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ABSTRACT 
 
This paper considers the problem of solving a system of Boolean equations over a finite (atomic) 
Boolean algebra other than the two-valued one. The paper outlines classical and novel direct 
methods for deriving the general parametric solution of such a system and for listing all its particular 
solutions. A detailed example over B��� is used to illustrate these two methods as well as a third 
method that starts by deriving the subsumptive solution first. The example demonstrates how the 
consistency condition forces a collapse of the underlying Boolean algebra to a subalgebra, and also 
how to list a huge number of particular solutions in a very compact space. Subsequently, the paper 
proposes some potential applications for the techniques of Boolean-equation solving. These 
techniques are very promising as useful extensions of classical techniques based on two-valued 
Boolean algebra. 
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1. INTRODUCTION 
 
A prominent “misnomer” in mathematical and 
engineering circles is the term ‘Boolean algebra’. 
This term is widely used to refer to                    
switching algebra, which is just one particular 
case of a ‘Boolean algebra’ that has 0 
generators, 1 atom and two elements belonging 
to B� = {0,1}. The term ‘Boolean algebra’ refers 
to an algebra of a finite or infinite cardinality [1-3]. 
The term ‘finite Boolean algebra’ covers, in                
fact, a countably infinite number of atomic 
algebras described by natural numbers � (� ≥
0) , such that an algebra has n generators, 

N = 2�  atoms, and 2� = 2�
�

 elements. The 
inadvertent use of the general term                      
Boolean algebra to refer to its particular case of a 
switching algebra B�  leads to many                   
problems and misconceptions, since the 
switching algebra is much simpler than a 
generalized finite (atomic) Boolean algebra. 
Therefore, many authors [4-14] started to label a 
finite Boolean algebra other than B�  (i.e., one 
with n generators (� > 0)) as a “big” Boolean 
algebra. Table 1 (which originally appeared in 
[14]) lists some finite Boolean algebras 
specifying the numbers of generators, atoms and 
elements for each algebra. It is clear from the 
table that there is a finite Boolean algebra                   
for every nonnegative integer, and that �� is just 
the smallest and simplest member among an 
infinite multitude of finite (atomic) Boolean 
algebras. 
 
Any system of ‘big’ Boolean equations can be 
reduced to a single Boolean equation {�(�)= 1} 
or {�(̅�)= 0} [4,5].   The main types of solutions 
of such a Boolean equation are the general 
solutions, (which could be subsumptive or 
parametric) and the particular solutions. The 
reader is referred to a plethora of modern texts 
and recent papers [2-18] to understand the 
meaning of these types and get acquainted with 
their interrelationships and derivation methods. 
An exclusive enumeration of particular solutions 
is obtained from any of the two types of general 
solutions via an expansion tree. The number of 
children nodes for any parent node is equal to 

the number 2� = 2�
�

 of elements of the 
underlying Boolean algebra, possibly divided by 
a number of the form 2�,� = 0,1,… ,N  [7]. In 
particular, in the conventional method for 
producing a general parametric solution, the 

number of parameters used is minimized           
[4,5,14] producing compact algebraic solutions 
with parameters belonging to the                     
underlying Boolean algebra. Contrarily to this 
convention, Rushdi and Ahmad [10,12,16] 
proposed a novel method for producing a               
general parametric solution that does not  
attempt to minimize the number of parameters 
used, but instead used independent parameters 
belonging to the two-valued Boolean algebra B2 
for each asserted atom that appears in the 
discriminants of the function �(�) . The 
parametric solution obtained sacrifices minimality 
of parameters and algebraic expressions for 
ease, compactness and efficiency in listing all 
particular solutions. These solutions are given by 
permutative additive formulas expressing a 
weighted sum of asserted atoms of �(�), with 
the weight of every atom (called its contribution) 
having a number of alternative possible values 
equal to the number of appearances of the atom 
in the discriminants of �(�). These alternatives 
are based on a set of orthonormal tags, and 
hence could be listed in a rectangle divided into 
disjoint cells. This rectangle resembles a 
Karnaugh map, and is, in fact, a Karnaugh map, 
possibly with some adjacent cells combined. The 
representation suggested allows the possibility of 
listing a huge number of particular solutions 
within a very small space. The reason of this 
possibility is that an arbitrarily-selected 
contribution of a particular atom can be 
combined with any of the possible contributions 
of each of the other atoms. The combination via 
the additive (ORing) operation is simple and 
straightforward. 
 

The organization of the remainder of this paper is 
as follows. Section 2 reviews the conventional 
and novel direct methods for deriving a general 
parametric solution and listing all particular 
solutions for a system of Boolean equations. 
Section 3 presents a detailed illustrative example 
in which a general parametric solution is 
obtained via three methods, which are (a) a 
direct compact solution, (b) a compact solution 
obtained indirectly via a subsumptive solution, 
and (c) a direct permutative additive solution 
leading to compact listing of all particular 
solutions. Section 4 proposes a set of possible 
applications in digital design which entail direct 
and inverse arithmetic operations. Section 5 
concludes the paper.  
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a� ∨ b� ∨ c� 
 

 
b� ∨ c� 

 

  
a� ∨ c� 

 
c� 

 
�(X,Y) 

 
Fig. 1. The natural map (VEKM) for the function g(X,Y) equated to 1 in equation (29) 

 
   
  

a�b�c� ∨ 
a�b�c ∨ 
a�bc� ∨ 
a�bc ∨ 
ab�c� ∨ 
ab�c ∨ 
abc� 
 

 
a�b�c� ∨ 
a�b�c ∨ 
a�bc� ∨ 
 
ab�c� ∨ 
ab�c ∨ 
abc� 
 

  
a�b�c� ∨ 
a�b�c ∨ 
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a�bc ∨ 
ab�c� ∨ 
 
abc� 
 

 
a�b�c� ∨ 
 
a�bc� ∨ 
 
ab�c� ∨ 
 
abc� 
 

 
�(X,Y) 

 
Fig. 2. The natural map of Fig. 1 redrawn with entries written as minterm expansions, or 

equivalently as disjunctions of atoms of ��(�,�,�)  
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��= 3 

 

 
 

a�bc 
��= 2 

 

 
 

abc 
��= 0 

 

 
 

ab�c 
��= 2 

 
     

 
Fig. 3. Karnaugh-map listing of the number of appearances ��(� ≤ �� ≤ �) of each of the eight 

atoms � of ��(�,�,�) in the four cells of the map in Fig. 1 
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The lattice of B16, collapsed under the 
condition ab = 0 so as to represent B8 

 
 

A hypercube lattice indicating the partial 
ordering among the 16 elements of B16 

 

Fig. 4. Visualization of the concept of algebra collapse (the hypercube ���  collapses to a cube 
�� when one of its four atoms (here ��) is nullified 

 

   

 
 
a�b�c ∨ a�bc ∨ ab�c ∨ c� 
 

 
a�b�c ∨ ab�c ∨ c� 
 

  
a�b�c ∨ a�bc ∨ c� 
 

c� 

 

�(X,Y) 
 

Fig. 5. The natural map in Fig. 2 with the four atoms ���̅�̅,����̅,��̅�̅ and ���̅ combined as �̅. Such 
a combination is equivalent to using the same set of orthonormal tags {����, ���, ���, ��} 

individually in the same way with instances of each of these atoms or collectively with their 
total disjunction �̅ 

 

   
  

a�b�c (��� ∨̅ ��) ∨  
a�bc (� ∨ �)̅ ∨  
ab�c (��∨ �) ∨ 
 c� (���)̅ ∨ 
 �(abc) 

 

a�b�c (��)̅ ∨ 
ab�c (��)̅ ∨ 
 c� (��)̅ ∨ 
 �(abc) 

  

a�b�c (���) ∨ 
a�bc (���) ∨ 
 c� (���) ∨ 
 �(abc) 

 

c� (��) ∨ 
 �(abc) 

 

G�(X,Y; a,b,c; �,�) 

 
Fig. 6. The auxiliary function �� with instances of each atom tagged by members of an 

orthonormal set. Common parameters are used for different atoms 
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d(abc) 

 
�� = �����(0) ��(1)∨ d������(0)�= 0 

 

b�∨ c�  ∨ d(abc) 

 
�� =  ��(1)∨ d������(0)�= b�∨ c� 

 

a�∨ b�∨ c� 

 
�� =  ��(0)∨ ��(1)= 1 

 
Fig. 7. Various VEKMs used in the derivation of the most compact subsumptive solution of (29) 

 
 

   
  

a�b�c� p��p�� ∨ 
a�b�c p�p�� ∨ 
a�bc� p��p� ∨ 
a�bc p�� ∨ 
ab�c� p��p�� ∨ 
ab�c p��� ∨ 

abc� p���p��� ∨ 
 �(abc) 

 

 
a�b�c� p�p�� ∨ 
a�b�c p��p�� ∨ 
a�bc� p�p�� ∨ 

 
ab�c� p�p�� ∨ 
ab�c p�� ∨ 

abc� p��p��� ∨ 
 �(abc) 

  
a�b�c� p��p� ∨ 
a�b�c p� ∨ 
a�bc� p��p� ∨ 
a�bc p� ∨ 
ab�c� p��p� ∨ 

 
abc� p���p�� ∨ 

 �(abc) 

 
a�b�c� p�p� ∨ 

 
a�bc� p�p� ∨ 

 
ab�c� p�p� ∨ 

 
abc� p��p�� ∨ 

 �(abc) 
 

 

G�(X,Y; a,b,c; p) 

Fig. 8. The auxiliary function �� with instances of each atom tagged by members of an 
orthonormal set. Independent parameters are used for different atoms, and hence combining 

the four �̅ atoms does not work any more 
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Fig. 9. A permutative additive formula listing all the 3072 particular solutions of Equation (29) 

 
2. DIRECT METHODS FOR 

CONSTRUCTING PARAMETRIC 
SOLUTIONS  

 

2.1 Reduction of a System of Boolean 
Equations into a Single Equation    

 

Consider a system of � Boolean equations of the 
form 
 

�(�,�,�)= �(�,�,�)                                   (1) 
 

Here, the vectors �,�,�,�,and �  belong to 
B�
�,B�

�,B�
�,B�

� ,and B�
� ,  respectively. The input 

arguments in (1) are partitioned into inputs � 
(typically controllable), outputs �  (typically 
observable), and intermediate variables � 
(frequently neither controllable nor observable, 
and hence need to be dispensed with in same 
way). The system (1) can be expanded into 
scalar equations of the form 

 

��(�,�,�)=  �� (�,�,�),          1 ≤   �  ≤   �,   (2) 
 

where occasionally we might have  �� = 0  or 
�� = 1. The system (1) of  equations is exactly 
equivalent to a single Boolean equation of the 
form  
 

ℎ(�,�,�)= 1 ,                                            (3) 
 
Or 
 

�(�,�,�)= 0 ,                                             (4) 
 
Where 
 

ℎ(�,�,�) ≡  ∧���
� (��  ⊙ ��),                        (5) 

 
and 
 

�(�,�,�)=  ℎ�(�,�,�) ≡  ∨���
� (��  ⊕ ��).     (6) 
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The symbols ∧ ,∨,⊕, and ⊙ in Equations (5) 
and (6) depict the AND operator, the OR 
operator, the XOR ( Exclusive-OR) operator and 
the XNOR (coincidence or equivalence) operator, 
respectively.  
 
2.2  Suppression of Intermediate 

(undesirable) Variables 
 
This subsection offers a means to dispense                 
with the undesirable variables �. This means is 
called "suppression" rather than "elimination" 
since the latter term is reserved for another 
technical meaning [4]. The resultant                               
of suppression of the intermediate variables                    
�  from the Boolean equation (4) (called the 
parent equation) is the derived Boolean equation 
[17].  

 
�(�,�)= 0 ,                                     (7) 

 
Where 
  

�(�,�) ≡  ∨� ∈ {�,�}�  �(�,�,�) .          (8) 

 
The solutions of the derived equation (7) are 
exactly those of the parent equation (4) that do 
not involve the suppressed variables �  [17]. 
Dually, if equation (3) is used as a parent 
equation, then the resultant of suppression of the 
variables � is now the derived Boolean equation 
[12]. 

 
�(�,�)= 1 ,                                    (9) 

 
Where 

 
�(�,�) ≡  ∧� ∈ {�,�}�  ℎ(�,�,�) .        (10) 

 
and the solutions of the derived equation (9) are 
exactly those of the parent equation (3) that do 
not involve the suppressed variables � [12]. 

 
2.3 Algebraic Construction of Parametric 

Solutions 
 
We seek solutions of the Boolean equation (9) 
where �(�,�): ��

��� → �� , is a two-valued 
Boolean function of �  two-valued variables 
� = [ �� �� ...  �� ]

�  and �  two-valued variables 
� = [ �� �� ...  �� ]

�. However, we do not need a 
listing of binary solutions for  �  and � , but 
instead we want to express � in terms of �. We 
view �(�,�)  as �(�;�)  or simply �(�)  and 
rewrite (9) as  

�(�)= 1,                                                (11) 

 
where �(�): �

��
� → ��� , and ���  is the free 

Boolean algebra ��(��,�� … … .��)  with � 
generators (namely, ��, ��,…, �� ), � =  2� atoms 

and 2� =  2�
�

 elements. Now we express �(�) 
by its Minterm Canonical Form (MCF), or 
Minterm Expansion [4, 12]  

 
�(�) ≡  ∨� ∈ {�,�}�  �(�) �

� .                      (12) 

 
For  

 
� = [ �� �� ...  �� ]

� ∈  �
��
� ,

� = [ �� �� ...  �� ]
�  ∈  {0,1}� , the symbol ��  is 

defined as  

 
�� =  ��

��  ��
�� ...  ��

�� ,         (13) 

 
Where 

 

��
�� = ��  ⊙ �� = �

���  ,       �ℎ��   �� = 0
��  ,       �ℎ��   �� = 1

�      (14) 

 
For � ∈ {0,1}� , the symbol ��  spans the 
minterms of � , which are the 2�  elementary or 
primitive products 

 
 ����� �����…  ���������� �����,    ����� �����…  ���������� ��,   . . . ., 
 �� �� …  ���� ��.                                 (15) 

 
The constant values �(�)  in equation (7)                      
are elements of ���  called the discriminants of 
�(�). These discriminants are the entries of                  
the natural map (VEKM) of �(�)  which has                   
an input domain {0,1}�  �

��
� . The Boolean 

algebra ��� =  ��(��,�� … … .��) has generators 
��  ( 1 ≤   �  ≤   �  ) which look like variables.                   
We now observe that the minterms of  � ,                
which are the 2� = �  elementary or primitive 
products  

 
X���� X����…  X��������� X����,     X���� X����…  X��������� X�,    . . . ,    
X� X� …  X��� X�,                                  (16) 

 
are exactly the atoms of the underlying Boolean 
algebra, to be called ��  (0 ≤   �  ≤   (� − 1)). The 
function �(�) is given by  

 
�(�) = ∨���

���  (��(�)∧ �� ),                       (17) 

 
where the symbol ��(�) denotes an indicator of 
the event that atom ��  appears in the expression 
of �(�), i.e., namely, Note that if a specific atom 
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�� dose not appear in �(�), then ��(�)= �(�)/ ��  
is necessarily 0 since �(�) is a disjunction of 
atoms that are all orthogonal to  �� . Atom ��  
appears in the cell � of the natural map for �(�). 
 

 ��(�)= �
1, �� ��  →  �(�)

0,��ℎ������
� =  �(�)/��     (18) 

 
where the symbol (�  / �) = (�)���  denotes the 
Boolean quotient of  � by � [4,9]. Now, we define 
��  (0 ≤  ��  ≤  2�)  as the total number of actual 
appearances of  ��  in the expression (17) for 
�(�), i.e., 
 

�� =  ∑   ��(�)� ∈ {�,�}�  .                     (19) 

 
The total number �������������� of unconditional 
particular solutions of (9) over ���  (as it is) is 
given by 
 

�������������� =  ∏   ��
���
��� .                     (20) 

 
This number is zero if some �� = 0. To avoid 
such a situation, we require the consistency 
condition that all atoms ��  such that �� = 0 must 
be forbidden or nullified. This means that the 
underlying Boolean algebra loses these atoms 
and hence collapses to one of its strict 
subalgebras. The number of solutions over this 
reduced Boolean algebra is  
 

������������ =  ∏   ��
���
���
����

.                    (21) 

 
Now we introduce a set of parameters �� (0 ≤
  �  ≤   (� − 1),�� ≠ 0)  to construct an 
orthonormal set of tags to attach to instances of 
appearances of the asserted atom ��  in the 
discriminants �(�). The number of parameters 
for atom �� (the length of vector ��) is given by 
 
 

�(��)=  ⌈�log� ��⌉�,  0 ≤   �  ≤   (� − 1) , 
�� ≠ 0.                                            (22) 

 
The parameters ��  can be used to generate a set 
of ��  ≤  2�(��)  orthonormal tags { ��,�� ...  ���} , 

such that   
 

�� ∨ �� ∨ ...∨ ��� = 1,                   (23) 

 
���  ∧ ��� = 0        "  ��,��  ∈ { 1,2,...,��}. (24) 

 
When ��  =  2�(��) the set of orthonormal tags can 
be visualized as the products of cells in a 
Karnaugh map whose map variables are the 

underlying parameters. If 2�(��)�� < �� <  2�(��) , 
some cells of such a map are merged, and the 
map reduces to a map-like structure [10,12,16].  
 

When each appearance of an atom �� is tagged 
by a particular member of its orthonormal set of 
tags, an auxiliary function �(�,��)  (0 ≤   �  ≤
  �−1,  ��≠0 results. The parametric solution is 
now given by [5,7,12,13]. 
 

��  =  ∨{� ∈{�,�}� |�� ��} �(�,��). 1 ≤  � ≤ , (0 ≤  � ≤

 �−1,  ��≠0.                                            (25) 
 

The total number � of parameters used in (25) to 
construct the tags for all atoms is given by 
[10,12,16]. 
 

� =  ∑  �(��)
�
��� =   ∑  ⌈�log�(��)⌉�

�
��� .           (26) 

 

The conventional method is to select the 
parameter vectors from a shared pool of 
parameters so as to minimize the number of 
parameters used. This number is now rewritten 
as �� given by [10,12,14]. 
 

�� = max 
�

 �(��)= max 
�

⌈�log� ��⌉� =  ��log�  (max 
�

��)��.                                     

(27) 
 

However, parameters used must then belong to 
the underlying Boolean algebra (possibly 
collapsed due to the consistency condition). We 
now propose to use independent parameters ��  
for each atom  �� (0 ≤   �  ≤   � − 1,�� ≠ 0). The 
expressions (25) will not be as compact as they 
are in the conventional case, but the independent 
parameters ��  now belong to the two-valued 
Boolean algebra ��  [5,7], a fact that                    
facilitates the generation of all particular solutions 
as has been documented by Rushdi &                  
Ahmad [10,12,14] and as will be seen in the next 
section. 
 

3. ILLUSTRATIVE EXAMPLE 
 

The problem studied in this section is taken from 
an old text on Boolean algebra [19] that supplied 
a general parametric "solution" via a non-
constructive theorem-proof technique. However, 
this alleged solution fails to satisfy the equation it 
is intended to solve.   
 

Consider the Boolean function 
 

�(X,Y)= c(a∨ x)(b ∨ y)                          (28) 
 

where = B���
� → B��� ,   and B��� = FB(a,b,c). A 

solution of the equation {� = 0} expresses the 
dependent variables X  and Y  in terms of the 
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independent “ variables” a, b and c which are 
treated herein as generators of the underlying 
Boolean algebra. We complement the function � 
to obtain � = �  ̅so as to solve the equivalent 
equation 
 

�(X,Y)= c�∨ a�X� ∨ b�Y� = 1                          (29) 
 
Where � = B���

� → B��� . In the next three 
subsections, we offer three solutions of (29). 
These are a conventional parametric solution 
obtained directly, a conventional parametric 
solution obtained via a subsumptive one, and a 
permutative additive parametric solution. 
 

3.1 A Conventional Parametric Solution 
Obtained Directly  

 
The Boole-Shannon expansion of �  w. r. t. its 
two arguments X and Y is 
 

�(X,Y)= �a�∨ b�∨ c��X� Y� ∨ (a�∨ c�)X� Y ∨

�b�∨ c��X Y� ∨ (c�)X Y                                     (30) 

 
and hence its natural map (variable-entered 
Karnaugh map (VEKM)) is as shown in Fig. 1. 
Each of the entries of this map is a function of 
the “entered variables” or generators a,b and c 
and is a disjunction of some of the eight atoms of  
FB(a,b,c) as shown in Fig. 2. The numbers of 
appearances of these atoms in the cells of the 
map of Fig. 2 are listed in Fig. 3, which 
immediately shows that: 
 
1. The atom abc does not appear at all in any of 
the cells of the map in Fig. 2. This means that 
this atom must be nullified, i.e., the consistency 
condition of equation (29) is 

 

abc =  0                                                   (31) 

 
When the Boolean algebra B��� = FB(a,b,c) 
loses its abc atom, it collapses into a subalgebra 
of 7 atoms only, i.e., it collapses to B��� . The 
sizes of  B���  and B���  are too large to be 
amenable to visualization. However, to give the 
reader a glimpse of the meaning of algebra 
collapse, we present in Fig. 4 a hypercube lattice 
representing B��, and then represent its collapse 
to B� when it loses the �� atom. 
 
2. The number of particular solutions of (29) is 
the product of the numbers of appearances of 
asserted atoms in Fig. 2, namely   
 

N���������� = 2� ∗ 3� ∗ 4� = 3072               (32) 

The minimum number of parameters �  needed 
for a parametric solution of (29) is  
 

� = ⌈ log� 4⌉ = 2                                       (33) 
 
In fact, this number is expected to be less than or 
equal to the number of variables involved [4], 
which is � = 2 herein. 
 
To facilitate obtaining a parametric solution with 
a minimum number of parameters, we note that 
each of four atoms a�b�c�, a�bc�, ab�c, and abc� is 
omnipresent in the map of Fig. 2, and might be 
combined into c�, as shown in Fig. 5. Note that 
such a combination is permissible since it is 
equivalent to using the same set of orthonormal 
tags individually in the same way with instances 
of each of these atoms or collectively with their 
total disjunction c�. In Fig. 6, we construct an 
auxiliary function G�(X,Y; a,b,c; �,�), where we 
attach tags from the orthonormal set 
{���,̅���,��,̅��}  to the term c�  (that has 4 
appearances), attach tags from the orthonormal 
set {(��� ∨̅ ��),���,��}̅ to the atom a�b�c (that has 3 
appearances), and attach tags from the 
orthonormal set {(��∨ �),��}̅ to atom ab�c  (that 
has 2 appearances). We have chosen the 
orthonormal sets above with an eye on getting 
the most compact solution. In fact, we do not 
care about how cumbersome the entries in the 
X� Y� -cell are, since they do not affect the final 
solution. However, we have only a single tag per 
each of the other three cells, namely tag ��� in 
the X�Y-cell, tag ��  ̅in the XY�-cell, and tag �� in 
the XY-cell. We might add the nullified atom abc 
don’t-care in each of the cells of Fig. 5. Our final 
solution is 
 

X = �a�b�c∨ ab�c∨ c���� ∨̅ c��� ∨ d(abc)      (33a) 

 
Y = �a�b�c∨ a�bc∨ c����� ∨ c��� ∨ d(abc)      (33b) 

 
These formulas might be simplified by ignoring 
the don’t-care parts and involving the reflection 
law to obtain 
 

X =  �(b�c� ∨̅ c�(� ∨̅ �))=  �(b�� ∨̅ c�)         (34a) 
 
Y =  �(b�c��∨ c�(��∨ �))=  �(a���∨ c�)         (34b) 

 
Substitution of the solution (34) in (28) yields  
 

�(X,Y)=  c�a∨ �b�� ∨̅ �c��(b ∨ �a���∨ �c�) 

=  abc= 0   (35) 
 
while its substitution in (29) yields 
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�(X,Y)=  c�∨ a�(��∨ (b ∨ �)c)∨ b�(� ∨̅ (a∨ �)c) 
= c�∨ a���∨ a�b ∨ a�� ∨ b�� ∨̅ ab�∨ b��(��∨ (b ∨ �)c)  
              =  a�∨ b�∨ c�= 1                               (36) 
 

where the consensus a�b� of a��� and b�� is added to 
the second line in (36), and then combined with 
(a�b ∨ ab�) to produce (a�∨ b�) which then absorbs 
( a���∨ a�� ∨ b�� ∨̅ b��) . The results of the 
aforementioned substitution verify the solution 
and partially explains why the consistency 
condition is needed. 
 

3.2 A Conventional Parametric Solution 
Obtained Via a Subsumptive Solution 

 
In this subsection, we utilize Variable-Entered 
Karnaugh Maps (VEKMs) to derive a general 
subsumptive solution for (29) in the most 
compact form. Fig. 7 presents the VEKMs used 
to obtain such a solution according to the method 
in [18,20]. The final result obtained is  
 

0 ≤ Y ≤ c�∨ a� X�        (37a) 
 

0 ≤ X ≤ b�∨ c�                (37b) 
 
Subject to the consistency solution 
 

a�∨ b�∨ c�= 1                    (37c) 
 
Note that this consistency condition is equivalent 
to the one in (31), being the result of 
complementing both sides in it. 
 
We can convert the subsumptive solution (37) 
into a parametric one, namely 
 

X =  u(b�∨ c�)                                           (38a) 
 

Y =  v(c�∨ ��X�)  =  v(c�∨ a���∨ a�bc)  
=  v(c�∨ a���∨ a�b)                                     (38b) 

 
Substituting this solution into (28), one obtains  
 

�(X,Y)=  c�a∨ �b�∨ �c��(b ∨ �c�∨ �a���∨

�ab=abc=0                                 (39) 
 

This solution is not symmetric like the one in 
(34). Hence, it can be used to generate a third 
solution, via.,  
 

Y =  v(a�∨ c�)                                 (40a) 
X =  u(c�∨ ��Y�)  =  u(c�∨ b�v�∨ ab�)  
=  v(c�∨ a���∨ a�b)                                     (40b) 

 
Though the solutions (38) and (40) are not 
symmetric like the one in (34), they enjoy the 

advantage that in each of them one variable is 
dependent on a single parameter rather than the 
two parameters. 
 

3.3 A Permutative Additive Parametric 
Solution 

 

Despite the elegance, compactness, and 
symmetry of the solutions in (34), (38) or (40), 
they are not readily useful for producing a list of 
all particular solutions, since each of the two 
parameters �  and �  should be assigned an 
independent value that equals a specific element 
in B���. The expansion tree used for this purpose 
should explore all 128× 128 = 16384 
combinations of (� , �) values, and will finally 
settle on 3072 solutions. Our alternative method 
to avoid the use of such an expansion tree is to 
use independent parameters for each individual 
atom, as shown in Fig. 8. The number of 
parameters used increases dramatically from 2 
to 12, and though a detailed algebraic solution 
will be cumbersome when compared with the 
earlier solutions in (34), (38) or (40), it is 
nevertheless a permutative additive formula that 
lists all 3072 particular solutions of equation (29). 
This formula is given concisely in Fig. 9. To 
obtain the value for the vector [X Y]� , one 
chooses any of the possible values associated 
with each atom. Two examples of the particular 
solutions (subject to the condition abc= 0) are 
 

� 
X
Y
 � = a�b�c�� 

0
0
 � ∨ a�b�c� 

0
0
 � ∨ a�bc�� 

0
0
 � ∨ a�bc� 

0
0
 � ∨

ab�c�� 
0
0
 � ∨ ab�c� 

0
0
 � ∨ abc�� 

0
0
 � ∨ abc� 

0
0
 � = � 

0
0
 �         

(41) 
 

� 
X
Y
 � = a�b�c�� 

0
1
 � ∨ a�b�c� 

0
1
 � ∨ a�bc�� 

0
1
 � ∨ a�bc� 

0
1
 � ∨

ab�c�� 
1
0
 � ∨ ab�c� 

1
0
 � ∨ abc�� 

1
0
 � ∨ abc� 

1
0
 � = � 

a
a�
 �     

(42) 
 

Note that any of the particular solutions if 
substituted in (28) reduces it to {abc= 0}, and if 
substituted in (29) reduces it to {a�∨ b�∨ c�= 1}. 
 

4. PROPOSED APPLICATIONS IN 
DIGITAL DESIGN 

 

The conventional realm of combinational digital 
design is the domain of propositional logic or 
two-valued Boolean algebra. This domain can be 
(and has been) extended through the use of 
sequential circuits, evolvable hardware, first-
order predicate logic, big Boolean algebras, etc. 
We will now discuss a few possibilities for the 
use of big Boolean algebras in digital design. 
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We arbitrarily restrict our discussion here to the 
design of basic arithmetic circuits (Addition, 
Subtraction, Multiplication, and Division). 
However, we note that the subtraction (�� − ��) 
can be implemented as the addition (�� +
(−��)) through the use of any number system 
that covers both positive and negative numbers 
(such as the sign-magnitude system, the once-
complements system, or (preferably) the twos-
complements system) [21-25]. Therefore, we will 
not elaborate any more on subtraction since it is 
simply a form of addition. Similarly we do not 
consider division since it can be implemented via 
repeated multiplication. Since we are interested 
in both direct and inverse problems, we need to 
consider each of the following four cases: 
 

4.1 Direct Addition 
 
In direct addition, we consider a problem of the 
form 
 

� = �� + ��                                             (43) 
 
in which the two � -bit numbers �� and ��  are 
added to produce the � -bit number �  (where 
� = (� + 1)). Typically, (43) is implemented via 
full-adder modules or stages  (0 ≤ � ≤ (� − 1)), 
which obtain (with Y�� = 0,Z��� = Y�) 
 
Z� = ���(X��,X��,Y���)= X�� ⊕ X�� ⊕ Y���   (44a) 
 
Y� = �����(X��,X��,Y���) 
= X��X�� ∨ X��Y��� ∨ X��Y���                          (44b) 

 
Here, an intermediate variable Y�  is called the 
carry-out for stage �  and also the carry-in for 
stage (� + 1). Full design of the required adder 
circuit requires combining all the 2� conditions in 
(44a) and (44b) into a single equation of the form 
(3) and then suppressing the undesirable 
intermediate variables � to obtain an equation of 
the form (9). 

 
4.2 Inverse Addition 
 
By inverse addition, we mean solving the 
Diophantine Equation [26-31]. 

 
� = �� + ��, �� ≥ �,�� ≥ �         (45) 

 
for the two �-bit integers �� and �� given the �-bit 
integer �  (where � = �). Each of �� and ��  is a 
nonnegative integer less than or equal to � (and 
hence definitely less than 2� ). The integers 
�� and ��  are usually called the additive 

components of � . There are exactly � + 1 
solutions to (45), which can be obtained by 
arbitrarily assigning one of  � + 1  values to 
�� (0 ≤ �� ≤ �) , and then performing the 
subtraction (� − ��) to obtain ��. This procedure 
might be extended to obtain hardware solvers for 
more general Diophantine equations. 
 
4.3 Direct Multiplication  
 
In direct multiplication, it is desired to multiply two 
� -bit integers �� and ��  to produce an � -bit 
integer � (where n = 2k), namely 
 

� = �� ∗ ��                                   (46) 
 
Typically, this operation is achieved via repeated 
addition. However, it might be implemented 
directly via Boolean-equation solving. 
 

4.4 Inverse Multiplication 
 
By inverse multiplication, we mean factorizing a 
�-bit positive integer � into two positive integers 
�� and ��  of sizes ��  bits and ��  bits, 
respectively. Hence, these two integers must 
satisfy 
 

� = �� ∗ ��, �� > 0,�� > 0                      (47) 
 

The aforementioned problem of Inverse 
Factorization is of fundamental importance in 
many serious applications, the most prominent 
among which is cryptography [32-38]. 
 
First, we consider � to be of an even bit size, say 
2n bits, where n is a positive integer. To avoid 
factoring � trivially into a product of itself with 1, 
we impose the restrictions (�� > 1) and (�� > 1). 
To avoid duplicate factorizations due to 
commutativity (�� ∗ �� = �� ∗ ��), we impose the 
additional restriction (�� ≥ ��). Since ��  can be 
as small as the integer 2, the integer �� can be 
as large as (� 2⁄ ), and hence might occupy up to 
 (2� − 1) bits. Since (�� ≥ ��), the number � 

should satisfy (� ≥ ��
�), and hence ��  might 

occupy up to n bits. The sizes of the integers �, 
��, and �� are therefore 2�, (2� − 1), and � bits, 
respectively. Using similar reasoning, we can 
show that if X has an odd bit size of (2� − 1) bits 
say, then �� and �� are of bit sizes (2� − 2) and 
� respectively. The triple (�, ��, ��) of bit sizes 
for (�,��,��)  can be either replaced by 
(2�,(2� − 1),�) or by ((2� − 1),(2� − 2),�). 
 

We now start with an initial specification of the 
problem in the form of an equation 
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��(��,��)= 1                                           (48) 
 
with the function ��: B

����� → B constructed over 
the ‘big’ Boolean algebra B = FB(�), i.e., it is the 
free Boolean algebra with k generators X. The 
function ��  is characterized by discriminants 
given for a specific value of  �� and �� by 
 

��(��,��)= ⋀ (X� ⊙ X�(��,��))���             (49) 
 
Where 
 

X� ⊙ X�(��,��)= X�
��(��,��)                       (50) 

 
is equal to X� (uncomplemented) if X�(��,��)= 1 
and equals X��  (complemented) if X�(��,��)= 0. 
To complete the problem specifications, we need 
to replace �� by � given by 
 

�(��,��)= ��(��,��) I(�� > 1) I(�� > 1)  

                I(�� ≥ ��) I�� ≤ 2� − 1�,                  (51) 

 
where the symbol I(event) is a Boolean indicator 
for that event, i.e., it is 1 if the event occurs and 0 
if it does not occur. We have already discussed 

the necessity for the requirements (�� > 1) , 
(�� > 1)  and (�� ≥ ��) . The extra condition 

I�� ≤ 2� − 1�  is needed to ensure that X  is 

properly represented in � -bits. It is 
straightforward to note that   
 

I(�� > 1) I(�� ≥ ��)⇒ I(�� > 1)              (52) 
 
and hence equation (52) is simplified to  
 

�(��,��)= ��(��,��) I(�� > 1)  

                 I(�� ≥ ��) I�� ≤ 2� − 1�,        (53) 

 
Finally, our design task reduces to finding 
solutions of �(��,��)= 1 , where �(��,��)  is 
given by (53). 
 
We already solved smaller versions of this 
problem when � has 3, 4, 5, or 6 bits [11,14]. Our 
solutions used comparatively large Karnaugh 
maps of up to 8-variable maps and we are 
currently investigating the solution of larger 
problems via variable-entered Karnaugh maps 
[39-44] or via an automated implementation of 
the present algorithm. 

 
Table 1. Relating the numbers of generators, atoms, and elements for finite Boolean algebras 

 

No. of 
generators 

Possible 
atoms 

Nullified 
atoms 

Actual atoms No. of elements Comments 

0 1 0 1 2 Two-valued 
Boolean algebra 
B� 

1 2 0 2 4 --- 

2 4 1 3 8 --- 

2 4 0 4 16 --- 

3 8 3 5 2� = 32
 --- 

3 8 2 6 2� = 64
 --- 

3 8 1 7 2� = 128 --- 

3 8 0 8 2� = 256 --- 

--- --- --- --- --- --- 

4 16 0 16 2�� = 65536
 Problem in 

Rushdi and 
Zagzoog. [11] 

--- --- --- --- --- --- 

5 32 0 32 2�� ≈ 4.3 × 10� --- 

--- --- --- --- --- --- 

6 64 0 64 2�� ≈ 1.8 × 10�� Problem in 
Rushdi et al. [14] 

--- --- --- --- --- --- 

� ≥ 1 2� ϵ [0,2��� − 1] Nϵ [2���

+ 1,2�] 
2� General case 
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5. CONCLUSIONS  
 
This paper offered several novel contributions. 
First it gave full descriptions and demonstrations 
of methods to construct parametric solutions and 
compactly list particular solutions of ‘big’ Boolean 
equations. As an offshoot, the paper explained 
the necessity of imposing a consistency condition 
and the possible impact of such a condition on 
collapsing the underlying Boolean algebra to a 
strictly smaller subalgebra. As a result, the paper 
set the stage for many useful applications in 
digital design of arithmetic computer circuits. 
 
The importance of this paper stems from the fact 
that it is a major step towards full utilization of the 
mathematics of ‘big’ Boolean algebras and ‘big’ 
Boolean equation-solving. The paper has two 
distinctive major contributions. It gives a detailed 
clarifying exposition of modern Boolean 
mathematics, and it outlines some of the 
potential applications that could rely on such 
mathematics. The theoretical development of 
Boolean mathematics has gone a very long way 
for the past two centuries, with some notable 
applications emerging occasionally. As we 
observed in [14], “it is clear now that Boolean 
mathematics have matured enough to find 
significant, diverse, and beneficial applications.” 
Most prominent among the expected applications 
are those of integer factorization (a core step in 
cryptanalysis) as well as the solution of general 
Diophantine Equations.  
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