
Physical Science International Journal

20(4): 1-12, 2018; Article no.PSIJ.46248
ISSN: 2348-0130

Chirped Gaussian Pulse Excitation of a Harmonic
Oscillator

R. A. Alharbey1∗ , H. Gasim1, F. N. M. Al-Showaikh2

and S. S. Hassan2

1Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O.Box 42696,
Jeddah 21551, Kingdom of Saudi Arabia.

2Department of Mathematics, College of Science, University of Bahrain, P.O.Box 32038,
Kingdom of Bahrain.

Authors’ contributions

This work was carried out in collaboration between all authors. All authors read and approved the
final manuscript.

Article Information

DOI: 10.9734/PSIJ/2018/46248
Editor(s):

(1) Dr. Olalekan David Adeniyi, Department of Chemical Engineering, Federal University of
Technology, Nigeria.

(2) Dr. Christian Brosseau, Distinguished Professor, Department of Physics, Universit de Bretagne
Occidentale, France.

Reviewers:
(1) Pipat Chooto, Prince of Songkla University, Thialand.

(2) Pasupuleti Venkata Siva Kumar, Vallurupalli Nageswara Rao Vignana Jyothi Institute of
Engineering & Technology, India.

(3) Adel H. Phillips, Ain-Shams University, Egypt.
(4) Ottman Belaidi, University of Constantine 1, Algeria.

Complete Peer review History: http://www.sdiarticle3.com/review-history/46248

Received: 25 October 2018
Accepted: 05 January 2019

Original Research Article Published: 17 January 2019

ABSTRACT

We investigate the basic problem of the interaction of a single quantised mode of the radiation field,
modelled as quantised harmonic oscillator (HO) with a laser pulse of chirped Gaussian line-shape.
The average photon number and the transient emitted spectrum are calculated analytically in terms
of the error function of complex argument. The spectral peaks of the line structure of the emitted
radiation are examined for different system parameters and initial states of the HO.
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1 INTRODUCTION

The field of quantum optics is concerned
with quantum properties of radiation-matter and
radiation -radiation interaction. The simplest
model of matter is a single atom of 2-level
structure, whilst the simplest wave radiation is
modelled as a simple harmonic oscillator (HO).

The model of a laser pulsed- driven- single
quantised HO has been examined previously for
different shapes of laser pulses. Specifically,
the Fourier transform (FT) transient scattered
spectrum of the HO was studied in the case of
multi-mode rectangular pulse [1] and both the FT
and wavelet spectra were studied in the case of
sin2-pulse shape [2-4].

In addition to its fundamental interest, HO
represents two limiting cases: a large (infinite)
number of Rydberg atoms in contact with thermal
[5] or squeezed vacuum [6] reservoirs. Here,
we extend the above investigation (HO ⊕ pulsed
laser) to the case of a chirped Gaussian laser
pulse.

The paper is presented as follows: in sec
2, we present the corresponding Heisenberg
equations of motion and their solutions in the
case of chirped Gaussian pulse. In sec 3
and 4 we calculate and examine computationally
the average photon number and the scattered
spectrum of the HO, respectively. A summary is
given in sec 5.

2 THE MODEL EQUATIONS

(a) Exact solutions
The Hamiltonian model representing the

interaction of a single quantised (non-dissipative)
HO with a (classical) laser pulse within the RWA
is of the following form [2] (in units of ~ = 1);

H = ω0â
†â+Ωo(f(t)â

†e−iωLt+f∗(t)âeiωLt) (1)

where ω0 is the HO frequency, ωL is the
oscillating frequency of the pulse envelope, f(t)
is the pulse shape function and Ω0 is the pulse
strength (Rabi frequency).

The first term of the Hamiltonian (1) is the
unperturbed Hamiltonian of the HO, while the rest

of terms represent the interaction Hamiltonian
between the HO and the driving pulse.

Heisenberg equations of motion for the operators
â and â† according to the Hamiltonian (1) are of
the form,

˙̂a = −iωoâ− iΩof(t)e
−iωLt

˙̂a† = iωoâ
† + iΩof

∗(t)eiωLt
(2)

The formal operator solutions of (2) for arbitrary
pulse shape f(t) are given by ,

â(t) = â(to)e
−iωot − iΩoe

−iωot

t∫
to

f(t′)e−i∆t′dt′

= e−iωotÂ(t). (3a)

â†(t) = eiωotÂ†(t) (3b)

where,
Â(t) = â(to)− iΩoI(t) (4)

I(t) =

t∫
to

f(t′)e−i∆t′dt′ (5)

and ∆ = (ωL − ωo) is the frequency detuning
parameter, and to is the initial time (which
depends on the switching of the pulse).

(b) Case of chirped Gaussian pulse.
The pulse shape in this case takes the form ,

f(t) = e
−(1+ic)( t

τo
)2 (6)

Where C is the chirp parameter, τo is the
1

2
-width

of the pulse. For C ̸= 0, f(t) has the complex
form,

f(τ) = fr(τ) + ifi(τ); τ =
t

τo
(7a)

Where,
fr(τ) = e−τ2

cos(cτ2) (7b)

fi(τ) = e−τ2

sin(cτ2) (7c)
Effect of the chirp parameter is to stretch the
pulse in an oscillatory pattern-as seen in Fig.1a
at fixed values of C = ±2 and in Fig.1b for larger
C = ±6. Increasing the value of C = 6 induces
wave oscillations, while the negative value of
(C) is to change the phase of the oscillations in
the imaginary part function fi(t), as seen in the
insets of Fig.1a,b. For fixed values of τ , both
fr(C), fi(C) are purely sinusoidal functions of C.

Now, due to the smooth switch-on of the
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Gaussian pulse we take to → −∞ (unlike the
sharp switch-on of other pulses, like rectangular,
at to = 0). Thus, the expression for I(t), eq(5)
with f(t) given by (6) is expressed in terms of the
error function (z) of complex argument,

I(t) =

t∫
−∞

f(t′)e−i∆t′dt′ (8a)

=
τo
√
π

2
√
a
e

b2

a (erf(C1t+ C2) + 1) (8b)

where a = 1 + iC , b = i∆τo
2

, C1 =

√
a∗

τo
,

C2 =
b∗√
a∗

and the error function erf(z) =

2√
π

z∫
0

e−t2dt.(see, e.g.[7]).

Fig. 1a. The real and the imaginary parts of fr(τ), fi(τ) against (τ) at fixed value of C = 2..
Inset shows fi(τ) for c = −2

3 AVERAGE PHOTON NUMBER

The HO photon number operator n̂(t) ≡ â†(t)â(t) using eq(3) is given by,

n̂(t) = â†(to)â(to) + Ω2
o|I(t)|2 − iΩoâ

†(to)I(t) + iΩoâ(to)I
∗(t) (9)

Where, I(t) is given by (8) with to = −∞. The averaged photon number n̄(t) = ⟨n̂(t)⟩ of the HO, in
the general case of initial coherent state |α⟩ is given by,

n̄α(t) = ⟨α|â†(to)â(to)|α⟩+Ω2
o|I(t)|2 − iΩo(⟨α|â†(to)|α⟩I(t)− c.c.) (10)

= |α|2 +Ω2
o|I(t)|2 + 2ΩoIm(α∗I(t)) (10a)

The first term in (10) represents the initial average photon number of the HO ⟨â†(to)â(to)⟩ = |α|2,
while the second term in Ω2

o represents the intensity of the (classical) pulse. The last term represents
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Fig. 1b. As Fig.1a but for C = 6.

the change in the photon number n̄(t) due to the exchange of initial amplitude < â†(to) >= α∗ of the
HO with the driving pulse.

Two special cases of initial state for the HO are:

(i) The zero (vacuum) number state |0⟩, ⟨â†(to)â(to)⟩ = 0, ⟨â†(to)⟩ = 0, and (10a) reduced to ,

n̂o(t) = Ω2
0|I(t)|2. (10b)

(ii) In the number state |n⟩ (n ̸= 0), ⟨â†(to)â(to)⟩ = no, ⟨â†(to)⟩ = 0, and (10a) reduced to,

n̄no(t) = no +Ω2
o|I(t)|2 (10c)

The computational of plots of the normalised average photon numbers n̄o(t), n̄no(t), n̄α(t),
eqs(10b, c, a) normalised to its maximum values are shown in fig(2-4).

(i) Initial vacuum state.
At exact resonance (∆ = 0) and for C = 0, Fig.2a shows that the normalized average
photon number n̄o(τ) is independent of the pulse strength Ω2

o and reaches its stationary
maximum value monotonically around the normalised time τ = 2. For non-zero chirp
|C| = 10, the reach to a lesser value of the steady state is oscillatory within the period
(0, 2). In the off resonance case (∆′ = ∆τo = 4) and C = 0, Fig.2b shows that no(τ)
has essentially a Gaussian profile. For τ > 0 and positive C = 4, the amplitude of
oscillations is reduced, while for negative C = −4, the approach to the steady value is
much less oscillatory. For ∆, C of the same (opposite) sign the results are the same as
the full (dotted) lines.The steady state value is less reduced for C = 4 compared with
negative C = −4.

(ii) Initial number state , no = 1,Ω′
o = 10.

In the resonance case (∆ = 0) and C = 0, Fig.3a shows that the normalised average
photon number n̄no(τ) has a monotonic behaviour similar to Fig.2a of the vacuum state.
For non-zero positive chirp, n̄no(τ) has a peak around τ = 0 with prominent oscillations
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for τ > 0, while for negative chirping reduced oscillations show only for τ > 0. For
∆ = 4 and C = 0, the profile shown in Fig.3b is a main peak at τ = 0 with two small
symmetrical side peaks. With positive C = 4, the small peak for τ < 0 is flattened while
the peak for τ > 0 switches to a decaying oscillatory pattern. For C = −4, there is
dimensioning two peaks for τ < 0, while for τ > 0 the approach to the long time value is
much less oscillatory, compared with the positive C = 4. For ∆ = −4, the full (C = 4)
and the dotted (C = −4) lines are exchanged.

(iii) Initial coherent state , α = 5, Ω′
o = 10.

For real amplitude (θ = 0) of the coherent parameter α and at exact resonance ∆ = 0,
Fig.4a, shows that the monotonic profile of the normalized average photon number n̄α(τ)
in the case C = 0 turns to asymmetric oscillatory behaviour with respect to τ = 0 for
positive C. For negative C we have the same behaviour but with a lesser amplitude of
oscillations. In the off-resonance case (∆ = 4) and C = 0 the profile shown in Fig.4b
has the shape of ”Mexican hat”. This turns for C = 4 to oscillatory behaviour for τ > 0
and fading oscillation for τ < 0. The opposite behaviour is obtained for C = −4. For
∆ = −4 and C = 0, the profile shown in Fig.4c is an inverted Mexican hat which turns
to asymmetric profile for C = 4 with decaying oscillatory for τ < 0 and much reduced
oscillation for τ > 0 .The behaviour for τ ≶ 0 is reversed for C = −4.

In all the above three initial states of HO, similar signs for (C,∆) leads to a lesser steady value
of n(τ), as compared with opposite signs of (C,∆).

Fig. 2a. Normalised average photon number for n̄o(τ) for the initial vacuum state at ∆′ = 0

and for |C| = 0, 10.

4 TRANSIENT SCATTERED SPECTRUM

Information about the scattered radiation due to the interaction of the HO with the driving pulse is
achieved through the transient spectrum function. This is given by (e.g.[2]),
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Fig. 2b. Same as Fig.2a but for ∆′ = 4 and C = 0,±4.

Fig. 3a. The same as Fig.2a but for n̄no(τ) in the initial number state with
no = 1,Ω′

o = 10, |C| = 0, 10, ∆′ = 0

S(t,D,Γ) = 2Γ

t∫
−∞

dt1

t∫
−∞

dt2e
(−Γ+iD)(t−t1)e(−Γ−iD)(t−t2)⟨Â†(t1)Â(t2)⟩ (11)

where D = ω − ω0 is the frequency mismatch between the frequency (ω) of the instrument
(photon detector) and the HO frequency (ωo), and Γ is the detector’s width. The function ⟨Â†(t1)Â(t2)⟩,
with Â(t) given by (4) and (5), is the auto-correlation function for the shift (creation and annihilation)
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Fig. 3b. Same as Fig.2b but for the initial number state no and for ∆′ = 4, C = 0,±4

Fig. 4a. Same as Fig.2a but for n̄α(τ) in the initial coherent state with θ = 0, α = 5,Ω′
o = 10

operators. From (4) and its conjugated, we have

⟨Â†(t1)Â(t2)⟩ = ⟨â†(to)â(to)⟩+Ω2
oI

∗(t1)I(t2)− iΩo⟨â†(to)I(t2)⟩+ iΩo⟨â(to)I∗(t1)⟩ (12)

Where I(t) is given by (8).
Inserting (12) into (11), we have the following form for the spectrum,

S(t,D,Γ) = 2Γe−2Γt[n(to)|J1(t)|2 +Ω2
o|J2(t)|2 − 2ΩoIm(ā(0)J∗

1 (t)J2(t))] (13)
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Fig. 4b. Same as Fig.4a but with ∆′ = 4, C = 0,±4

Fig. 4c. Same as Fig.4a but with ∆′ = −4, C = 0,±4

where, n̄(to) = ⟨a†(to)a(to)⟩, ā(to) = ⟨â(to)⟩, and the quantities J1,2(t) are given by,

J1(t) =

t∫
−∞

e(Γ−iD)t′dt′ =
e(Γ−iD)t

Γ− iD
. (14a)

J2(t) =

t∫
−∞

e(Γ1−iD)t′I∗(t′)dt′ (14b)

=
τo
2

√
π

a∗ e
b2

a∗

t∫
−∞

(erf(
√
a
t′

τo
+

b√
a
) + 1e−(Γ−iD)t′dt′

=
τo
√
π

2
√
a∗

e
b2

a∗ (A1(t)− J1(t)) (15a)
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Where,

(15b)

With, d =
Γ− iD

C1
, C1,2, a, b are given below eq.(8b).

Effect of pulse shape, through I∗(t) in J2(t), is shown in the last two terms in (13), While the first term
is only associated with the initial average photon number, n̄(to), of the HO.
We consider the three cases of initial conditions of the HO.

(a) The HO is initially in the zero (vacuum) number state |0⟩, n̄(to) = 0, ā(to) = 0 , so (13) is
reduced to,

So(t,D,Γ) = 2ΓΩ2
oe

−2Γt|J2(t)|2 (16a)

(b) The HO is initially in the number state |n⟩(n ̸= 0),
n̄(to) = no, ā(to) = 0, and (13) is reduced to ,

Sno(t,D,Γ) = 2Γe−2Γt(no|J1(t)|2 +Ω2
o|J2(t)|2) (16b)

(c) The HO is initially in the coherent state |α⟩, n̄(to) = |α|2, ā(to) = α, and (13) is of the general
form,

Sα(t,D,Γ) = 2Γe−2Γt[|α|2|1(t)|2 +Ω2
o|J2(t)|2 − 2ΩoIm(αJ∗

1 (t)J2(t))] (16c)

The computational plots of the normalised spectra So,no,α(D
′) =

So,no,α(t,D,Γ)

max(S(t,D,Γ))
, eqs(16), are

shown in the following Figs. (5-7).

Fig. 5a. The normalised spectrum So(D
′) in the initial vacuum state for

τ = 0.7π, τ ′
o = 0.4, c = 0 and different ∆′ = 0, 9, 15
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Fig. 5b. Same as Fig.5a but for C = 1,−1.

Fig. 6. The normalised spectrum Sno(D
′) in the initial number state for

τ = 0.1π, τ ′
o = 1, |C| = 5, no = 1,Ω′ = 10 and different ∆′ = 0, 9, 15

(i) Initial vacuum state

For observation time τ = 0.7π and for
pulse 1

2
-width τ ′

o = 0.4, C = 0 and
increasing detuning ∆′ = 0, 9, 15, the
normalised spectrum So(D

′) in Fig. 5a
shows that the symmetric single peak
at D′ = 0 has asymmetric structure,
which, with larger ∆′ it develops to a

broader peak at D′ ≃ ∆′. For non-
zero |C| = 1 and for larger ∆′ =
15, Fig. 5b shows that the central
Lorenzian at D′ = 0 is accompanied with
enhanced oscillation of larger amplitude
for positive C, compared with negative
C.These oscillations disappear for larger
|C| = 3.
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Fig. 7. The normalised spectrum Sα(D
′) in the initial coherent state for

τ = 0.3π, |∆′| = 5, 8, 12, τo = 0.3, α = 1, θ = 0.5π, |C| = 3

(ii) Initial number state

The effect of the initial number state (no =
1) on the normalised spectrum Sno(D

′)
is best seen in Fig.6 for Ωo ≫ no, C =
5. For early observation, τ = 0.1π and
pulse 1

2
-width τ ′

o = 1, the spectrum has a
distorted broader peak and flattened top
to the left (right) of D′ = 0 for C ≷ 0,
respectively. With increased detuning ∆′,
the central Lorentzian structure at D′ = 0
gets narrower with fading oscillations due
to the chirp parameter, C ̸= 0.

(iii) Initial coherent state

For observation time τ ′ = 0.3π and
τ ′
o = 0.3, the normalised spectrum with

the initial coherent state Sα(D
′) in Fig.7

shows that in the off-resonance case
(∆′ ̸= 0) there is an asymmetric hole
burning structure that depends on the sign
of the chirp parameter C.

5 CONCLUSION

The model of a single quantized harmonic
oscillator (HO) coupled with a single chirped
Gaussian laser pulse is examined analytically

and computationally. This concerns:

(i) The average photon number n̄(t) of the
HO (related to its energy), and

(ii) The transient scattered radiation spectrum
S(t,D,Γ).

Exact expressions of n̄(t), S(t,D,Γ) are obtained
in terms of the error function of complex
argument and for arbitrary initial state of the HO.
The system parameters (pulse strength,
frequency detuning, chirp parameter, initial HO
state) induce asymmetry and oscillatory structure
in the spectrum.
Further work may generalise the present model
to the following cases:

(a) A train of chirped Gaussian laser pulses,
where the combined effect of repetition
period between pulses and the chirped
parameter introduce an additional control
parameter,

(b) The case of anharmonic oscillator, as
realised in Josephson device [8], where
available giant non-linearity parameter [9]
may further cause asymmetry in the
scattered spectrum.
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