
*Corresponding author: E-mail: arushdi@yahoo.com, arushdi@kau.edu.sa, arushdi@ieee.org, alirushdi@gmail.com;

Current Journal of Applied Science and Technology

27(3): 1-16, 2018; Article no.CJAST.41481
ISSN: 2457-1024
(Past name: British Journal of Applied Science & Technology, Past ISSN: 2231-0843,
NLM ID: 101664541)

Derivation of All Particular Solutions of a ‘Big’
Boolean Equation with Applications in Digital

Design

Ali Muhammad Rushdi1* and Sultan Sameer Zagzoog1

1
Department of Electrical and Computer Engineering, King Abdulaziz University, P.O.Box 80204,

Jeddah 21589, Saudi Arabia.

Authors’ contributions

This work was carried out in collaboration between the two authors. Author AMR designed the study,
performed the analysis, solved the examples and wrote the manuscript. Author SSZ managed the

literature search and drew the figures. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/CJAST/2018/41481
Editor(s):

(1) Wei Wu, Professor, Department of Applied Mathematics, Dalian University of Technology, China.
Reviewers:

(1) Samuel Asante Gyamerah, Kwame Nkrumah University of Science and Technology, Ghana.
(2) Prashant Kumar, Zeal College of Engineering and Research, India.

Complete Peer review History: http://www.sciencedomain.org/review-history/24676

Received 26th February 2018
Accepted 9

th
 May 2018

Published 18
th

 May 2018

ABSTRACT

This paper considers the problem of solving a system of Boolean equations over a finite (atomic)
Boolean algebra other than the two-valued one. The paper outlines classical and novel direct
methods for deriving the general parametric solution of such a system and for listing all its particular
solutions. A detailed example over B��� is used to illustrate these two methods as well as a third
method that starts by deriving the subsumptive solution first. The example demonstrates how the
consistency condition forces a collapse of the underlying Boolean algebra to a subalgebra, and also
how to list a huge number of particular solutions in a very compact space. Subsequently, the paper
proposes some potential applications for the techniques of Boolean-equation solving. These
techniques are very promising as useful extensions of classical techniques based on two-valued
Boolean algebra.

Original Research Article

Rushdi and Zagzoog; CJAST, 27(3): 1-16, 2018; Article no.CJAST.41481

2

Keywords: Big Boolean algebra; parametric solution; listing of particular solutions; digital design;
direct and inverse arithmetic; integer factorization; Diophantine equations.

1. INTRODUCTION

A prominent “misnomer” in mathematical and
engineering circles is the term ‘Boolean algebra’.
This term is widely used to refer to
switching algebra, which is just one particular
case of a ‘Boolean algebra’ that has 0
generators, 1 atom and two elements belonging
to B� = {0,1}. The term ‘Boolean algebra’ refers
to an algebra of a finite or infinite cardinality [1-3].
The term ‘finite Boolean algebra’ covers, in
fact, a countably infinite number of atomic
algebras described by natural numbers � (� ≥
0) , such that an algebra has n generators,

N = 2� atoms, and 2� = 2�
�

 elements. The
inadvertent use of the general term
Boolean algebra to refer to its particular case of a
switching algebra B� leads to many
problems and misconceptions, since the
switching algebra is much simpler than a
generalized finite (atomic) Boolean algebra.
Therefore, many authors [4-14] started to label a
finite Boolean algebra other than B� (i.e., one
with n generators (� > 0)) as a “big” Boolean
algebra. Table 1 (which originally appeared in
[14]) lists some finite Boolean algebras
specifying the numbers of generators, atoms and
elements for each algebra. It is clear from the
table that there is a finite Boolean algebra
for every nonnegative integer, and that �� is just
the smallest and simplest member among an
infinite multitude of finite (atomic) Boolean
algebras.

Any system of ‘big’ Boolean equations can be
reduced to a single Boolean equation {�(�)= 1}
or {�(̅�)= 0} [4,5]. The main types of solutions
of such a Boolean equation are the general
solutions, (which could be subsumptive or
parametric) and the particular solutions. The
reader is referred to a plethora of modern texts
and recent papers [2-18] to understand the
meaning of these types and get acquainted with
their interrelationships and derivation methods.
An exclusive enumeration of particular solutions
is obtained from any of the two types of general
solutions via an expansion tree. The number of
children nodes for any parent node is equal to

the number 2� = 2�
�

 of elements of the
underlying Boolean algebra, possibly divided by
a number of the form 2�,� = 0,1,… ,N [7]. In
particular, in the conventional method for
producing a general parametric solution, the

number of parameters used is minimized
[4,5,14] producing compact algebraic solutions
with parameters belonging to the
underlying Boolean algebra. Contrarily to this
convention, Rushdi and Ahmad [10,12,16]
proposed a novel method for producing a
general parametric solution that does not
attempt to minimize the number of parameters
used, but instead used independent parameters
belonging to the two-valued Boolean algebra B2
for each asserted atom that appears in the
discriminants of the function �(�) . The
parametric solution obtained sacrifices minimality
of parameters and algebraic expressions for
ease, compactness and efficiency in listing all
particular solutions. These solutions are given by
permutative additive formulas expressing a
weighted sum of asserted atoms of �(�), with
the weight of every atom (called its contribution)
having a number of alternative possible values
equal to the number of appearances of the atom
in the discriminants of �(�). These alternatives
are based on a set of orthonormal tags, and
hence could be listed in a rectangle divided into
disjoint cells. This rectangle resembles a
Karnaugh map, and is, in fact, a Karnaugh map,
possibly with some adjacent cells combined. The
representation suggested allows the possibility of
listing a huge number of particular solutions
within a very small space. The reason of this
possibility is that an arbitrarily-selected
contribution of a particular atom can be
combined with any of the possible contributions
of each of the other atoms. The combination via
the additive (ORing) operation is simple and
straightforward.

The organization of the remainder of this paper is
as follows. Section 2 reviews the conventional
and novel direct methods for deriving a general
parametric solution and listing all particular
solutions for a system of Boolean equations.
Section 3 presents a detailed illustrative example
in which a general parametric solution is
obtained via three methods, which are (a) a
direct compact solution, (b) a compact solution
obtained indirectly via a subsumptive solution,
and (c) a direct permutative additive solution
leading to compact listing of all particular
solutions. Section 4 proposes a set of possible
applications in digital design which entail direct
and inverse arithmetic operations. Section 5
concludes the paper.

Rushdi and Zagzoog; CJAST, 27(3): 1-16, 2018; Article no.CJAST.41481

3

a� ∨ b� ∨ c�

b� ∨ c�

a� ∨ c�

c�

�(X,Y)

Fig. 1. The natural map (VEKM) for the function g(X,Y) equated to 1 in equation (29)

a�b�c� ∨
a�b�c ∨
a�bc� ∨
a�bc ∨
ab�c� ∨
ab�c ∨
abc�

a�b�c� ∨
a�b�c ∨
a�bc� ∨

ab�c� ∨
ab�c ∨
abc�

a�b�c� ∨
a�b�c ∨
a�bc� ∨
a�bc ∨
ab�c� ∨

abc�

a�b�c� ∨

a�bc� ∨

ab�c� ∨

abc�

�(X,Y)

Fig. 2. The natural map of Fig. 1 redrawn with entries written as minterm expansions, or

equivalently as disjunctions of atoms of ��(�,�,�)

a�b�c�
��= 4

a�bc�
��= 4

abc�
��= 4

ab�c�
��= 4

a�b�c
��= 3

a�bc
��= 2

abc
��= 0

ab�c
��= 2

Fig. 3. Karnaugh-map listing of the number of appearances ��(� ≤ �� ≤ �) of each of the eight

atoms � of ��(�,�,�) in the four cells of the map in Fig. 1

X

Y

0

1

2

3

6

7

4

5
c

a

b

Y

X

Rushdi and Zagzoog; CJAST, 27(3): 1-16, 2018; Article no.CJAST.41481

4

The lattice of B16, collapsed under the
condition ab = 0 so as to represent B8

A hypercube lattice indicating the partial
ordering among the 16 elements of B16

Fig. 4. Visualization of the concept of algebra collapse (the hypercube ��� collapses to a cube
�� when one of its four atoms (here ��) is nullified

a�b�c ∨ a�bc ∨ ab�c ∨ c�

a�b�c ∨ ab�c ∨ c�

a�b�c ∨ a�bc ∨ c�

c�

�(X,Y)

Fig. 5. The natural map in Fig. 2 with the four atoms ���̅�̅,����̅,��̅�̅ and ���̅ combined as �̅. Such
a combination is equivalent to using the same set of orthonormal tags {����, ���, ���, ��}

individually in the same way with instances of each of these atoms or collectively with their
total disjunction �̅

a�b�c (��� ∨̅ ��) ∨
a�bc (� ∨ �)̅ ∨
ab�c (��∨ �) ∨
 c� (���)̅ ∨
 �(abc)

a�b�c (��)̅ ∨
ab�c (��)̅ ∨
 c� (��)̅ ∨
 �(abc)

a�b�c (���) ∨
a�bc (���) ∨
 c� (���) ∨
 �(abc)

c� (��) ∨
 �(abc)

G�(X,Y; a,b,c; �,�)

Fig. 6. The auxiliary function �� with instances of each atom tagged by members of an

orthonormal set. Common parameters are used for different atoms

X

Y

X

Y

Rushdi and Zagzoog; CJAST, 27(3): 1-16, 2018; Article no.CJAST.41481

5

a� ∨ b� ∨ c� b� ∨ c�

�(X,0)

abc bc

�(̅X,0)

a� ∨ c� c�

 �(X,1)

d(abc) d(bc)

�� = �(̅X,0)�(X,1)∨ d��(̅X,0)�= 0

a� ∨ c�
∨ d(abc)

c�
∨ d(bc)

�� = �(X,1)∨ d��(̅X,0)�= c�∨ a�X�

a� ∨ b� ∨ c� b� ∨ c�

��(�)= �(X,0) ∨ �(X,1)= 0

a� ∨ b� ∨ c�

��(0)

abc

�����(0)

b� ∨ c�

��(1)

X

X

X

X

X

X

Rushdi and Zagzoog; CJAST, 27(3): 1-16, 2018; Article no.CJAST.41481

6

d(abc)

�� = �����(0) ��(1)∨ d������(0)�= 0

b�∨ c� ∨ d(abc)

�� = ��(1)∨ d������(0)�= b�∨ c�

a�∨ b�∨ c�

�� = ��(0)∨ ��(1)= 1

Fig. 7. Various VEKMs used in the derivation of the most compact subsumptive solution of (29)

a�b�c� p��p�� ∨
a�b�c p�p�� ∨
a�bc� p��p� ∨
a�bc p�� ∨
ab�c� p��p�� ∨
ab�c p��� ∨

abc� p���p��� ∨
 �(abc)

a�b�c� p�p�� ∨
a�b�c p��p�� ∨
a�bc� p�p�� ∨

ab�c� p�p�� ∨
ab�c p�� ∨

abc� p��p��� ∨
 �(abc)

a�b�c� p��p� ∨
a�b�c p� ∨
a�bc� p��p� ∨
a�bc p� ∨
ab�c� p��p� ∨

abc� p���p�� ∨

 �(abc)

a�b�c� p�p� ∨

a�bc� p�p� ∨

ab�c� p�p� ∨

abc� p��p�� ∨

 �(abc)

G�(X,Y; a,b,c; p)

Fig. 8. The auxiliary function �� with instances of each atom tagged by members of an
orthonormal set. Independent parameters are used for different atoms, and hence combining

the four �̅ atoms does not work any more

X

Y

Rushdi and Zagzoog; CJAST, 27(3): 1-16, 2018; Article no.CJAST.41481

7

�
X
Y
 � = a�b�c�

 �

0
0
 � �

1
0
 �

 �
0
1
 � �

1
1
 �

 ∨ a�b�c

 �

1
0
 �

�
0
1
 �

 �
0
0
 �

 ∨ a�bc�

 �

0
0
 � �

1
0
 �

 �
0
1
 � �

1
1
 �

 ∨ a�bc

 �

0
0
 �

 �
0
1
 �

 ∨ ab�c�

 �

0
0
 � �

1
0
 �

 �
0
1
 � �

1
1
 �

 ∨ ab�c

 �

0
0
 �

 �
1
0
 �

 ∨ abc�

 �

0
0
 � �

1
0
 �

 �
0
1
 � �

1
1
 �

 ∨ abc

�
d
d
 �

Fig. 9. A permutative additive formula listing all the 3072 particular solutions of Equation (29)

2. DIRECT METHODS FOR

CONSTRUCTING PARAMETRIC
SOLUTIONS

2.1 Reduction of a System of Boolean
Equations into a Single Equation

Consider a system of � Boolean equations of the
form

�(�,�,�)= �(�,�,�) (1)

Here, the vectors �,�,�,�,and � belong to
B�
�,B�

�,B�
�,B�

� ,and B�
� , respectively. The input

arguments in (1) are partitioned into inputs �
(typically controllable), outputs � (typically
observable), and intermediate variables �
(frequently neither controllable nor observable,
and hence need to be dispensed with in same
way). The system (1) can be expanded into
scalar equations of the form

��(�,�,�)= �� (�,�,�), 1 ≤ � ≤ �, (2)

where occasionally we might have �� = 0 or
�� = 1. The system (1) of equations is exactly
equivalent to a single Boolean equation of the
form

ℎ(�,�,�)= 1 , (3)

Or

�(�,�,�)= 0 , (4)

Where

ℎ(�,�,�) ≡ ∧���
� (�� ⊙ ��), (5)

and

�(�,�,�)= ℎ�(�,�,�) ≡ ∨���
� (�� ⊕ ��). (6)

p�

p�

p�

p�

p�
p�

p�

p�

p�

p��

p��

p��

Rushdi and Zagzoog; CJAST, 27(3): 1-16, 2018; Article no.CJAST.41481

8

The symbols ∧ ,∨,⊕, and ⊙ in Equations (5)
and (6) depict the AND operator, the OR
operator, the XOR (Exclusive-OR) operator and
the XNOR (coincidence or equivalence) operator,
respectively.

2.2 Suppression of Intermediate

(undesirable) Variables

This subsection offers a means to dispense
with the undesirable variables �. This means is
called "suppression" rather than "elimination"
since the latter term is reserved for another
technical meaning [4]. The resultant
of suppression of the intermediate variables
� from the Boolean equation (4) (called the
parent equation) is the derived Boolean equation
[17].

�(�,�)= 0 , (7)

Where

�(�,�) ≡ ∨� ∈ {�,�}� �(�,�,�) . (8)

The solutions of the derived equation (7) are
exactly those of the parent equation (4) that do
not involve the suppressed variables � [17].
Dually, if equation (3) is used as a parent
equation, then the resultant of suppression of the
variables � is now the derived Boolean equation
[12].

�(�,�)= 1 , (9)

Where

�(�,�) ≡ ∧� ∈ {�,�}� ℎ(�,�,�) . (10)

and the solutions of the derived equation (9) are
exactly those of the parent equation (3) that do
not involve the suppressed variables � [12].

2.3 Algebraic Construction of Parametric

Solutions

We seek solutions of the Boolean equation (9)
where �(�,�): ��

��� → �� , is a two-valued
Boolean function of � two-valued variables
� = [�� �� ... ��]

� and � two-valued variables
� = [�� �� ... ��]

�. However, we do not need a
listing of binary solutions for � and � , but
instead we want to express � in terms of �. We
view �(�,�) as �(�;�) or simply �(�) and
rewrite (9) as

�(�)= 1, (11)

where �(�): �

��
� → ��� , and ��� is the free

Boolean algebra ��(��,�� … … .��) with �
generators (namely, ��, ��,…, ��), � = 2� atoms

and 2� = 2�
�

 elements. Now we express �(�)
by its Minterm Canonical Form (MCF), or
Minterm Expansion [4, 12]

�(�) ≡ ∨� ∈ {�,�}� �(�) �

� . (12)

For

� = [�� �� ... ��]

� ∈ �
��
� ,

� = [�� �� ... ��]
� ∈ {0,1}� , the symbol �� is

defined as

�� = ��

�� ��
�� ... ��

�� , (13)

Where

��
�� = �� ⊙ �� = �

��� , �ℎ�� �� = 0
�� , �ℎ�� �� = 1

� (14)

For � ∈ {0,1}� , the symbol �� spans the
minterms of � , which are the 2� elementary or
primitive products

 ����� �����… ���������� �����, ����� �����… ���������� ��, ,
 �� �� … ���� ��. (15)

The constant values �(�) in equation (7)
are elements of ��� called the discriminants of
�(�). These discriminants are the entries of
the natural map (VEKM) of �(�) which has
an input domain {0,1}� �

��
� . The Boolean

algebra ��� = ��(��,�� … … .��) has generators
�� (1 ≤ � ≤ �) which look like variables.
We now observe that the minterms of � ,
which are the 2� = � elementary or primitive
products

X���� X����… X��������� X����, X���� X����… X��������� X�, . . . ,
X� X� … X��� X�, (16)

are exactly the atoms of the underlying Boolean
algebra, to be called �� (0 ≤ � ≤ (� − 1)). The
function �(�) is given by

�(�) = ∨���

��� (��(�)∧ ��), (17)

where the symbol ��(�) denotes an indicator of
the event that atom �� appears in the expression
of �(�), i.e., namely, Note that if a specific atom

Rushdi and Zagzoog; CJAST, 27(3): 1-16, 2018; Article no.CJAST.41481

9

�� dose not appear in �(�), then ��(�)= �(�)/ ��
is necessarily 0 since �(�) is a disjunction of
atoms that are all orthogonal to �� . Atom ��
appears in the cell � of the natural map for �(�).

 ��(�)= �
1, �� �� → �(�)

0,��ℎ������
� = �(�)/�� (18)

where the symbol (� / �) = (�)��� denotes the
Boolean quotient of � by � [4,9]. Now, we define
�� (0 ≤ �� ≤ 2�) as the total number of actual
appearances of �� in the expression (17) for
�(�), i.e.,

�� = ∑ ��(�)� ∈ {�,�}� . (19)

The total number �������������� of unconditional
particular solutions of (9) over ��� (as it is) is
given by

�������������� = ∏ ��
���
��� . (20)

This number is zero if some �� = 0. To avoid
such a situation, we require the consistency
condition that all atoms �� such that �� = 0 must
be forbidden or nullified. This means that the
underlying Boolean algebra loses these atoms
and hence collapses to one of its strict
subalgebras. The number of solutions over this
reduced Boolean algebra is

������������ = ∏ ��
���
���
����

. (21)

Now we introduce a set of parameters �� (0 ≤
 � ≤ (� − 1),�� ≠ 0) to construct an
orthonormal set of tags to attach to instances of
appearances of the asserted atom �� in the
discriminants �(�). The number of parameters
for atom �� (the length of vector ��) is given by

�(��)= ⌈�log� ��⌉�, 0 ≤ � ≤ (� − 1) ,
�� ≠ 0. (22)

The parameters �� can be used to generate a set
of �� ≤ 2�(��) orthonormal tags { ��,�� ... ���} ,

such that

�� ∨ �� ∨ ...∨ ��� = 1, (23)

��� ∧ ��� = 0 " ��,�� ∈ { 1,2,...,��}. (24)

When �� = 2�(��) the set of orthonormal tags can
be visualized as the products of cells in a
Karnaugh map whose map variables are the

underlying parameters. If 2�(��)�� < �� < 2�(��) ,
some cells of such a map are merged, and the
map reduces to a map-like structure [10,12,16].

When each appearance of an atom �� is tagged
by a particular member of its orthonormal set of
tags, an auxiliary function �(�,��) (0 ≤ � ≤
 �−1, ��≠0 results. The parametric solution is
now given by [5,7,12,13].

�� = ∨{� ∈{�,�}� |�� ��} �(�,��). 1 ≤ � ≤ , (0 ≤ � ≤

 �−1, ��≠0. (25)

The total number � of parameters used in (25) to
construct the tags for all atoms is given by
[10,12,16].

� = ∑ �(��)
�
��� = ∑ ⌈�log�(��)⌉�

�
��� . (26)

The conventional method is to select the
parameter vectors from a shared pool of
parameters so as to minimize the number of
parameters used. This number is now rewritten
as �� given by [10,12,14].

�� = max
�

 �(��)= max
�

⌈�log� ��⌉� = ��log� (max
�

��)��.

(27)

However, parameters used must then belong to
the underlying Boolean algebra (possibly
collapsed due to the consistency condition). We
now propose to use independent parameters ��
for each atom �� (0 ≤ � ≤ � − 1,�� ≠ 0). The
expressions (25) will not be as compact as they
are in the conventional case, but the independent
parameters �� now belong to the two-valued
Boolean algebra �� [5,7], a fact that
facilitates the generation of all particular solutions
as has been documented by Rushdi &
Ahmad [10,12,14] and as will be seen in the next
section.

3. ILLUSTRATIVE EXAMPLE

The problem studied in this section is taken from
an old text on Boolean algebra [19] that supplied
a general parametric "solution" via a non-
constructive theorem-proof technique. However,
this alleged solution fails to satisfy the equation it
is intended to solve.

Consider the Boolean function

�(X,Y)= c(a∨ x)(b ∨ y) (28)

where = B���
� → B��� , and B��� = FB(a,b,c). A

solution of the equation {� = 0} expresses the
dependent variables X and Y in terms of the

Rushdi and Zagzoog; CJAST, 27(3): 1-16, 2018; Article no.CJAST.41481

10

independent “ variables” a, b and c which are
treated herein as generators of the underlying
Boolean algebra. We complement the function �
to obtain � = � ̅so as to solve the equivalent
equation

�(X,Y)= c�∨ a�X� ∨ b�Y� = 1 (29)

Where � = B���

� → B��� . In the next three
subsections, we offer three solutions of (29).
These are a conventional parametric solution
obtained directly, a conventional parametric
solution obtained via a subsumptive one, and a
permutative additive parametric solution.

3.1 A Conventional Parametric Solution
Obtained Directly

The Boole-Shannon expansion of � w. r. t. its
two arguments X and Y is

�(X,Y)= �a�∨ b�∨ c��X� Y� ∨ (a�∨ c�)X� Y ∨

�b�∨ c��X Y� ∨ (c�)X Y (30)

and hence its natural map (variable-entered
Karnaugh map (VEKM)) is as shown in Fig. 1.
Each of the entries of this map is a function of
the “entered variables” or generators a,b and c
and is a disjunction of some of the eight atoms of
FB(a,b,c) as shown in Fig. 2. The numbers of
appearances of these atoms in the cells of the
map of Fig. 2 are listed in Fig. 3, which
immediately shows that:

1. The atom abc does not appear at all in any of
the cells of the map in Fig. 2. This means that
this atom must be nullified, i.e., the consistency
condition of equation (29) is

abc = 0 (31)

When the Boolean algebra B��� = FB(a,b,c)
loses its abc atom, it collapses into a subalgebra
of 7 atoms only, i.e., it collapses to B��� . The
sizes of B��� and B��� are too large to be
amenable to visualization. However, to give the
reader a glimpse of the meaning of algebra
collapse, we present in Fig. 4 a hypercube lattice
representing B��, and then represent its collapse
to B� when it loses the �� atom.

2. The number of particular solutions of (29) is
the product of the numbers of appearances of
asserted atoms in Fig. 2, namely

N���������� = 2� ∗ 3� ∗ 4� = 3072 (32)

The minimum number of parameters � needed
for a parametric solution of (29) is

� = ⌈ log� 4⌉ = 2 (33)

In fact, this number is expected to be less than or
equal to the number of variables involved [4],
which is � = 2 herein.

To facilitate obtaining a parametric solution with
a minimum number of parameters, we note that
each of four atoms a�b�c�, a�bc�, ab�c, and abc� is
omnipresent in the map of Fig. 2, and might be
combined into c�, as shown in Fig. 5. Note that
such a combination is permissible since it is
equivalent to using the same set of orthonormal
tags individually in the same way with instances
of each of these atoms or collectively with their
total disjunction c�. In Fig. 6, we construct an
auxiliary function G�(X,Y; a,b,c; �,�), where we
attach tags from the orthonormal set
{���,̅���,��,̅��} to the term c� (that has 4
appearances), attach tags from the orthonormal
set {(��� ∨̅ ��),���,��}̅ to the atom a�b�c (that has 3
appearances), and attach tags from the
orthonormal set {(��∨ �),��}̅ to atom ab�c (that
has 2 appearances). We have chosen the
orthonormal sets above with an eye on getting
the most compact solution. In fact, we do not
care about how cumbersome the entries in the
X� Y� -cell are, since they do not affect the final
solution. However, we have only a single tag per
each of the other three cells, namely tag ��� in
the X�Y-cell, tag �� ̅in the XY�-cell, and tag �� in
the XY-cell. We might add the nullified atom abc
don’t-care in each of the cells of Fig. 5. Our final
solution is

X = �a�b�c∨ ab�c∨ c���� ∨̅ c��� ∨ d(abc) (33a)

Y = �a�b�c∨ a�bc∨ c����� ∨ c��� ∨ d(abc) (33b)

These formulas might be simplified by ignoring
the don’t-care parts and involving the reflection
law to obtain

X = �(b�c� ∨̅ c�(� ∨̅ �))= �(b�� ∨̅ c�) (34a)

Y = �(b�c��∨ c�(��∨ �))= �(a���∨ c�) (34b)

Substitution of the solution (34) in (28) yields

�(X,Y)= c�a∨ �b�� ∨̅ �c��(b ∨ �a���∨ �c�)

= abc= 0 (35)

while its substitution in (29) yields

Rushdi and Zagzoog; CJAST, 27(3): 1-16, 2018; Article no.CJAST.41481

11

�(X,Y)= c�∨ a�(��∨ (b ∨ �)c)∨ b�(� ∨̅ (a∨ �)c)
= c�∨ a���∨ a�b ∨ a�� ∨ b�� ∨̅ ab�∨ b��(��∨ (b ∨ �)c)
 = a�∨ b�∨ c�= 1 (36)

where the consensus a�b� of a��� and b�� is added to
the second line in (36), and then combined with
(a�b ∨ ab�) to produce (a�∨ b�) which then absorbs
(a���∨ a�� ∨ b�� ∨̅ b��) . The results of the
aforementioned substitution verify the solution
and partially explains why the consistency
condition is needed.

3.2 A Conventional Parametric Solution
Obtained Via a Subsumptive Solution

In this subsection, we utilize Variable-Entered
Karnaugh Maps (VEKMs) to derive a general
subsumptive solution for (29) in the most
compact form. Fig. 7 presents the VEKMs used
to obtain such a solution according to the method
in [18,20]. The final result obtained is

0 ≤ Y ≤ c�∨ a� X� (37a)

0 ≤ X ≤ b�∨ c� (37b)

Subject to the consistency solution

a�∨ b�∨ c�= 1 (37c)

Note that this consistency condition is equivalent
to the one in (31), being the result of
complementing both sides in it.

We can convert the subsumptive solution (37)
into a parametric one, namely

X = u(b�∨ c�) (38a)

Y = v(c�∨ ��X�) = v(c�∨ a���∨ a�bc)
= v(c�∨ a���∨ a�b) (38b)

Substituting this solution into (28), one obtains

�(X,Y)= c�a∨ �b�∨ �c��(b ∨ �c�∨ �a���∨

�ab=abc=0 (39)

This solution is not symmetric like the one in
(34). Hence, it can be used to generate a third
solution, via.,

Y = v(a�∨ c�) (40a)
X = u(c�∨ ��Y�) = u(c�∨ b�v�∨ ab�)
= v(c�∨ a���∨ a�b) (40b)

Though the solutions (38) and (40) are not
symmetric like the one in (34), they enjoy the

advantage that in each of them one variable is
dependent on a single parameter rather than the
two parameters.

3.3 A Permutative Additive Parametric
Solution

Despite the elegance, compactness, and
symmetry of the solutions in (34), (38) or (40),
they are not readily useful for producing a list of
all particular solutions, since each of the two
parameters � and � should be assigned an
independent value that equals a specific element
in B���. The expansion tree used for this purpose
should explore all 128× 128 = 16384
combinations of (� , �) values, and will finally
settle on 3072 solutions. Our alternative method
to avoid the use of such an expansion tree is to
use independent parameters for each individual
atom, as shown in Fig. 8. The number of
parameters used increases dramatically from 2
to 12, and though a detailed algebraic solution
will be cumbersome when compared with the
earlier solutions in (34), (38) or (40), it is
nevertheless a permutative additive formula that
lists all 3072 particular solutions of equation (29).
This formula is given concisely in Fig. 9. To
obtain the value for the vector [X Y]� , one
chooses any of the possible values associated
with each atom. Two examples of the particular
solutions (subject to the condition abc= 0) are

�
X
Y
 � = a�b�c��

0
0
 � ∨ a�b�c�

0
0
 � ∨ a�bc��

0
0
 � ∨ a�bc�

0
0
 � ∨

ab�c��
0
0
 � ∨ ab�c�

0
0
 � ∨ abc��

0
0
 � ∨ abc�

0
0
 � = �

0
0
 �

(41)

�
X
Y
 � = a�b�c��

0
1
 � ∨ a�b�c�

0
1
 � ∨ a�bc��

0
1
 � ∨ a�bc�

0
1
 � ∨

ab�c��
1
0
 � ∨ ab�c�

1
0
 � ∨ abc��

1
0
 � ∨ abc�

1
0
 � = �

a
a�
 �

(42)

Note that any of the particular solutions if
substituted in (28) reduces it to {abc= 0}, and if
substituted in (29) reduces it to {a�∨ b�∨ c�= 1}.

4. PROPOSED APPLICATIONS IN
DIGITAL DESIGN

The conventional realm of combinational digital
design is the domain of propositional logic or
two-valued Boolean algebra. This domain can be
(and has been) extended through the use of
sequential circuits, evolvable hardware, first-
order predicate logic, big Boolean algebras, etc.
We will now discuss a few possibilities for the
use of big Boolean algebras in digital design.

Rushdi and Zagzoog; CJAST, 27(3): 1-16, 2018; Article no.CJAST.41481

12

We arbitrarily restrict our discussion here to the
design of basic arithmetic circuits (Addition,
Subtraction, Multiplication, and Division).
However, we note that the subtraction (�� − ��)
can be implemented as the addition (�� +
(−��)) through the use of any number system
that covers both positive and negative numbers
(such as the sign-magnitude system, the once-
complements system, or (preferably) the twos-
complements system) [21-25]. Therefore, we will
not elaborate any more on subtraction since it is
simply a form of addition. Similarly we do not
consider division since it can be implemented via
repeated multiplication. Since we are interested
in both direct and inverse problems, we need to
consider each of the following four cases:

4.1 Direct Addition

In direct addition, we consider a problem of the
form

� = �� + �� (43)

in which the two � -bit numbers �� and �� are
added to produce the � -bit number � (where
� = (� + 1)). Typically, (43) is implemented via
full-adder modules or stages (0 ≤ � ≤ (� − 1)),
which obtain (with Y�� = 0,Z��� = Y�)

Z� = ���(X��,X��,Y���)= X�� ⊕ X�� ⊕ Y��� (44a)

Y� = �����(X��,X��,Y���)
= X��X�� ∨ X��Y��� ∨ X��Y��� (44b)

Here, an intermediate variable Y� is called the
carry-out for stage � and also the carry-in for
stage (� + 1). Full design of the required adder
circuit requires combining all the 2� conditions in
(44a) and (44b) into a single equation of the form
(3) and then suppressing the undesirable
intermediate variables � to obtain an equation of
the form (9).

4.2 Inverse Addition

By inverse addition, we mean solving the
Diophantine Equation [26-31].

� = �� + ��, �� ≥ �,�� ≥ � (45)

for the two �-bit integers �� and �� given the �-bit
integer � (where � = �). Each of �� and �� is a
nonnegative integer less than or equal to � (and
hence definitely less than 2�). The integers
�� and �� are usually called the additive

components of � . There are exactly � + 1
solutions to (45), which can be obtained by
arbitrarily assigning one of � + 1 values to
�� (0 ≤ �� ≤ �) , and then performing the
subtraction (� − ��) to obtain ��. This procedure
might be extended to obtain hardware solvers for
more general Diophantine equations.

4.3 Direct Multiplication

In direct multiplication, it is desired to multiply two
� -bit integers �� and �� to produce an � -bit
integer � (where n = 2k), namely

� = �� ∗ �� (46)

Typically, this operation is achieved via repeated
addition. However, it might be implemented
directly via Boolean-equation solving.

4.4 Inverse Multiplication

By inverse multiplication, we mean factorizing a
�-bit positive integer � into two positive integers
�� and �� of sizes �� bits and �� bits,
respectively. Hence, these two integers must
satisfy

� = �� ∗ ��, �� > 0,�� > 0 (47)

The aforementioned problem of Inverse
Factorization is of fundamental importance in
many serious applications, the most prominent
among which is cryptography [32-38].

First, we consider � to be of an even bit size, say
2n bits, where n is a positive integer. To avoid
factoring � trivially into a product of itself with 1,
we impose the restrictions (�� > 1) and (�� > 1).
To avoid duplicate factorizations due to
commutativity (�� ∗ �� = �� ∗ ��), we impose the
additional restriction (�� ≥ ��). Since �� can be
as small as the integer 2, the integer �� can be
as large as (� 2⁄), and hence might occupy up to
 (2� − 1) bits. Since (�� ≥ ��), the number �

should satisfy (� ≥ ��
�), and hence �� might

occupy up to n bits. The sizes of the integers �,
��, and �� are therefore 2�, (2� − 1), and � bits,
respectively. Using similar reasoning, we can
show that if X has an odd bit size of (2� − 1) bits
say, then �� and �� are of bit sizes (2� − 2) and
� respectively. The triple (�, ��, ��) of bit sizes
for (�,��,��) can be either replaced by
(2�,(2� − 1),�) or by ((2� − 1),(2� − 2),�).

We now start with an initial specification of the
problem in the form of an equation

Rushdi and Zagzoog; CJAST, 27(3): 1-16, 2018; Article no.CJAST.41481

13

��(��,��)= 1 (48)

with the function ��: B

����� → B constructed over
the ‘big’ Boolean algebra B = FB(�), i.e., it is the
free Boolean algebra with k generators X. The
function �� is characterized by discriminants
given for a specific value of �� and �� by

��(��,��)= ⋀ (X� ⊙ X�(��,��))��� (49)

Where

X� ⊙ X�(��,��)= X�
��(��,��) (50)

is equal to X� (uncomplemented) if X�(��,��)= 1
and equals X�� (complemented) if X�(��,��)= 0.
To complete the problem specifications, we need
to replace �� by � given by

�(��,��)= ��(��,��) I(�� > 1) I(�� > 1)

 I(�� ≥ ��) I�� ≤ 2� − 1�, (51)

where the symbol I(event) is a Boolean indicator
for that event, i.e., it is 1 if the event occurs and 0
if it does not occur. We have already discussed

the necessity for the requirements (�� > 1) ,
(�� > 1) and (�� ≥ ��) . The extra condition

I�� ≤ 2� − 1� is needed to ensure that X is

properly represented in � -bits. It is
straightforward to note that

I(�� > 1) I(�� ≥ ��)⇒ I(�� > 1) (52)

and hence equation (52) is simplified to

�(��,��)= ��(��,��) I(�� > 1)

 I(�� ≥ ��) I�� ≤ 2� − 1�, (53)

Finally, our design task reduces to finding
solutions of �(��,��)= 1 , where �(��,��) is
given by (53).

We already solved smaller versions of this
problem when � has 3, 4, 5, or 6 bits [11,14]. Our
solutions used comparatively large Karnaugh
maps of up to 8-variable maps and we are
currently investigating the solution of larger
problems via variable-entered Karnaugh maps
[39-44] or via an automated implementation of
the present algorithm.

Table 1. Relating the numbers of generators, atoms, and elements for finite Boolean algebras

No. of
generators

Possible
atoms

Nullified
atoms

Actual atoms No. of elements Comments

0 1 0 1 2 Two-valued
Boolean algebra
B�

1 2 0 2 4 ---

2 4 1 3 8 ---

2 4 0 4 16 ---

3 8 3 5 2� = 32

3 8 2 6 2� = 64

3 8 1 7 2� = 128 ---

3 8 0 8 2� = 256 ---

--- --- --- --- --- ---

4 16 0 16 2�� = 65536
 Problem in

Rushdi and
Zagzoog. [11]

--- --- --- --- --- ---

5 32 0 32 2�� ≈ 4.3 × 10� ---

--- --- --- --- --- ---

6 64 0 64 2�� ≈ 1.8 × 10�� Problem in
Rushdi et al. [14]

--- --- --- --- --- ---

� ≥ 1 2� ϵ [0,2��� − 1] Nϵ [2���

+ 1,2�]
2� General case

Rushdi and Zagzoog; CJAST, 27(3): 1-16, 2018; Article no.CJAST.41481

14

5. CONCLUSIONS

This paper offered several novel contributions.
First it gave full descriptions and demonstrations
of methods to construct parametric solutions and
compactly list particular solutions of ‘big’ Boolean
equations. As an offshoot, the paper explained
the necessity of imposing a consistency condition
and the possible impact of such a condition on
collapsing the underlying Boolean algebra to a
strictly smaller subalgebra. As a result, the paper
set the stage for many useful applications in
digital design of arithmetic computer circuits.

The importance of this paper stems from the fact
that it is a major step towards full utilization of the
mathematics of ‘big’ Boolean algebras and ‘big’
Boolean equation-solving. The paper has two
distinctive major contributions. It gives a detailed
clarifying exposition of modern Boolean
mathematics, and it outlines some of the
potential applications that could rely on such
mathematics. The theoretical development of
Boolean mathematics has gone a very long way
for the past two centuries, with some notable
applications emerging occasionally. As we
observed in [14], “it is clear now that Boolean
mathematics have matured enough to find
significant, diverse, and beneficial applications.”
Most prominent among the expected applications
are those of integer factorization (a core step in
cryptanalysis) as well as the solution of general
Diophantine Equations.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFRENCES

1. Koppelberg S, Monk JD, Bonnet

R. Handbook of Boolean Algebras.
Amsterdam: North-Holland. 1989;384.

2. Mendelson E. Boolean algebra and
switching circuits. Schaum’s Outline
Series, McGraw-Hill; 1970.

3. Givant S, Halmos P. Introduction to
boolean algebras. Springer Science &
Business Media; 2008.

4. Brown FM. Boolean reasoning: The logic
of boolean equations. Kluwer Academic
Publishers, Boston, USA; 1990.

5. Brown FM. Boolean reasoning: The
logic of boolean equations, 2nd Ed.
Dover Publications, Mineola, NY, USA;
2003.

6. Rushdi AM, Amashah MH.
Parametric general solutions of Boolean
equations via variable-entered Karnaugh
maps. Journal of Qassim University:
Engineering and Computer Sciences.
2010;3(1):59-71.

7. Rushdi AM, Amashah MH. Using variable–
entered Karnaugh maps to produce
compact parametric general solutions of
Boolean equations. International Journal of
Computer Mathematics.
2011;88(15):3136-3149.

8. Rushdi AM, Amashah MH. Purely-
algebraic versus VEKM methods for
solving big Boolean equations. Journal of
King Abdulaziz University: Engineering
Sciences. 2012;23(2):75-85.

9. Rushdi AMA, Al-Qwasmi MA. Formal
derivation of a particular input of a single
and (or) gate in terms of its output and
other inputs. Journal of King Abdulaziz
University: Engineering Sciences. 2015;
26(2):51-64.

10. Rushdi AMA, Ahmad W. Satisfiability in
‘big’ Boolean algebras via Boolean-
equation solving. Journal of King Abdulaziz
University: Engineering Sciences. 2016;
28(1):3-18.

11. Rushdi AMA, Zagzoog SS. Design of a
digital circuit for integer factorization via
solving the inverse problem of logic.
Journal of Advances in Mathematics and
Computer Science. 2018;26(3):1-14.

12. Rushdi AMA, Ahmad W. Digital circuit
design utilizing equation solving over ‘big’
Boolean algebras. International Journal of
Mathematical, Engineering and Manage-
ment Sciences (IJMEMS). 2018;3(4).

13. Rushdi AMA. Handling generalized type-2
problems of digital circuit design via
the variable-entered Karnaugh map.
International Journal of Mathematical,
Engineering and Management Sciences
(IJMEMS). 2018;3(4).

14. Rushdi AMA, Zagzoog SS, Balamesh AS.
Design of a hardware circuit for integer
factorization using a big Boolean algebra.
Journal of Advances in Mathematics and
Computer Science. 2018;27(1):1-25.

15. Brown FM. Reduced solutions of
Boolean equations. IEEE Transactions on
Computers. 1970;C-19(10):976-981.

16. Rushdi AMA, Ahmad W. A novel method
for compact listing of all particular solutions
of a system of Boolean equations. British
Journal of Mathematics & Computer
Science. 2017;22(6):1-18.

Rushdi and Zagzoog; CJAST, 27(3): 1-16, 2018; Article no.CJAST.41481

15

17. Brown FM. On the suppression of
variables in Boolean equations. Discrete
Applied Mathematics. 2011;159(5):255-
258.

18. Rushdi AM. A comparison of algebraic and
map methods for solving general Boolean
equations. Journal of Qassim University:
Engineering and Computer Sciences.
2012;4(2):1-32.

19. Goodstein RL. Boolean algebra.
Pergamon Press, Oxford; 1963.

20. Rushdi AM. Using variable-entered
Karnaugh maps to solve boolean
equations. International Journal of
Computer Mathematics. 2001;78(1):23-38.

21. Abd-El-Barr M, El-Rewini H.
Fundamentals of Computer Organization
and Architecture. John Wiley & Sons.
2005;38.

22. Hennessy JL, Patterson DA. Computer
Architecture: A Quantitative Approach.
Elsevier; 2011.

23. Hwang K, Jotwani N. Advanced computer
architecture. 3e. McGraw-Hill Education;
2011.

24. Kulisch UW, Miranker WL. Computer
Arithmetic in Theory and Practice.
Academic press; 2014.

25. Null L, Lobur J. The Essentials of
Computer Organization and Architecture.
Jones & Bartlett Publishers; 2014.

26. Rushdi AM, Al-Otaibi SO. On limitations of
using scalar equations for analyzing
synchronous Boolean networks. Journal of
King Abdulaziz University: Engineering
Sciences. 2008;19(2):41-49.

27. Schroeder M. Diophantine equations, in
number theory in science and
communications. Fifth Edition, Springer-
Verlag, Berlin, Germany. 2009;(Chapter 7):
119-137.

28. Andreescu T, Andrica D. Diophantine
equations, in number theory: Structures,
examples and problems. Birkhäuser,
Boston, USA. 2009;(Chapter 8):145-165.

29. Andreescu T, Andrica D, Cucurezeanu I.
An introduction to diophantine equations: A
problem-based approach. Birkhäuser, New
York, USA; 2010.

30. Rushdi AMA, Alsogati AA. On reduced
scalar equations for synchronous Boolean
networks. Journal of Mathematics and
Statistics. 2013;9(3):262-276.

31. Rushdi AMA. Derivation of reduced scalar
equations for synchronous Boolean
networks. Journal of King Abdulaziz

University: Computer Science and
Information Technology. 2015;4(2):39-68.

32. Menezes A, Oorschot P, Vanstone S.
Handbook of applied cryptography. CRC
Press Company, New York, NY, USA;
1997.

33. John AK, Shah S, Chakraborty S, Trivedi
A, Akshay S. Skolem functions for factored
formulas. In Proceedings of the 15

th

conference on formal methods in
computer-aided design. FMCAD Inc. 2015;
73-80.

34. Fried D, Tabajara LM, Vardi MY. BDD-
based Boolean functional synthesis. In
International Conference on Computer
Aided Verification. Springer International
Publishing. 2016;402-421.

35. Rushdi AMA, Alsheikhy AA. A pedagogical
multi-key multi-stage package to secure
communication channels. Journal of
Qassim University: Engineering and
Computer Sciences. 2017;10(2).

36. Akshay S, Chakraborty S, John AK, Shah
S. Towards parallel boolean functional
synthesis. In international conference on
tools and algorithms for the construction
and analysis of systems. Springer, Berlin,
Heidelberg. 2017;337-353.

37. Ahmad W, Rushdi AMA. A new
cryptographic scheme utilizing the difficulty
of big Boolean satisfiability. International
Journal of Mathematical, Engineering and
Management Sciences (IJMEMS). 2018;
3(1):47-61.
Available:www.ijmems.in/ijmems—
volumes.html

38. Akshay S, Chakraborty S, Goel S, Kulal S,
Shah S. What's hard about Boolean
functional synthesis? arXiv Preprint
arXiv:1804.05507; 2018.
Available:https://arxiv.org/pdf/1804.05507.
pdf

39. Rushdi AM. Improved variable-entered
Karnaugh map procedures, Computers
and Electrical Engineering. 1987;13(1):41-
52.

40. Rushdi AM, Al-Yahya HA. A boolean
minimization procedure using the variable-
entered Karnaugh map and the
generalized consensus concept. Inter-
national Journal of Electronics. 2000;
87(7):769-794.

41. Rushdi AM, Al-Yahya HA. Further
improved variable-entered Karnaugh map
procedures for obtaining the irredundant
forms of an incompletely-specified
switching function. Journal of King

Rushdi and Zagzoog; CJAST, 27(3): 1-16, 2018; Article no.CJAST.41481

16

Abdulaziz University: Engineering
Sciences. 2001;13(1):111-152.

42. Rushdi AM. Prime-implicant extraction with
the aid of the variable-entered Karnaugh
map. Umm Al-Qura University Journal
Science, Medicine and Engineering.
2001;13(1):53-74.

43. Rushdi AMA. Utilization of Karnaugh maps
in multi-value qualitative comparative
analysis. International Journal of
Mathematical, Engineering and Manage-
ment Sciences. 2018;3(1):28-46.

Available:www.ijmems.in/ijmems—
volumes.html

44. Rushdi RA, Rushdi AM. Karnaugh-map
utility in medical studies: The case of fetal
malnutrition. International Journal of
Mathematical, Engineering and Manage-
ment Sciences (IJMEMS). 2018;3(3):220-
244.
Available:www.ijmems.in/ijmems—
volumes.html

__
© 2018 Rushdi and Zagzoog; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sciencedomain.org/review-history/24676

