

ISSN: 2231-0851

SCIENCEDOMAIN international

www.sciencedomain.org

The Domination Number of $P_m \times \overrightarrow{P_n}$

Ramy Shaheen^{1*} and Mohammad Assaad^{1*}

¹Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria.

Authors' contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

Received: 29th October 2016 Accepted: 15th December 2016

Published: 26th January 2017

DOI: 10.9734/BJMCS/2017/31051 <u>Editor(s):</u> (1) Radko Mesiar, Head, Department of Mathematics, Faculty of Civil Engineering, Slovak University of Technology Bratislava, Slovakia. <u>Reviewers:</u> (1) Ali Mohammed Yahya Sahal, Hodeidah University, Yemen. (2) Derya Doğan Durgun, Manisa Celal Bayar Univesity, Turkey. (3) N. Meena, The M.D.T. Hindu College, Tirunelveli, Tamilnadu, India. Complete Peer review History: <u>http://www.sciencedomain.org/review-history/17619</u>

Original Research Article

Abstract

A mixed graph $G_M(V, E, A)$ is a graph containing unoriented edges (set E) as well as oriented edges (set A), referred to as arcs. In this paper we calculate the domination number of the Cartesian product of a

path P_m with directed path $\overrightarrow{P_n}$ (mixed-grid graph ($P_m \times \overrightarrow{P_n}$) for $8 \le m \le 10$ and arbitrary n.

Keywords: Graph; directed graph; Cartesian product; path; directed path; mixed graph; mixed-grid graph; dominating set; domination number.

2010 Mathematics subject classification: 05C69, 05C38.

1 Introduction

All graphs and digraphs are assumed to be loopless and without duplicate edges or arcs. A mixed graph GM(V, E, A) is a graph containing unoriented edges (set E) as well as oriented edges (set A), referred to as arcs. This notion was first introduced in [1].

^{*}Corresponding authors: E-mail: shaheenramy2010@hotmail.com, mohammadassaad1@gmail.com;

Let $G = (V_1, E)$ be a graph and $D = (V_2, A)$ be a digraph. The Cartesian product $G \times D$ is the *mixed-graph* with vertex set $V(G \times D) = V_1(G) \times V_2(D)$ and edge (arc) set is $((u_1, v_1), (u_2, v_2) \in E(G \times D)$ if and only if either $v_1 = v_2$ and $(u_1, u_2) \in E(G)$ or $u_1 = u_2$ and $(v_1, v_2) \in A(D)$. A subset S of the vertex set $V(G \times D)$ is a dominating set of $G \times D$ if for each vertex $v \in G \times D$ there exists a vertex $u \in S$ such that (u, v) is an edge (arc) of $G \times D$. The domination number of $G \times D$, $\chi(G \times D)$, is the cardinality of the smallest dominating set of $G \times D$.

Let P_m be a path with vertex set $V(P_m) = \{1, 2, ..., m\}$, and edge set $E(P_m) = \{(i, i+1) : 1 \le i \le m-1\}$, and let $\overrightarrow{P_n}$ be a directed path with vertex set $V(P_n) = \{1, 2, ..., n\}$, and arc set $A(P_n) = \{(i, i+1) : 1 \le i \le n-1\}$. Then for Cartesian product P_m and $\overrightarrow{P_n}$ is mixed-grid graph $P_m \times \overrightarrow{P_n}$ with $V(P_m \times \overrightarrow{P_n}) = \{(i, j): 1 \le i \le m, 1 \le j \le n\}$, such that there is an arc from (i, j) to (p, q) if and only if i = p and q- j = 1 and is an edge from (i, j) to (p, q) if and only if j = q and p - i = 1. The *i*th row of $V(P_m \times \overrightarrow{P_n})$ is $R_i = \{i = i = 1, 2, ..., m\}$. If S is a dominating set for $P_m \times \overrightarrow{P_n}$, then we denote $W_j = S \cap K_j$. Let $s_j = |W_j|$, where the sequence $(s_1, s_2, ..., s_n)$ is called a dominating sequence corresponding to S. For $1 \le j \le n$, the vertices of *j*-column are dominated by vertices of *i*-row, (*i*-1)-row or (*i*+1)-row. The vertices of the first row are dominated only by vertices of R_1 or R_2 . Thus the following is true:

$$\gamma(P_{\mathrm{m}} \times P_{\mathrm{n}}) \leq \gamma(P_{\mathrm{m}} \times \overrightarrow{P_{\mathrm{n}}}) \leq \gamma(P_{\mathrm{m}} \times \overrightarrow{P_{\mathrm{n}}}).$$

For finding domination number of grid graphs $P_m \times P_n$, Jacobson and Kinch in [2], were calculated the domination number of cartesian product of undirected paths P_m and P_n for m = 1, 2, 3, 4. The cases m = 5, 6 were calculated by Chang and Clark [3]. Also, Chang et al. [4], established the upper bounds of cartesian product of undirected paths P_m and P_n for $5 \le m \le 10$ and arbitrary n. In [5], Gravier and Mollard given un upper and lower bounds of general cartesian product of two undirected paths. Goncalves et al., [6] proved Chang's conjecture saying that for every $16 \le n \le m$, $\gamma(P_m \times P_n) = \lfloor (n+2)(m+2)/5 \rfloor - 4$.

For domination number of directed grid graphs, Liu et al. [7], they studied the domination number of $\overrightarrow{P_m} \times \overrightarrow{P_n}$ for m = 2, 3, 4, 5, 6 and arbitrary n. Also, in [8] the author studied the domination number of $\overrightarrow{P_m} \times \overrightarrow{P_n}$ for arbitraries m and n. Also, in [9] we have the following results:

$$\gamma(P_1 \times \overrightarrow{P_n}) = \gamma(\overrightarrow{P_n}) = \left\lceil \frac{n}{2} \right\rceil \cdot \gamma(P_2 \times \overrightarrow{P_n}) = n \cdot \gamma(P_3 \times \overrightarrow{P_n}) = n \cdot \gamma(P_4 \times \overrightarrow{P_n}) = \left\lceil \frac{3n}{2} \right\rceil \cdot \gamma(P_5 \times \overrightarrow{P_n}) = \left\lceil \frac{3n}{2} \right\rceil + 1 \cdot \gamma(P_6 \times \overrightarrow{P_n}) = 2n$$
$$\gamma(P_7 \times \overrightarrow{P_n}) = 2n + 2 \cdot \frac{1}{2}$$

2 Main Results

In this section we calculate the domination number of the Cartesian product of a path P_m and a directed path $\overrightarrow{P_n}$ for m = 8, 9, 10 and arbitrary n.

Observation 2.1. Since for each vertex (i, j) $\in V(P_m \times \overrightarrow{P_n})$ has two undirected degrees in V(K_j), one outdegree in V(K_{j+1}) and one indegree from V(K_{j-1}), then can it dominates at must four vertices of $P_m \times \overrightarrow{P_n}$ with itself. Thus implies that $\gamma(P_m \times \overrightarrow{P_n}) \ge mn / 4$.

Observation 2.2. Let S be a dominating set of $P_m \times \overrightarrow{P_n}$. Since the vertices of the first column are dominated only by vertices of K₁. Also, for $2 \le j \le n$, the vertices of j-column are dominated by vertices of j-column or (j-1)-column. Then the following are holds:

- i. $s_1 \ge \lceil m/3 \rceil$.
- **ii.** $s_j + 3s_{j+1} \ge m$ for all j = 1, ..., n.

Lemma 2.1. There is a minimum dominating set S for $P_m \times \overrightarrow{P_n}$ with dominating sequence $(s_1, s_2, ..., s_n)$ such that for all j = 1, 2, ..., n, is $\lceil m/3 \rceil \le s_j \le \lceil m/2 \rceil$, where m > 1.

Proof. Let S be a minimum dominating set for $P_m \times \overrightarrow{P_n}$ with dominating sequence $(s_1, s_2, ..., s_n)$. Assume that for some j, s_j is large. Then we modify S by moving some vertices from column j to column j+1, such that the resulting set is still dominating set for $P_m \times \overrightarrow{P_n}$ (because each vertex in S \cap K_j is dominates only vertices from K_j and K_{j+1}). For $1 \le i \le m$ and $1 \le j \le n$, let W = S \cap {(i, j), (i+1, j), (i+2, j), (i+3, j)}. If |W| \ge 3, then we have three cases:

Case 1. If $\{(1, j), (2, j)\}\subseteq S$ or $\{(m-1, j), (m, j)\}\subseteq S$. Then we can move (1, j) to (1, j+1) or (m, j) to (m, j+1). Furthermore, S is still dominating set of $P_m \times \overrightarrow{P_n}$.

Case 2. |W| = 4, then we put $S_1 = (S-W) \cup \{(i, j), (i+1, j+1), (i+2, j+1), (i+3, j)\}$.

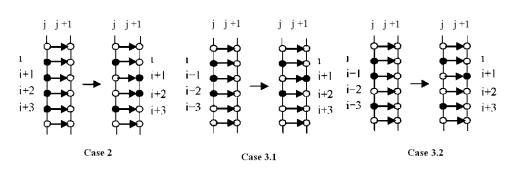
Case 3. |W| = 3, then we have two sub cases:

SubCase 3.1. |W| = 3 and $W = S \cap \{(i, j), (i+1, j), (i+2, j), (i+3, j)\} = \{(i, j), (i+1, j), (i+2, j)\}$ or $W = (i+1, j), (i+2, j), (i+3, j)\}$. Two cases are similar by symmetry, for the first we put $S_1 = (S-W) \cup \{(i, j), (i+2, j), (i+1, j+1)\}$ and for the second we put $S_1 = (S-W) \cup \{(i+1, j), (i+3, j), (i+2, j+1)\}$.

SubCase 3.2. |W| = 3 and $W = S \cap \{(i, j), (i+1, j), (i+2, j), (i+3, j)\} = \{(i, j), (i+1, j), (i+3, j)\}$ or $W = \{(i, j), (i+2, j), (i+3, j)\}$. Also, two cases are similar by symmetry. Then we change S, respectively as follows: $S_1 = (S-W) \cup \{(i, j), (i+3, j), (i+1, j+1)\}$, $S_1 = (S-W) \cup \{(i, j), (i+2, j+1)\}$, see Fig. 1 for cases 2, 3. We repeat this process if necessary eventually leads to a dominating set with required

properties. Also, we get S_1 is a dominating set for $P_m \times \overline{P_n}$ with $|S| = |S_1|$. Thus, we can assume that every four consecutive vertices of the j'th column include at most two vertices of S. This implies that $s_j \le \lceil m/2 \rceil$, for all $1 \le j \le n$.

To prove the lower bound, we suppose that $|K_{j-1} \cap D|$ is be a maximum, i.e., $s_{j-1} = \lceil m/2 \rceil$. Then for each five vertices in K_j must include at last one vertex from S, otherwise K_j contain three successive vertices from S. This contradiction with the upper bounds. Thus we get $s_j \ge \lceil m/5 \rceil$ for all $1 \le j \le n$.



By Lemma 2.1, always we have a minimum dominating set S with dominating sequence $(s_1, s_2,...,s_n)$, such that $\lceil m/5 \rceil \le s_j \le = \lceil m/2 \rceil$, for all j = 1, 2, ..., n. So, for all the next, we consider a minimum dominating set of $P_m \times \overrightarrow{P_n}$ with dominating sequence $(s_1, ..., s_n)$ with $\lceil m/5 \rceil \le s_j \le \lceil m/2 \rceil$, for all j = 1, 2, ..., n.

Proposition 2.1.

i.
$$\gamma(P_m \times \overrightarrow{P_n}) \ge \gamma(P_r \times \overrightarrow{P_n}) + \gamma(P_{m-r-2} \times \overrightarrow{P_n})$$

ii. $\gamma(P_m \times \overrightarrow{P_n}) \le \gamma(P_r \times \overrightarrow{P_n}) + \gamma(P_{m-r} \times \overrightarrow{P_n})$.

Proof. For i and ii, the proofs are easy.

Proposition 2.2.
$$\gamma(P_8 \times \overrightarrow{P_n}) \leq \left\lceil \frac{5n}{2} \right\rceil + 1$$
.

Proof. Let S be a set defined as follows:

$$S = \{(1, 1), (3, 1), (5, 1), (7, 1)\} \cup \{(3, 2j), (7, 2j) : 1 \le j \le \lfloor n/2 \rfloor\} \\ \cup \{(1, 2j+1), (5, 2j+1), (8, 2j+1) : 1 \le j \le \lfloor (n-1)/2 \rfloor\}.$$

We have $|S| = 4 + 2\lfloor n/2 \rfloor + 3\lfloor (n-1)/2 \rfloor$, also S is a dominating set of $P_8 \times \overrightarrow{P_n}$ (see Fig. 2, for $\gamma(P_8 \times \overrightarrow{P_{11}})$). Thus $\gamma(P_8 \times \overrightarrow{P_n}) \le 4 + 2\lfloor \frac{n}{2} \rfloor + 3\lfloor \frac{n-1}{2} \rfloor = \lceil \frac{5n}{2} \rceil + 1$.

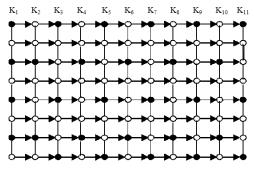


Fig. 2. A dominating set of $P_8 \times \overrightarrow{P_{11}}$

Proposition 2.3.

- i. The case $(s_1, s_2, s_3) = (3, 3, 2)$ is not possible.
- ii. The case $(s_1, s_2, s_3) = (4, 2, 2)$ is not possible.
- iii. There are four possibilities for $(s_j, s_{j+1}) = (2, 2)$.
- iv. The case $(s_j, s_{j+1}, s_{j+2}) = (2, 2, 2)$ is not possible.
- **v.** The case $(s_j, s_{j+1}, s_{j+2}, s_{j+3}) = (2, 2, 3, 2)$ is not possible.

Proof. i and ii by drawing.

- iii. For $(s_i, s_{i+1}) = (2, 2)$ we have four cases are:
 - **a.** {(1, j), (2, j), (4, j+1), (7, j+1)}, **b.** {(1, j), (5, j), (3, j+1), (7, j+1)}, **c.** {(1, j), (8, j), (3, j+1), (6, j+1)}, **d.** {(4, j), (5, j), (2, j+1), (7, j+1)},
- iv. For all cases in iii, we get $(s_i, s_{i+1}, s_{i+2}) = (2, 2, 2)$ is not possible.
- **v.** By Completed drawing of cases $(s_j, s_{j+1}) = (2, 2)$, we deduce that $(s_j, s_{j+1}, s_{j+2}, s_{j+3}) = (2, 2, 3, 2)$ is not possible.

Proposition 2.4.

$$\label{eq:states} \begin{split} \textbf{i.} & s_1 + s_2 \geq 6. \\ \textbf{ii.} & s_1 + s_2 + s_3 \geq 9. \\ \textbf{iii.} & s_1 + s_2 + s_3 + s_4 \geq 11. \\ \textbf{iv.} & s_1 + s_2 + s_3 + s_4 + s_5 \geq 14. \end{split}$$

Proof. i. We have $s_1 \ge 3$ and $2 \le s_j \le 4$. If $s_1 = 4$, then $s_2 \ge 2$ and so $s_1 + s_2 \ge 6$. Let $s_1 = 3$, then needs $|\{(1,1), (2,1), (7,1), (8,1)\} \cap S| = 2$, at the same time $\{(1,1), (2,1), (7,1), (8,1)\} \cap S \neq \{(1, 1), (8, 1)\}$. Suppose $\{(1, 1), (2, 1), (7, 1), (8, 1)\} \cap S = \{(1, 1), (7, 1)\}$ or $\{(2, 1), (7, 1)\}$ where two cases $\{(1, 1), (2, 1), (7, 1), (8, 1)\} \cap S = \{(1, 1), (7, 1)\}$ or $\{(2, 1), (7, 1)\}$ where two cases $\{(1, 1), (2, 1), (7, 1), (8, 1)\} \cap S = \{(1, 1), (7, 1)\}$ or $\{(2, 1), (8, 1)\}$ are similar by symmetry. If $\{(1, 1), (2, 1), (7, 1), (8, 1)\} \cap S = \{(1, 1), (7, 1)\}$, then we need $(4, 1) \in S$ and $s_2 \ge 3$. Thus we get $s_1 + s_2 \ge 6$. Let $\{(1, 1), (2, 1), (7, 1), (8, 1)\} \cap S = \{(2, 1), (7, 1)\}$, then $(4, 1) \in S$ or $(5, 1) \in S$, the two cases are similar by symmetry. Assume that $(5, 1) \in S$, then $s_2 \ge 3$. Thus we get $s_1 + s_2 \ge 6$.

ii. From i we have $s_1 + s_2 \ge 6$. If $s_1 + s_2 \ge 7$, then $s_1 + s_2 + s_3 \ge 9$ {because $s_j \ge 2$ for all j = 1, ..., n}. Suppose $s_1 + s_2 = 6$, then immediately from Proposition 2.3 (i and ii).

iii. It clear from ii and $s_j \ge 2$ for all j = 1, ..., n.

iv. From iii, $s_1 + s_2 + s_3 \ge 9$. If $s_1 + s_2 + s_3 \ge 10$, then finish {because $s_j \ge 2$ }. Let $s_1 + s_2 + s_3 = 9$ and suppose that $\sum_{i=1}^{5} s_i < 14$. Then we must have $s_4 = s_5 = 2$. By proposition 2.3 (iii), we have four cases for (s_4, s_5)

= (2, 2). But for all cases we Get $s_1 + s_2 + s_3 \ge 10$, and this a contradiction. Finally we get $\sum_{j=1}^{5} s_j \ge 14$. \Box

Theorem 2.1. $\gamma(P_8 \times \overrightarrow{P_n}) = \left\lceil \frac{5n}{2} \right\rceil + 1.$

Proof. By Lemma 2.1, $2 \le s_j \le 4$. Observation 2.2, gets $s_1 \ge 3$ and $s_j + 3s_{j+1} \ge m$. Which implies that, if $s_j = 2$ or 3 is $s_{j+1} \ge 2$. By Proposition 2.3, for each four columns including 10 vertices from S. We consider four cases:

Case a. $n \equiv 0 \pmod{4}$. By Proposition 2.4, $s_1 + s_2 + s_3 \ge 9$ and $s_1 + s_2 + s_3 + s_4 \ge 11$ {because $s_j \ge 2$ for all j = 1, ..., n}. Thus

$$\gamma(P_8 \times \overrightarrow{P_n}) = \sum_{j=1}^n s_j \ge \sum_{j=1}^4 s_j + \sum_{j=5}^n s_j \ge 11 + 10 \ \frac{n-4}{4} = \frac{5n+2}{2}$$

Case b. $n \equiv 1 \pmod{4}$. By Proposition 2.4, $\sum_{j=1}^{5} s_j \ge 14$. Then

$$\gamma(P_8 \times \overrightarrow{P_n}) = \sum_{j=1}^n s_j \ge \sum_{j=1}^5 s_j + \sum_{j=6}^n s_j \ge 14 + 10 \frac{n-5}{4} = \frac{5n+3}{2}$$

Case c. $n \equiv 2 \pmod{4}$. By Proposition 2.4, $s_1 + s_2 \ge 6$. Also, gets

$$\gamma(P_8 \times \overrightarrow{P_n}) = \sum_{j=1}^n s_j \ge \sum_{j=1}^2 s_j + \sum_{j=3}^n s_j \ge 6 + 10 \ \frac{n-2}{4} = \frac{5n+2}{2}$$

Case d. $n \equiv 3 \pmod{4}$. By Proposition 2.4, $s_1 + s_2 + s_3 \ge 9$. So

$$\gamma(P_8 \times \overrightarrow{P_n}) = \sum_{j=1}^n s_j \ge \sum_{j=1}^3 s_j + \sum_{j=4}^n s_j \ge 9 + 10 \ \frac{n-3}{4} = \frac{5n+3}{2}.$$

For all the cases, we get

$$\gamma(P_8 \times \overrightarrow{P_n}) \ge \left\lceil \frac{5n}{2} \right\rceil + 1.$$

Finally, Proposition 2.2 together with the last result gets

$$\gamma(P_8 \times \overrightarrow{P_n}) = \left\lceil \frac{5n}{2} \right\rceil + 1.$$

Proposition 2.5.

$$\gamma(P_9 \times \overrightarrow{P_n}) \le 3n : n \le 3.$$

$$\gamma(P_9 \times \overrightarrow{P_n}) \le \left\lceil \frac{5n}{2} \right\rceil + 2 : n \ge 4.$$

Proof. For $n \ge 3$, let $S_1 = \{(2, j), (5, j), (8, j) \text{ for } j = 1, ..., n\}$. If $n \ge 4$, we define S_2 as follows:

 $S_2 = \{(3,1), (7,1)\} \cup \{(1, 2j-1), (5, 2j-1), (9, 2j-1): 1 \le j \le \lceil n/2 \rceil\} \cup \{(3, 2j), (7, 2j): 1 \le j \le \lfloor n/2 \rfloor\}.$

The set S₁ is a dominating set of $P_9 \times \overrightarrow{P_n}$ for $n \le 3$ with $|S_1| = 3n$.

Also, S₂ is a dominating set of $P_9 \times \overrightarrow{P_n}$ for $n \ge 4$ with $|S_2| = 2 + 3 \lceil n/2 \rceil + 2 \lfloor n/2 \rfloor = \lceil 5n/2 \rceil + 2$. (see Fig. 3, for $\gamma (P_9 \times \overrightarrow{P_{13}})$). Thus

$$\gamma\left(P_{9}\times\overline{P_{n}}\right)\leq 3n:n\leq 3.$$
⁽¹⁾

$$\gamma(P_9 \times \overrightarrow{P_n}) \le \left\lceil \frac{5n}{2} \right\rceil + 2 : n \ge 4.$$
⁽²⁾

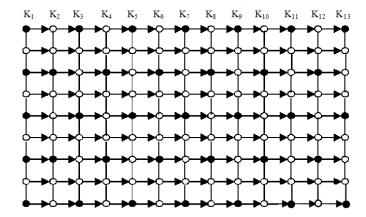


Fig. 3. A dominating set of $P_9 \times P_{13}$

Proposition 2.6.

i. If $s_2 = 2$ then $s_1 = 5$. ii. If $s_3 = 2$ then $s_1 + s_2 \ge 8$. iii. If $(s_1, s_2, ..., s_j) = (3, 3, ..., 3)$ then $s_{j+1} \ge 3$ for $j \ge 2$. iv. If K_j the first column, such that $s_j = |K_j \cap S| = 2$, then $\sum_{d=1}^{j-1} S_d \ge 3(j-1) + 1$ for j > 1.

Proof. i and ii, immediately by drawing.

iii. There is one possible for $s_1 = 3$ is $K_1 \cap S = \{(2, 1), (5, 1), (8, 1)\}$. This implies that $s_2 \ge 3$. If $s_2 = 3$ then $K_2 \cap S = \{(2, 2), (5, 3), (8, 3)\}$. Furthermore, if $s_1 = s_2 = \ldots = s_j = 3$, then $K_j \cap S = \{(2, j), (5, j), (8, j)\}$. Thus gets $s_{j+1} \ge 3$.

iv. Immediately from iii.

Theorem 2.2.

$$\gamma \left(P_9 \times \overline{P_n} \right) = 3n : n \le 3.$$

$$\gamma \left(P_9 \times \overline{P_n} \right) = \left\lceil \frac{5n}{2} \right\rceil + 2 : n \ge 4.$$

Proof. From Observation 2.2 and Lemma 2.1, we have $s_1 \ge 3$ and $2 \le s_j \le 5$. Furthermore, if $s_j = 2$ then $s_{j,1} \ge 3$, i.e., $(s_j, s_{j+1}) = (2, 2)$ is not possible. This implies that, if $s_j = 2$ then

$$\sum_{d=j}^{j+r} s_d \ge \left\lfloor \frac{5(r+1)}{2} \right\rfloor \text{ for } r \ge 1. \text{ We consider two cases:}$$

Case a. If $S_J \ge 3$ for J = 1, ..., n, then $\gamma(P_9 \times \overrightarrow{P_n}) = \sum_{j=1}^n s_j \ge 3n$ for $n \le 3$. Also for $n \ge 4$ is $\gamma(P_9 \times \overrightarrow{P_n}) \ge 3n \ge \left\lceil \frac{5n}{2} \right\rceil + 2$. Then, (1) and (2) together with last results, gets the required.

Case b. $s_j = 2$ for some $j \ge 2$. Suppose K_j is the first column, such that $s_j = 2$. We consider the following subcases:

SubCase b.1. j = 2. By Proposition 2.6, $s_1 = 5$ and $s_3 \ge 3$. Then $\gamma(P_9 \times \overrightarrow{P_n}) = \sum_{j=1}^n s_j \ge 3n$ where n ≤ 3 . For $n \ge 4$, by Proposition 2.6(iv), we have

$$\gamma(P_9 \times \overrightarrow{P_n}) = \sum_{j=1}^n s_j = s_1 + \sum_{j=2}^n s_j \ge 5 + \left\lfloor \frac{5(n-1)}{2} \right\rfloor = \left\lceil \frac{5n}{2} \right\rceil + 2.$$

SubCase b.2. j = 3. By Proposition 2.6, $s_1 + s_2 \ge 8$. Thus $\gamma(P_9 \times \overrightarrow{P_n}) = \sum_{j=1}^n s_j \ge 3n$ where $n \le 3$. For $n \ge 4$, Proposition 2.6(iv), implies

$$\gamma(P_9 \times \overrightarrow{P_n}) = \sum_{j=1}^n s_j = s_1 + s_2 + \sum_{j=2}^n s_j \ge 8 + \left\lfloor \frac{5(n-2)}{2} \right\rfloor \ge \left\lceil \frac{5n}{2} \right\rceil + 2.$$

SubCase b.3. $j \ge 4$. From Proposition 2.6(iv), we get

$$\gamma(P_9 \times \overrightarrow{P_n}) = \sum_{j=1}^n s_j = \sum_{d=1}^{j-1} s_d + \sum_{d=j}^n s_d \ge 3(j-1) + 1 + \left\lfloor \frac{5(n-j+1)}{2} \right\rfloor$$

{because $\gamma(P_9 \times \overrightarrow{P_n})$ is natural number}, then $\gamma(P_9 \times \overrightarrow{P_n}) \ge \left|\frac{5n}{2}\right| + 2$. Thus, for all cases, we have

u v c

$$\gamma(P_9 \times \overrightarrow{P_n}) \ge \left\lceil \frac{5n}{2} \right\rceil + 2.$$

The last result together with (2), gets

$$\gamma(P_9 \times \overrightarrow{P_n}) = \left\lceil \frac{5n}{2} \right\rceil + 2.$$

Proposition 2.7.

$$\gamma \left(P_{10} \times \overrightarrow{P_n} \right) \le 3n + 1 : n \equiv 0 \pmod{2}.$$

$$\gamma \left(P_{10} \times \overrightarrow{P_n} \right) \le 3n + 2 : n \equiv 1 \pmod{2}.$$

Proof. Let S be a set defined as follows:

$$\begin{split} S &= \{(1,1), (4,1), (7,1), (10,1), (3,2), (5,2), (8,2)\} \\ &\cup \{(1,2j{+}1), (5,2j{+}1), (6,2j{+}1), (10,2j{+}1): 1{\leq}j{\leq}{\left\lceil}n/2{\left\rceil}{-}1\} \\ &\cup \{(3,2j), (8,2j): 2{\leq}j{\leq}{\left\lfloor}n/2{\right\rfloor}\}. \end{split}$$

S is a dominating set of $P_{10} \times \overrightarrow{P_n}$ with $|S| = 7 + 4(\lceil n/2 \rceil - 1) + 2(\lfloor n/2 \rfloor) = 3n + 1$ for n is even and |S| = 3n + 2 for n is odd (see Fig. 4, for $\gamma (P_{10} \times \overrightarrow{P_n})$). Thus

$$\gamma(P_{10} \times P_n) \le 3n + 1: n \equiv 0 \pmod{2}.$$

$$\gamma(P_{10} \times \overrightarrow{P_n}) \le 3n + 2: n \equiv 1 \pmod{2}.$$

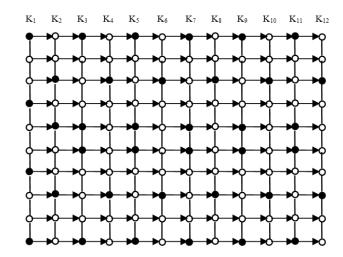


Fig. 4. A dominating set of $P_{10} \times P_{12}$

Proposition 2.8.

i. If $s_2 = 2$ then $s_1 = 6$. **ii.** If $s_2 = 3$ then $s_1 \ge 4$.

Proof. i and ii, immediately by drawing.

Theorem 2.3.

$$\gamma(P_{10} \times P_n) = 3n + 1 : n \equiv 0 \pmod{2}.$$

$$3n + 1 \le \gamma(P_{10} \times \overrightarrow{P_n}) \le 3n + 2 : n \equiv 1 \pmod{2}.$$

Proof. By Observation 2.2 and Lemma 2.1, we have $s_1 \ge 4$ and $2 \le s_j \le 5$. Furthermore, $(s_j, s_{j+1}) = (3, 2)$ is not possible {Observation 2.2(ii)}. Then by Proposition 2.8, gets $\gamma (P_{10} \times \overrightarrow{P_n}) \ge 3n + 1$. Proposition 2.7, together with the last result, produces,

$$\gamma(P_{10} \times P_n) = 3n + 1 : n \equiv 0 \pmod{2}.$$

$$3n + 1 \le \gamma(P_{10} \times \overrightarrow{P_n}) \le 3n + 2 : n \equiv 1 \pmod{2}.$$

In another way, by Proposition 2.1 we get $\gamma(P_{10} \times \overrightarrow{P_n}) \ge 2\gamma(P_4 \times \overrightarrow{P_n}) = 2\left\lceil \frac{3n}{3} \right\rceil$.

Thus

$$\gamma(P_{10} \times \overrightarrow{P_n}) \ge 2\gamma(P_4 \times \overrightarrow{P_n}) = 2\left\lceil \frac{3n}{3} \right\rceil = 3n + 1, \text{ where } n \equiv 1 \pmod{2}.$$

Then Proposition 2.7, including

$$3n + 1 \le \gamma (P_{10} \times P_n) \le 3n + 2 : n \equiv 1 \pmod{2}.$$

3 Conclusion

In this paper, we find the domination numbers of the Mixed-graph $P_m \times \overrightarrow{P_n}$ for m = 8, 9, 10 and arbitrary n. As a future work, we would like to work on the bounds of $\gamma (P_{10} \times \overrightarrow{P_n})$ for arbitraries m and n.

Competing Interests

Authors have declared that no competing interests exist.

References

- Sotskov YN, Tanaev VS. Chromatic polynomial of a mixed graph. Vestsi Akademii Navuk BSSR, Seriya Fiz.-Mat Navuk. 1976;6:20-23. (in Russian).
- Jacobson M, Kinch L. On the domination number of products of graphs I. Ars Combinatoria. 1983;18:33-44.
- [3] Chang T, Clark W. The domination number of the 5xn and 6xn grid graphs. J. of Graph Theory. 1993;17(1):81-107.

- [4] Chang T, Clark W, Hare E. Domination number of complete grid graphs I. Ars Combinatoria. 1994;38:97-111.
- [5] Gravier S, Modlard M. On domination number of Cartesian product of paths complete. Discrete Applied Mathematics. 1997;80:2497-250.
- [6] Goncalves D, Pinlou A, Rao M, Thomasse S. The domination number of grids. SIAM J. Discrete Math. 2011;25(3):1443-1453.
- [7] Liu J, Zhang X, Chen X, Meng J. On domination number of Cartesian product of directed paths. J. Combinatorial Optimization. 2011;22(4):651-662.
- [8] Shaheen R. On the domination number of Cartesian products of two directed paths. Int. J. Contemp. Math. Sciences. 2012;7(36):1785-1790.
- [9] Shaheen R. On domination number of mixed-grid graph. Submitted to Mathematical Communications.

© 2017 Shaheen and Assaad; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) http://sciencedomain.org/review-history/17619