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Abstract

We unify the power laws of size distributions of solar flare and nanoflare energies. We present three models that
predict the power-law slopes αE of flare energies defined in terms of the 2D and 3D fractal dimensions (DA, DV): (i)
the spatiotemporal standard self-organized criticality model, defined by the power-law slope αE1=
1+ 2/(DV+ 2)= (13/9)≈ 1.44; (ii) the 2D thermal energy model, αE2= 1+ 2/DA= (7/3)≈ 2.33; and (iii) the
3D thermal energy model, αE3= 1+ 2/DV= (9/5)≈ 1.80. The theoretical predictions of energies are consistent
with the observational values of these three groups, i.e., αE1= 1.47± 0.07, αE2= 2.38± 0.09, and
αE3= 1.80± 0.18. These results corroborate that the energy of nanoflares does not diverge at small energies, since
(αE1< 2) and (αE3< 2), except for the 2D model (αE2> 2). Thus, while this conclusion does not support nanoflare
scenarios of coronal heating from a dimensionality point of view, magnetic reconnection processes with quasi-1D
or quasi-2D current sheets cannot be ruled out.

Unified Astronomy Thesaurus concepts: Active solar corona (1988); Solar flares (1496); Solar x-ray flares (1816)

1. Introduction

The concept of self-organized criticality (SOC) specifies
nonlinear (avalanching) phenomena based on next-neighbor
interactions in a lattice grid (Bak et al. 1987, 1988). The
spatiotemporal evolution of avalanches in such complex environ-
ments has been numerically simulated by cellular automaton
methods, which exhibit fractal structures (Pruessner 2012).
Alternatively, SOC-related avalanches can be considered
analytically, as instabilities with a nonlinear initial growth
phase and subsequent saturation (Rosner & Vaiana 1978;
Aschwanden 2011, 2012, 2014).

Let us introduce the first definition of an SOC energy, which
we call the spatiotemporal energy of an SOC avalanche,
labeled as E1 in this Letter. The analytical SOC approach takes
both the spatial as well as the temporal evolution of an SOC
avalanche into account. Hence, the total energy of an SOC
avalanche is determined from the spatial and temporal
integration over the unstable 2D areas (or 3D volumes) in the
paradigm of sand pile avalanches (Bak et al. 1987, 1988).
Theoretical predictions of SOC parameters based on the size
distribution of avalanche energies are described in Section 2
and are summarized in Table 1. The necessary parameters to
characterize the spatiotemporal energy requires the measure-
ment of the mean flux F and the time duration T of an event,
while the spatiotemporal energy is defined by E1= F× T.
Measurements of spatiotemporal energies were originally
applied to soft X-rays in solar flares (Drake 1971), hard X-rays
(Crosby et al. 1993; Lu et al. 1993), gamma rays (Perez
Enriquez & Miroshnichenko 1999), as well as to EUV small-
scale brightenings or nanoflares (Brkovic et al. 2001; Uritsky
et al. 2013). We compile these data sets in Table 2.

The second definition of an SOC energy was introduced by
the 2D definition of the thermal energy in a high-temperature
plasma (called E2 here), i.e., E2= 3kBTeneV (where kB is the

Boltzmann constant, Te is the electron temperature, ne is the
electron density, and V is the fractal volume). The avalanche
volumes of solar flares and nanoflares are generally close to
fractal geometries, if they are measured on a pixel-by-pixel
basis (Aschwanden & Aschwanden 2008a, 2008b), in contrast
to an encompassing (nonfractal) circle or square (with length
scale L). An additional relationship is the definition of the
emission measure, EM n Ve

2= , which can be used to
substitute the electron density, i.e., n EM Ve = . Further-
more, a relationship for the (fractal) event volume V needs to be
specified. The projected area A, which is fractal, can be
measured directly in the image plane, but the line-of-sight
depth is unknown, which led some pioneers to quantify it with
a constant height h0, leading to the expression V= A h0 for the
volume (Krucker & Benz 1998; Parnell & Jupp 2000; Benz &
Krucker 2002; Table 3). In hindsight, this choice of a constant
depth h0 has been criticized because it is very unlikely that the
line-of-sight depth is equal from the smallest nanoflares (of the
size of a solar granulation cell) to the largest flares (of the size
of an active region). Furthermore, the assumption of a constant
height h0 introduces a crucial bias that modifies the power-law
slope of the energy size distribution substantially, from
αE3= 1.80 to αE2= 2.33, across the critical value of αE= 2,
as we will see in the remainder of this Letter.
A third definition of an SOC energy (E3) was made by

abandoning the assumption of a constant height, i.e., V= A h0,
and instead replacing it with a more physical assumption of an
isotropic volume, i.e., V= A3/2, which corresponds to a line-of-
sight depth of h A= , while DA is the fractal dimension of the
area, A LDA= . This approach, which we call the 3D thermal
energy model (Table 4), has been applied frequently
(Shimizu 1995; Berghmans et al. 1998; Berghmans &
Clette 1999; Parnell & Jupp 2000; Aschwanden & Parnell 2002;
Uritsky et al. 2007; Joulin et al. 2016; Nhalil et al. 2020; Kawai
& Imada 2022; Purkhart & Veronig 2022).
In this Letter we calculate the power-law indices αE of the

energy size distributions in a unified way, which provides us a
diagnostic whether flare and nanoflare energies diverge at the
lower or upper end of the size distribution, and this way we can
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assess the importance (or nonimportance) of coronal heating by
nanoflares. The mathematical derivation of the SOC models is
given in Section 2, a discussion in Section 3, and conclusions
in Section 4.

2. Theoretical Models and Observations

An SOC model should be able to predict the (occurrence
frequency) size distribution functions, which can be formulated
in terms of power-law function slopes αx to first order.
Common SOC parameters x= [L, A, V, T, F, P, E] include the
length scale L, the 2D area A, the 3D volume V, the time
duration T, the mean flux or intensity F, the peak flux or peak
intensity P, and the fluence or energy E. In this study we
reconcile three different definitions of the energy (E) that have
been used in the past, namely, the spatiotemporal definition of
the standard SOC model (E1), the 2D fractal model (E2), and
the 3D fractal model (E3). A glossary of SOC terms are listed in
the Appendix.

2.1. The Standard SOC Model

The standard SOC model is derived from first principles in
previous studies (Aschwanden 2012, 2014, 2022). A brief
summary of the calculations that clarify the assumptions made
here is given in the following, while a more detailed description
is provided in Aschwanden (2022).

We start with the size distribution N(L) of length scales L,
also called the scale-free probability conjecture,

( ) ( )N L dL L dL, 1dµ -

where d is the Euclidean space dimension, which is set to d= 3
for most real-world data. The power-law indices αx of the size
distribution functions can then be calculated for every SOC

parameter x by variable substitution La x,

( ) ( ) ( )N x dx L x
dL

dx
dx x dx, 2d x= = a- -⎛

⎝
⎞
⎠

which just requires the scaling law x(L) as a function of the
length scale L, the inverted scaling law function L(x), and its
derivative dL/dx. Thus, we need to make an assumption of a
scaling law x(L) of each SOC parameter of interest.
For the spatial parameters we define the fractal dimensions

for 2D areas A, which is identical to the fractal Hausdorff
dimension DA≈ 3/2,

( )A L , 3DA=

and likewise for the 3D volume V, which is identical to the
fractal Hausdorff dimension DV≈ 5/2,

( )V L . 4DV=

We can estimate the numerical values of the fractal dimensions
DA and DV from the mean of the minimum and maximum
values in each Euclidean domain,

( ) ( ) ( )D
D D

2

1 2

2

3

2
1.50, 5A

A A,min ,max=
+

=
+

= =

and correspondingly,

( ) ( ) ( )D
D D

2

2 3

2

5

2
2.50. 6V

V V,min ,max=
+

=
+

= =

In the standard SOC model we need four more scaling laws.
The time duration T of an SOC avalanche can be linked to
spatial (fractal) structures by the diffusive behavior,

( )T L , 72µ b

where the coefficient is β= 1 for classical diffusion, β< 1 for
subdiffusive transport, and β> 1 for hyperdiffusive transport
(also called Lévy flight). Furthermore, we need a relationship
between the mean flux F and the emitting volume V,

( )F V L , 8DVµ =g g

which is generally found to be near to proportional; hence, we
set γ= 1. A relationship between the peak flux P and the length
scale L is

( )P V L , 9dµ =g g

where the flux F (Equation (8)) is maximized to the peak flux
P, i.e., ( ) [ ( )]P t max F tpeak = , by replacing the dimension DV in
Equation (8) with the Euclidean dimension d, i.e., DVa d.
Finally, the fluence or energy E1, which is expressed by the

product of the mean flux F and the event duration T (for a
spatiotemporal SOC event) yields (Crosby et al. 1993)

( ) ( )( )E F T L . 10D
1

2V= ´ µ g b+

If we assume classical diffusion (β= 1) and flux-volume
proportionality (γ= 1), the four basic scaling laws are reduced
further to T∝ L2 (Equation (7)), F∝ L2.5 (Equation (8)), P∝ L3

(Equation (9)), and E1∝ L4.5 (Equation (10)). In this frame-
work, there are no free parameters, and the power-law slopes
αx of the size distributions,

( ) ( )N x dx x dx, 11x= a-

Table 1
Parameters of the Standard SOC Model, with Fractal Dimensions Dx and

Power-law Slopes αx of Size Distributions)

Parameter Power-law Slope
Power-law
Slope

Analytical Numerical

Euclidean
dimension

d = 3.00

Diffusion type β = 1.00

Area fractal
dimension

DA = d − (3/2) = 1.50 = (3/2)

Volume fractal
dimension

DV = d − (1/2) = 2.50 = (5/2)

Length αL = d = 3.00
Area αA = 1 + (d − 1)/DA = 2.33 = (7/3)
Volume αV = 1 + (d − 1)/DV = 1.80 = (9/5)
Duration αT = 1 + (d − 1)β/2 = 2.00
Mean flux αF = 1 + (d − 1)/(γDV) = 1.80 = (9/5)
Peak flux αP = 1 + (d − 1)/(γd) = 1.67 = (5/3)
Spatiotemporal

energy
( ) ( )d D1 1 2E V1a g b= + - + = 1.44 = (13/9)

Thermal energy
(h = const)

D1 2E A2a = + = 2.33 = (7/3)

Thermal energy
(h = A 1/2)

D1 2E V3a = + = 1.80 = (9/5)
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of all SOC parameters x= [A, V, T, F, P, E] can be predicted by
variable substitution (Equation (2)), yielding the values DA= 3/2,
DV= 5/2, αA= 7/3≈ 2.33, αV= 9/5≈ 1.80, αT= 2, αF=
9/5≈ 1.80, αP= 5/3≈ 1.67, and 13 9 1.44E1a = » , as listed
in Table 1.

Comparison of these theoretical predictions of power-law
slopes x

theoa with observed size distributions x
obsa have been

presented in Aschwanden (2022). Among the solar flare data
sets that apply the spatiotemporal energy model (Equation (10);
Table 2), we identify hard X-ray data (Crosby et al. 1993; Lu
et al. 1993), gamma-ray data (Perez Enriquez & Miroshni-
chenko 1999), soft X-ray data (Drake 1971), and EUV data
(Brkovic et al. 2001; Uritsky et al. 2013), which exhibit a mean
power slope of 1.47 0.07E

obs
1

a =  , agreeing well with the
theoretical prediction ( )13 9 1.44E

theo
1

a = » (Table 2).

2.2. The 2D Thermal Energy Model

The energy of a spatiotemporal SOC event is defined in the
standard SOC model by the product of the count rate (F) and
the event duration (T) (Equation (10)), which is appropriate for
nonthermal energies that are quantified by hard X-ray counts
(or intensity) in solar and stellar flares. In both solar or stellar
flares, down to nanoflares, one can estimate thermal (radiative)
energies at the peak time of an event, defined by

( ) ( )E k n T V3 , 12B e e2 =

where kB is the Boltzmann constant, ne is the electron density, Te
is the electron temperature, and V is the 3D volume, all measured
at the peak time of an event. The 3D volume V cannot be
measured directly, which led some authors to approximate the
volume with a constant height h0 in the line of sight,

( )V A h L h , 13D
0 0A= =

while the fractal area is defined as A LDA= . The fractality is not
explicitly mentioned in some of these studies, but every pattern
recognition code that measures an area on a pixel-by-pixel basis
(at different spatial resolutions) yields approximately the fractal
area A LDAµ with DA< 2, rather than the encompassing
Euclidean area A= L2. Inserting the area fractal dimension
DA= 3/2 (Equation (5)) into the expression for the thermal

energy E LD
2 Aµ (Equation (12)), we obtain

( ) ( )E k n T h L3 . 14B e e
D

2 0 A=

The same way as we substituted the variable L in the size
distribution with the energy x= E (Equations (1) and (2)),

( ) ( ) ( )N E dE L E
dL

dE
dE E dE , 15d

2 2 2
2

2 2 2
E2= = a- -

⎜ ⎟
⎛
⎝

⎞
⎠

yielding the power-law slope E2a , for d= 3 and DA= 3/2,

( ) ( )d

D
1

1 7

3
2.33. 16E

A
2a = +

-
= »

Note that we treat the variables ne, Te, and h0 as constants here,
while the scaling law hinges entirely on the correlation between
the thermal energy E2 and the length scale L, rendering a first-
order approximation to the power-law slope E2a . Since the
thermal energy E V LD

2 Aµ µ (Equation (14)) and the fractal
area A LDAµ (Equation (13)) have the same scaling law, the
power-law index for the size distribution of areas αA has the
same power-law index E2a too,

( )7

3
2.33. 17A E2a a= = »

The definition of the energy made here (Equation (12)) invokes an
isothermal plasma. Nevertheless, the definition of the thermal
energy can accommodate a multithermal formalism, which
involves a differential emission measure distribution function
dEM(Te)/dTe, characterized by the increase in the emission
measure EM, the (mean) electron density ne, and the volume V,

( )EM n V , 18e
2=

which inserted into Equation (12) yields

( ) ( ) ( )E k T EM V k T EM A h3 3 . 19B e B e2 0= ´ = ´

Size distribution of thermal energies, based on emission measure
changes EM, yields power-law slopes of 2.38 0.09E2a = 
(Krucker & Benz 1998; Parnell & Jupp 2000; Benz &
Krucker 2002), which match closely the theoretically expected
value of αE= 2.33 (Equation (16); Table 3).

Table 2
Observed Frequency Distributions of Spatiotemporal Energies E = F ∗ T, by Integrating the Flux Rate F in Space and Time T

Power-law Slope Instrument Observed Reference
of Energy Wavelength Phenomenon
αE

1.53 ± 0.02 HXRBS(>25 keV) solar flares Crosby et al. (1993)
1.51 ± 0.04 HXRBS(>25 keV) solar flares Crosby et al. (1993)
1.48 ± 0.02 HXRBS(>25 keV) solar flares Crosby et al. (1993)
1.53 ± 0.02 HXRBS(>25 keV) solar flares Crosby et al. (1993)
1.51 ISEE3(>25 keV) solar flares Lu et al. (1993)
1.39 ± 0.01 PHEBUS(>100 keV) solar flares Perez Enriquez & Miroshnichenko (1999)
1.44 Explorer SXR 2-12 A solar flares Drake (1971)
1.34 ± 0.08 SMM/FCS, OV blinkers Brkovic et al. (2001)
1.50 ± 0.04 SOHO/EIT 195,HMI EUVE events Uritsky et al. (2013)

1.47 ± 0.07a Mean of nine observations
1.44 Theoretical prediction

Note.
a Bold font indicates theoretical values, while roman font indicates observational values.
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2.3. The 3D Thermal Energy Model

In the 3D version of the thermal model, the SOC avalanche
volume V LDVµ (Equation (4)) is defined by the (mean)
Hausdorff dimension DV= (5/2) (Equation (6)), which
inserted into the expression for the thermal energy is

( ) ( )E k n T L3 . 20B e e
D

3 V=

We substitute the variable L in the size distribution of the
thermal energy E3 (Equation (14)),

( ) ( ) ( )N E dE L E
dL

dE
dE E dE , 21d

3 3 3
3

3 3 3
E3= = a- -

yielding the power-law slope E3a , for d= 3 and DV= 5/2,

( ) ( )d

D
1

1 9

5
1.80. 22E

V
3a = +

-
= =

Note that the power-law slope is substantially steeper in the 2D
model ( 2.33E2a = ) than in the 3D version ( 1.80E3a = ).
Moreover, the two models predict power-law slopes below
( 2E2a < ), as well as above ( 2E3a > ) the critical value of
αE= 2, which decides whether the nanoflare population diverges
at the low end or upper end of the size distribution. Calculations of
the multithermal energy using a 3D model have been performed
using Yohkoh, TRACE, SOHO, AIA, and IRIS data (Shi-
mizu 1995; Berghmans et al. 1998; Berghmans & Clette 1999;
Parnell & Jupp 2000; Aschwanden & Parnell 2002; Uritsky et al.
2007; Joulin et al. 2016; Nhalil et al. 2020; Kawai & Imada 2022;
Purkhart & Veronig 2022), as listed in Table 4.

3. Discussion

3.1. Scaling Laws

Scaling laws, typically expressed by variables (x, y, K) with
power-law dependencies, xαyβ ... = const, are powerful tools to
test parameter correlations and size distribution functions. If a
scaling law function y(x) and a single size distribution N(x) are
known, we can derive the size distribution N(y) of a correlated
parameter by variable substitution, N(y)dy=N(x[y])(dx/dy)dy.
This way we can predict theoretical size distributions N(y) based
on observed size distributions N(x), as well as significant
correlations between variables. Here we explore the size
distributions of nine variables x= [L, A, V, T, F, P, E1, E2, E3]
in a unified scheme (Table 1). We focus mainly on the three
energy parameters x= [E1, E2, E3], which represent the
spatiotemporal energy (E1), and the 2D (E2) and 3D fractal

thermal energies (E3). Additional forms of energy definitions in
solar and stellar flares (such as magnetic energies, radiative
energies, conductive energies, coronal mass ejection kinetic or
potential energies, etc.) are studied elsewhere (e.g., Aschwanden
et al. 2017). The fact that we can predict energy size distribution
functions, [NE1, NE2, NE3], within the statistical uncertainties,
corroborates the validity of the unified scaling laws derived here.
Specifically, the scaling laws used here involve fractality, diffusive
transport, flux-volume proportionality, spatiotemporal energy, and
thermal energies in a fractal volume. The unified formalism to
calculate size distributions based on the scale-free probability
conjecture (Equation (1)) appears to be a sound method to obtain
(macroscopic) physical scaling laws in (microscopic) SOC
systems. We mention as a caveat, however, that careful treatment
has to be applied to small number statistics, truncation biases, data
undersampling, background subtraction, inadequate fitting ranges,
and deviations from ideal power-law functions.

3.2. Power-law Slopes

Our unified method of implementing physical scaling laws in
the calculation of size (or occurrence rate) distribution functions
yields a power-law slope αx for every SOC parameter x. Thus, we
have a unique correspondence of a scaling law with the power-
law slope α. Our results yield a power-law slope of E1a =
( )13 9 1.44= for an SOC system with spatiotemporal avalanche
energies, a slope of ( )7 3 2.33E2a = = for the thermal energy in
an SOC system with 2D geometry, and ( )9 5 1.80E3a = = for
the thermal energy in an SOC system with 3D geometry. We can
discard the model with the fractal 2D geometry, but it explains
why some researchers found relatively high values of αE> 2. So
we are left with relatively low values of αE< 2 for realistic energy
models, such as 1.44E1a » for spatiotemporal avalanches, or

1.80E3a » for 3D fractal avalanches. Although we obtain a well-
defined value for the power-law slope αE for each size
distribution, we should keep in mind that the estimation of fractal
dimensions has some uncertainties within the fractal domains,
such as in the ranges of 1�DA� 2 and 2�DV� 3, respectively
(Aschwanden & Aschwanden 2008a, 2008b). In principle, one
can measure the values of the fractal dimensions DA and DV from
the observed (fitted) power-law slopes αA and αV, i.e.,
DA= 2/(αA− 1) and DV= 2/(αV− 1) (Table 1).

3.3. Nanoflares and Coronal Heating

It was pointed out early on that power-law distributions
N(E)∝ E−α of energies, with a slope flatter than the critical
value of αE= 2, imply that the energy integral diverges at the

Table 3
Observed Frequency Distributions of Thermal Energies E2 Calculated from Peak Emission Measures and Temperatures with 2D Fractal Model and Constant Line-of-

sight Depth (h0 = const)

Power-law Slope of Instrument Observed Reference
Fluence or Energy Wavelength Phenomenon

E2a

2.45 ± 0.15 EIT 171,195 EUV transient Krucker & Benz (1998)
2.30 ± 0.30 TRACE 171,195 Nanoflares Parnell & Jupp (2000)
2.48 ± 0.11 TRACE 171,195 Nanoflares Parnell & Jupp (2000)
2.31 EIT 171,195 EUV transient Benz & Krucker (2002)

2.38 ± 0.09a Mean of four observations
2.33 Theoretical prediction

Note.
a Bold font indicates theoretical values, while roman font indicates observational values.

4

The Astrophysical Journal Letters, 934:L3 (7pp), 2022 July 20 Aschwanden



upper end Emax, and thus the total energy of the distribution is
dominated by the largest events (Hudson 1991),

( ) ( )

[ ]

( )

E E N E dE E dE

E E

1

1

2
.

23

E

E

E

E

tot
1

max
2

min
2

E

e

min

max

min

max

ò ò a

a
a

= ´ = -

=
-
-

-

a

a a

-

- -⎛
⎝

⎞
⎠

In the opposite case, however, when the power-law distribution
is steeper than the critical value, it will diverge at the lower end
Emin, and thus the total energy budget will be dominated by the
smallest detected events, an argument that was used for
dominant nanoflare heating (Krucker & Benz 1998). However,
subsequent simulations demonstrated that there exists a strong
bias toward a steeper slope ( –2.3 2.6E2a » ) if the assumption
of a constant line-of-sight depth is assumed (h0 = const), while
the application of an isotropic geometry (h= A1/2) lowers the
power-law slope to α≈ 2.0 (Parnell & Jupp 2000; Benz &
Krucker 2002). In our analytical 2D fractal model we predict a
power-law slope of αE2= (7/3)≈ 2.33 (Table 3), which agrees
well with the spread of observed values, 2.38 0.09E2a = 
(Table 3). This result shows clearly that the size distribution of
nanoflares has a power-law slope of α< 2, for both the
spatiotemporal model ( ( )13 9 1.44E1a = » ), as well as for the
3D fractal thermal energy model ( ( )9 5 1.80E3a = = ), which

implies that the energy in nanoflares does not diverge at the
lower end, E 10min

24 erg, and that nanoflares are not the
dominant contributor to the heating of the solar corona.
Alternatively, one could argue that the magnetic reconnection

process, considered to be the primary mechanism of nanoflares,
occurs in quasi-2D current sheets, which would naturally lead to
V∝A. Averaging over many randomly oriented current sheets
would give the same results, assuming that their orientation is
independent of the size, which seems to be the case in MHD
turbulence. Sub-MHD-scale simulations demonstrate that the
reconnecting current sheets can actually break into quasi-1D
current filaments for which the V∝A scaling would also hold,
and both V and A would scale linearly with L, probably yielding
an even steeper energy distribution slope (Daughton et al. 2011).
This way the conditions for α> 2 can in fact be possible. The
SOC nanoflare scenario may exist although the conditions can be
nontrivial. The presented analysis shows that the nanoflare heating
in an SOC-like coronal plasma environment requires a particular
magnetic geometry of the reconnecting plasma region. If this is
the case, this could be an important new constraint for future
simulations and observations.

4. Conclusions

In this study we test whether the standard self-organized
criticality model can predict the size (or occurrence frequency)
distribution functions ( )N x dx x xµ a- of physical parameters x in
solar flares, down to the nanoflare regime with energies of

Table 4
Observed Frequency Distributions of Thermal Energies E3 Based on 3D Fractal Model with Isotropic Line-of-sight Depth h A=

Power-law Slope of Instrument Observed References
Fluence or Energy Wavelength Phenomenon

E3a

1.55 ± 0.05 Yohkoh Solar flares Shimizu (1995)
1.90 SOHO/EIT 195 EUV transient Berghmans et al. (1998)
1.73 ± 0.28 SOHO/EIT 195 EUV transient Berghmans & Clette (1999)
2.05 ± 0.05 TRACE 171,195 nanoflares Parnell & Jupp (2000)
1.57 ± 0.05 Yohkoh SXT/AlMg nanoflares Aschwanden & Parnell (2002)
1.41 ± 0.09 Yokhoh SXT/AlMg nanoflares Aschwanden & Parnell (2002)
1.81 ± 0.10 TRACE 195 nanoflares Aschwanden & Parnell (2002)
1.70 ± 0.17 TRACE 195 nanoflares Aschwanden & Parnell (2002)
1.86 ± 0.07 TRACE 171 nanoflares Aschwanden & Parnell (2002)
2.06 ± 0.10 TRACE 171 nanoflares Aschwanden & Parnell (2002)
1.66 SOHO/EIT 195 nanoflares Uritsky et al. (2007)
1.79 ± 0.01 AIA/SDO 171 A coronal brightenings Joulin et al. (2016)
1.83 ± 0.01 AIA/SDO 193 A coronal brightenings Joulin et al. (2016)
1.88 ± 0.01 AIA/SDO 211 A coronal brightenings Joulin et al. (2016)
1.80 ± 0.01 IRIS nanoflares Nhalil et al. (2020)
2.07 ± 0.02 IRIS nanoflares Nhalil et al. (2020)
2.00 ± 0.20 AIA/SDO flares Kawai & Imada (2022)
Outliers:
(2.15 ± 0.01)a AIA/SDO 131 A coronal brightenings Joulin et al. (2016)
(2.53 ± 0.01)a AIA/SDO 335 A coronal brightenings Joulin et al. (2016)
(2.28 ± 0.03)b AIA/SDO nanoflares Purkhart & Veronig (2022)

1.80 ± 0.18c Mean of 17 observations
1.80 Theoretical prediction

Notes.
a No large events are detected in the 131 Å and 335 Å high-temperature bands during the time of observations, which causes a steeper power-law slope (Joulin et al.
2016).
b High-energy events could have significant uncertainties since they may heavily depend on accurate event combinations between many pixels, one of the most
challenging steps in the event detection algorithm (Purkhart & Veronig 2022).
c Bold font indicates theoretical values, while roman font indicates observational values.
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E 1024 erg. We focus mostly on energy parameters, such as the
spatiotemporal avalanche energy (E1), the 2D fractal energy model
(E2), and the more realistic 3D fractal energy model (E3). For this
three energy models, power-law slopes of αE1= 1.44, αE2= 2.33,
and αE3= 1.80 are predicted. We test these predictions from
literature values and find mean slopes of αE1= 1.47± 0.07 from 9
data sets (Table 2), αE2= 2.38± 0.09 from 4 data sets (Table 3),
and αE3= 1.80± 0.18 from 17 data sets (Table 4), which all are
fully self-consistent with the predicted values.

The related observations include solar flares observed in hard
X-rays, soft X-rays, and EUV wavelengths, from large flares with
energies of E 1033 erg down to nanoflares (specified as EUV
transients, coronal brightenings, or blinkers). We consider both the
spatiotemporal (or standard SOC) model as well as the 3D fractal
energy model, based on emission measure analysis, as realistic
tools to quantify the energy of flares and nanoflares, while the 2D
version of the fractal energy model (E2) significantly over-
estimates the power-law slope of the energy size distributions. The
analytical approach clearly demonstrates that the size distribution
of nanoflares has a power-law slope of α< 2, and thus the energy
in nanoflares does not diverge at the lower end of the size
distributions, so that nanoflares do not qualify to be dominant
contributors to the heating of the solar corona.

While numerical Monte Carlo–type simulations leave the
option of a supercritical value of αE 2 open (Krucker &
Benz 1998; Parnell & Jupp 2000), we demonstrate in this Letter
that this conclusion is true only for the unrealistic 2D fractal
energy model E2, observationally ( 2.38 0.09E2a =  ), as well
as theoretically ( ( )7 3 2.33E2a = » ). Consequently, the power-
law slope is flatter (αE< 2) for at least two energy models (the
spatiotemporal standard SOC model 1.44E1a = , and the 3D
fractal energy model 1.80E3a = ), which implies that heating of
the corona in active regions is dominated by large (M- and
X-class) flares. The same argument holds for quiet-Sun regions,
where the largest events in each size distribution (of nanoflares,
microflares, EUV transients, coronal brightenings, blinkers, etc.)
dominate the energy budget (see power-law slopes E3a of energies
in Table 4), rather than the smallest events.

Appendix
SOC Glossary

In this appendix we provide a glossary of the most basic
terms used in the SOC models described in this Letter.

area A: a two-dimensional spatial measure that scales with
A∝ L2 as a function of a length scale L (in the case of
nonfractal geometry). A fractal area can be extracted from an
image I(X, Y) by identifying the sum of all image pixels above
some threshold I0, i.e., I(X, Y)� I0.

avalanche event: the coherent spatiotemporal evolution I(X,
Y, t) of a randomly triggered instability.

cellular automaton: the original Bak–Tang–Wiesenfeld SOC
model, which results from numerically simulated next-neighbor
interactions in a lattice grid geometry.

energy E: of an avalanche event is the integral of the time-
dependent flux F(t) or intensity I(t), integrated over the
thresholded area A(t), often approximated with the product of
the flux F(t) and event duration T, i.e., E≈ F× T.

Euclidean dimension D: characterizing the spatial topology
of an SOC event, such as a curvilinear geometry L (with
Euclidean dimension D= 1), an area A (with Euclidean
dimension D= 2), or a volume V (with Euclidean dimen-
sion D= 3).

emission measure: EM is closely related to the flux F or
intensity I emitted by free–free bremsstrahlung in the optically
thin regime, defined by the product of the squared electron
density ne

2 and volume V, i.e., EM n Ve
2= .

event duration: measured from the time interval T where the
flux or intensity I(t)> I0 exceeds a threshold value I0, attributed
to an event-unrelated background.
fluence: F is the time integral E of the flux F(t), i.e., E= ∫F

(t) dt, often approximated with the product of the flux
maximum and the event duration, [ ( )]E max F t T» ´ .
fractal dimension D: the geometric scaling of an area A with

the length scale L, i.e., ( ) ( )D A Llog logA = , or of the volume,
i.e., ( ) ( )D V Llog logV = . It is an extension of the Euclidean
dimension (with integer values D= 1, 2, 3), to noninteger
values.
frequency occurrence distribution function: identical to the

term “size distribution,” which for power-law functions is
defined as ( )N x dx x dxxµ a- , with αx being the power-law
index, generally being different for every physical parameter x.
Hausdorff dimension: equivalent to fractal dimension.
lattice grid: a numerical 3D Cartesian coordinate system [Xi,

Yj, Zk] (in the case of three dimensions), which is used to track
next-neighbor interactions in cellular automaton simulations.
nonfractal: equivalent to Euclidean dimensions D= 1, 2, 3.
nonlinear growth: the spatiotemporal evolution of an SOC

avalanche after it has been triggered by a random disturbance
of next-neighbor interactions.
pixel: the spatial element of a two-dimensional (2D)

lattice grid.
power law: a generic function N(x)dx=N0x

−αdx that results
from initial nonlinear growth and saturation after a random
timescale (Rosner & Vaiana 1978).
size distribution: equivalent to occurrence frequency dis-

tribution function.
scale-free probability conjecture: the relationship N(L)dL∝

L−D, expressing the reciprocal relationship between the number
of events N(L) and the size L of the events, where D is the fractal
(or nonfractal) dimensionality (Aschwanden 2012).
scaling law: describing the scale invariance found in many

nonlinear evolution processes. The functional relationship is of
the form of power indices, e.g., z(X, Y)∝ XαYβ.
spatiotemporal event: including both transport in space and

time, such as the standard diffusion equation, i.e., L(T)∝ T1/2.
self-organized criticality (SOC): the generic term of the Bak–

Tang–Wiesenfeld model (Bak et al. 1987, 1988).
volume: V is a three-dimensional volume that scales with

V∝ L3 (in the case of a nonfractal geometry).
voxel: the spatial element of a discretized three-dimensional

(3D) lattice grid.
waiting time distribution: the distribution of time intervals

Δti= ti+1− ti that are measured between subsequent SOC
avalanches.
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