representation of the radical Fukui function f° of the PPA molecule
calculated with the MN12SX/Def2TZVP model chemistry in water
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Table 7. The condensed dual descriptor calculated with Mulliken atomic charges Af;, (M) and
with NPA atomic charges Af; (N), electrophilic and nucleophilic Parr functions with Mulliken
atomic spin densities P; (M) and P; (M), and electrophilic and nucleophilic Parr functions
with Hirshfeld (or CM5) atomic spin densities P: (H) and P,/ (H) for the PPA molecule.
Hydrogen atoms are not shown.

Atom Afr (M) Af, (N) Pr (M) P, (M) Pr (H) P, (H)
N -0.06 0.96 0.0081 -0.0285 0.0133 0.0139
2C -8.48 -6.41 0.1829 0.3030 0.1033 0.2019
3C -13.39 -9.84 -0.0590 0.1286 -0.0032 0.1209
5C 0.69 2.90 0.1035 0.0612 0.0610 0.0779
6C -10.75 -9.90 -0.0617 0.1729 -0.0037 0.1196
7N 2.53 3.14 0.0759 0.0015 0.0576 0.0288
8C 12.01 11.86 0.2376 -0.0417 0.1494 0.0238
10C -16.32 -17.01 -0.0311 0.3329 0.0445 0.2131
11C 26.10 22.92 0.3614 -0.0678 0.2786 0.0107
120 9.22 4.69 0.2290 0.1300 0.2254 0.1090
14C -0.45 -0.77 -0.0223 -0.0281 0.0105 0.0197
15C -0.15 -0.15 0.0038 0.0026 0.0025 0.0045
17C -0.41 -0.03 -0.0010 0.0090 0.0009 0.0070
210 -0.09 -0.11 0.0005 0.0021 0.0003 0.0016
230 -0.36 -0.44 0.0003 0.0043 0.0003 0.0044
25C -0.04 -0.27 -0.0003 -0.0010 0.0010 0.0006
28C 0.03 -0.22 -0.0055 -0.0020 0.0049 0.0014
31C -0.04 -0.01 0.0000 -0.0002 0.0004 0.0000
320 -0.06 -0.41 0.0000 0.0002 0.0000 0.0002
330 -0.03 -0.31 0.0005 0.0025 0.0005 0.0014
35C 0.16 -0.31 0.0031 0.0007 0.0031 0.0007
360 0.02 -0.03 -0.0001 0.0000 0.0005 0.0003
370 0.02 0.17 0.0005 0.0000 0.0009 0.0000

The results for the condensed dual descriptor
calculated with Mulliken atomic charges Afy
(M), with NPA atomic charges Af, (N), the
electrophilic and nucleophilic Parr functions with
Mulliken atomic spin densities P (M) and P,
(M), and the electrophilic and nucleophilic Parr
functions with Hirshfeld (or CM5) atomic spin
densities P (H) and P, (H) are displayed in
Table 7 for the PPA molecule in water.

From the results for the local reactivity descriptors
in Table 7 (above), it can be concluded that C11
will be the preferred site for a nucleophilic attack
and that this atom will act as an electrophilic
species in a chemical reaction. In turn, it can
be appreciated that C3 and C10 will be prone
to electrophilic attacks and that these atomic
sites will act as nucleophilic species in chemical
reactions that involve the PPA molecule.

5 CONCLUSION

Ten fixed RSH density functionals, including
CAM-B3LYP, LC-wPBE, M11, N12, M11L,
MN12L, N12SX, MN12SX, wB97X and wB97XD,
were examined to determine whether they fulfill
the empirical KID procedure. The assessment
was conducted by comparing the values
from HOMO and LUMO calculations to those
generated by the ASCF technique for the PPA
molecule in water. This is a compound which
is of academic as well as industrial interest. The
study has observed that the range-separated and
hybrid meta-NGA density functionals tend to be
the most suited in meeting this goal. Thus, they
can be suitable alternatives to density functionals
where the behavior of them are optimally tuned
using a gap-fitting procedure. They also exhibit
the desirable prospect of benefiting future studies
aimed at understanding the chemical reactivity
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of colored melanoidins with larger molecular
weights when reducing sugars react with proteins
and peptides.

From the results of this work, it becomes
evident that it is easy to predict the sites of
interaction of the PPA molecule under study. This
involves having DFT-based reactivity descriptors,
including Parr functions and dual descriptor
calculations. Evidently, the descriptors are
useful in characterizing and describing the
preferred reactive sites. They are also useful
in comprehensively explaining the reactivity of
the molecules.

Furthermore, it is also possible to predict
the Maximum absorption wavelength for the
PPA in water with considerable accuracy.
The prediction involves the MN12SX density
functional, beginning with the HOMO-LUMO
gap instead of TDDFT calculations. Such a
finding is particularly crucial considering the
likelihood of it being used to inform the alternative
determination method on the color that larger
systems such as prosthetic chromophore groups.
This becomes necessary in circumstance when
it is not possible to carry out TDDFT calculations.
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