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ABSTRACT 
 

The main attention of this paper is to deduce the estimators of the parameters of the Logistic 
distribution using five estimating methods, namely, the fuzzy least-squares method, the LQ-
moments (linear quantile moments) with three cases (trimean, median and Gastwirth), TL-moments 
(trimmed linear moments) with different individual cases, L-moments (linear moments) and the 
maximum likelihood method. Also, a comparison between the performances of these estimators 
using simulations is given. According to these comparisons, it is shown that the proposed fuzzy 
least-squares algorithm is preferred for large sample size.  
 

  
Keywords:  Logistic distribution; fuzzy least-squares; maximum likelihood; TL-moments; L-moments; 

LL-moments; LH-moments; LQ-moments; simulations. 
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1. INTRODUCTION 
 
The logistic distribution is largely used to model 
events that happen in several fields such as 
medicine, social and natural sciences. Also, the 
logistic distribution arises frequently in statistical 
modelling. It is mostly used in regression 
analysis and studies on population growths. It is 
utilized in the study of survival data, graduation 
of mortality statistics and is used in several 
applications as a substitute for the normal 
distribution. The cumulative distribution function 
of the two-parameter logistic distribution is 
defined by the following: 
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and the probability density function is: 
 

( )

( )
∞<<∞−














+

=
−

−

−
−

x

e

e
xf

x

x

,

1

),;(
2

β

α

β

α

β

βα
   (1-2) 

 
where ∞<<∞− α  and 0>β refer to the 

location and scale parameters. For more 
information on the logistic distribution see 
chapter 23 of Johnson et al. [1]. The 
corresponding quantile function of the logistic 
distribution is given by: 
 

   (1-3) 

 
The distribution is symmetric about the location 
parameter α  and has the same value for the 
mode, the median and the mean =α , while the 
variance is given by: 
 

                (1-4) 

 
Hung and Liu [2] apply a robust fuzzy least-
squares method for estimating the parameters of 
the Weibull distribution in the presence of 
outliers. To tackle this problem, a cluster-wise 
fuzzy least-squares algorithm in the presence of 
a noise cluster is proposed. Numeric 
comparisons between the fuzzy least-squares 
algorithm and other methods (the least absolute 
deviation, the least-squares, the weighted least-

squares and Drapella and Kosznik [3]) are 
executed. These comparisons show that the 
estimates of the location and scale parameters of 
the proposed fuzzy least-squares algorithm is 
preferred for large sample size. 
 
Hosking [4] proposed the L-moments concept 
and deduced that the mean of the distribution 
should be finite to have meaningful L-moments of 
the probability distribution. Also the condition for 
having finite standard errors of L-moments of the 
distribution is that the distribution has a finite 
variance and L-moments, also linear functions 
forms of the data, will be less sensitive than are 
conventional moments to sampling variability of 
the outliers in the data. Elamir and Seheult [5] 
defined the TL-moments and reached at the 
conclusion that TL-moments are more robust to 
outliers, TL-Moments give zero values as 
weights to the extreme observations, they are 
simple to compute and a population TL-Moments 
can be well defined in the case when the relative 
population L-Moments (or central moment) does 
not exist. 
 
Mudholkar and Hutson [6] defined the concept of 
the LQ-moments and arrived at the conclusion 
that LQ-moments are usually simpler to compute 
and estimate than L-moments, LQ-moments 
usually exist and unique and their limiting 
distributions are simpler to obtain. Abu El-Magd 
[7] found the TL-moments and LQ-moments 
estimators of the exponentiated generalized 
extreme value distribution. She gave a numeric 
simulation comparison between TL-moments 
estimators with other estimation techniques (L-
moments estimators, LQ-moment estimators and 
the method of moment estimators) focusing on 
their biases and root mean squared errors. 
 
Zaher et al. [8] gave the estimation for the two-
parameter Pareto distribution using 
the method of fuzzy least-squares. Also, they 
gave a comparison between the fuzzy least-
squares estimator with other types of estimators. 
Firstly, they obtained the LQ-moments, TL-
moments and L-moments formulas for the two-
parameter Pareto distribution. Secondly, they 
obtained the LQ-moments estimator, TL-
moments estimator and L-moments estimator for 
the Pareto distribution. Finally, numeric 
comparisons implemented between the proposed 
method and the available methods. Due to these 
comparisons, they arrived at the conclusion that 
the proposed fuzzy least-squares estimator is 
preferred all times. 
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The attention of this paper is to give the fuzzy 
least-squares method to find the estimates of the 
logistic distribution parameters and to give the 
LQ-moments and TL-moments of the logistic 
distribution. The fuzzy least-squares estimators 
(FLSEs), maximum likelihood estimators (MLEs), 
L-moment estimators (LMEs), TL-moment 
estimators (TLMEs) and LQ-moment estimators 
(LQMEs) of the logistic distribution will be 
derived. A numeric simulation is introduced to 
compare these methods of estimation focusing 
on their root mean squared errors (RMSEs) and 
their biases that will be obtained. 
 
The remaining sections are as follows. In the 
section two, the maximum likelihood estimators 
(MLEs) will be obtained for the logistic 
distribution. In section three, the L-moments and 
the TL-moments with several special cases for 
the logistic distribution will be derived. Also, the 
L-moments estimators (LMEs) and TL-moment 
estimators (TLMEs) will be given for the same 
distribution. In section four, the LQ-moments with 

different special cases (trimean, median and 
Gastwirth) of the logistic distribution will be 
obtained and from these moments the LQ-
moment estimators (LQMEs) for the three cases 
(trimean, median and Gastwirth) will be derived 
for the same distribution. In section five, the 
fuzzy least-squares estimators (FLSEs) of the 
logistic distribution will be obtained by using the 
fuzzy least-squares method. In section six, a 
numeric simulation study to compare the 
properties of the LMEs, TLMEs, LQMEs, MLEs 
and the FLSEs of the logistic distribution will be 
obtained. Finally, the results and conclusion of 
this comparison between different estimators for 
the logistic distribution will be given.  
 
2. MAXIMUM LIKELIHOOD ESTIMATORS  
 
The likelihood function, l, for a sample 

),...,,( 21 nxxx  of the logistic distribution has the 

following form: 
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and taking logarithms, 
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And 
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The estimators of maximum likelihood for α and β  are the result of solving the system of equations 

obtained from the partial derivative of the log-likelihood function, that is, 
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Simplifying, we get the equations from which the estimates can be found numerically  
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3. TL-MOMENTS ESTIMATORS AND L-MOMENTS ESTIMATORS 
 
In this section, the TL-moments of the logistic distribution will be obtained. From the TL-moments with 
generalized trimmed, several special cases can be found as the TL-moments with the first trimmed, 
LH-moments, L-moments and LL-moments for the logistic distribution. 
 
3.1 TL-moments 
 

Let, nXXX ,...,, 21  be a conceptual random sample of n observations from a continuous distribution 

and let, ):():2():1( ... nnnn XXX ≤≤≤ denote the corresponding order statistics. Elamir and Seheult [5] 

defined the rth TL-moment ),( ts

rλ as follows: 

 
 

                         (3-1) 

 
The TL-moments reduce to L-moments (Hosking [4]) when s = t = 0. They considered the symmetric 
case ( ts = ). Hosking [9] have got several conclusions for the TL-moments with common trimmed for 
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s and t (symmetric case ( ts = ) and asymmetric case ( ts ≠ )). They also obtained the coefficient of 
variation of TL-moments TL-CV, the TL-skewness and the TL-kurtosis as follows: 
 

                  (3-2) 

 
Maillet andMédecin[10] gave the relation between the first TL-moments and the rth TL-moments with 
generalized trimmed for s and t (symmetric case )( ts =  and asymmetric case )( ts ≠ ). Actually, it is 

sufficient to compute TL-moments of order one to get all TL-moments. They have got the following rth 
TL-moments: 
 

                                          (3-3) 

 
where t, s = 0, 1, 2,… . This relation had a relative importance and helped to make easier calculations 
for the rth TL-moments with any trimmed and L-moments as special cases of the rth TL-moments with 
common trimmed for t and s. They showed that the TL-moments approach is a general framework 
that encompass the LH-moments, LL-moments and the L-moments. Here, we obtain the rth TL-
moments for the logistic distribution as follows: 
 

                 (3-4) 

 
Due to the given relations, the first four TL-moments with common trimmed for t and s (t, s = 0, 1, 2, 
…,) of the logistic distribution will be: 
 

           (3-5) 
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           (3-8) 

 

From these results, we can find the TL- coefficient of variation ),( tsτ , TL-skewness
),(

3

tsτ and TL-

kurtosis ),(

4

tsτ  with common cut for t and s (t, s = 0, 1, 2, …,) for the logistic distribution. 
 

3.2 Special Cases 
 

Many special cases will be obtained from the first four TL-Moments with generalized trimmed for the 
logistic distribution such as the TL-moments with the first cut, LH-moments, LL-moments and L-
moments for the logistic distribution. 
 

3.2.1 TL-moments with the first trimmed  ( ): 
 

By substituting and  in equations             (3-5), (3-6), (3-7) and (3-8), the first four TL-
moments with the first trimmed for the logistic distribution will be: 
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Based on these results, the TL- coefficient of variation , TL-kurtosis and TL-skewness   

can be obtained with the first trimmed for the logistic distribution. The results for the first four TL-
moments with the first trimmed for the logistic distribution as a special case of the TL-moments with 
common trimmed for t and s (t, s = 0, 1, 2, …,) of the logistic distribution are the same results of 
Elamir and Seheult [5] for the logistic distribution. 
 
3.2.2 L-moments ( ): 

 
By substituting , and  in the rth TL-moments for the logistic distribution, we can obtain the 
rth L-moments for the logistic distribution as follows: 
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Also, we can obtain the first four L-moments for the logistic distribution by substituting , and 
 in equations (3-5), (3-6), (3-7) and (3-8), as a particular case from the TL-moments for the 

logistic distribution. The first four L-moments for the logistic distribution will be:  
 

,1 αλ =                                                                                      (3-14) 

 

,2 βλ =                                                                                      (3-15) 

 

,3 Zero=λ                                                                                (3-16) 

 
and 
 

,
6

4

β
λ =                                                                                    (3-17) 

and with the first four L-moments, we can get the L-coefficient of variation
12 λλτ = , L-kurtosis 

244 λλτ =  and L-skewness 233 λλτ =  for the logistic distribution. The results for the first four L-

moments for the logistic distribution as a particular case of the TL-moments with common trimmed for 
t and s (t, s = 0, 1, 2, …,) of the logistic distribution are the same results of Hosking [4] for the logistic 
distribution. 
 

3.2.3 LH-moments ( 0=t ): 
 
The LH-moments are linear functions of the expectations of the highest rank statistic and were given 
by Wang [11] as an adapted version of L-moments, to typify the upper part of the distribution. When it 
is required to focus on extreme events, the LH-moment method allows to give more importance to the 
largest items. When 0=s , the LH-moment corresponds with the L-moments. As s increases, LH-
moments give more attention on the characteristics of the upper portion of the data. Wang [11] arrived 
at the conclusion that the method of LH-moments gave large sampling variability for high s and 
advised not to use values more than 4.  
 

By substituting 0=t , in equations (3-5), (3-6),  (3-7) and (3-8), the first four LH-moments with 
generalized trimmed for s of the logistic distribution will be:  
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   (3-21) 

 

From these results we can get the LH-coefficient of variation )0,(
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logistic distribution. Furthermore, for s = 1, 2, 3, …, the LH-moments can be found with any cut s for 
the logistic distribution.  
 

3.2.4 LL-moments ( 0=s ): 
 
The LL-moments are linear relations of the expectations of the lowest rank statistic and were given by 
Bayazit and Önöz [12]. L-moments are a particular case for 0=t , and if t increases the importance of 

the lower portion of the data will be increased. By substituting 0=s  in equations (3-5), (3-6), (3-7) 
and (3-8), the first four LL-moments with generalized trimmed for t can be obtained for the logistic 
distribution as follows: 
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                    (3-25) 

 

From these results, it is possible to get the LL-coefficient of variation ),0(
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distribution. Also, it is possible to get the LL-moments for the logistic distribution with any trimmed t for 
t = 1, 2, 3,... . 
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3.3 TL-moments Estimators 
 
The TL-moment estimators (TLMEs) of the logistic distribution for the unknown parameters can be 

found using the equations of the first two population TL-moments ( ),(

1

tsλ , ),(

2

tsλ ) and the corresponding 

to the first two sample TL-moments ( ),(

1

ts
l , ),(

2

ts
l ) for the logistic distribution. Hosking [9] has got the 

first two TL-moments of the sample to be: 
 

                               (3-26) 

and 

                          (3-27) 

 
It is clear that for the special case s = t = 0, the sample TL-moments are the same as the sample L-

moments. Also, the TL-moment estimators (TLMEs) α̂ and β̂  of the logistic distribution can be found 

using the following two equations: 
 

          (3-28) 

 
and 
 

                   (3-29) 

 
which are valid for any trimmed t and s. These equations can be solved numerically for given values 
of t and s. This paper considers the special cases s = t = 1 and s = t = 0 for the logistic distribution.  
 
3.4 L-moments Estimators 
 
In this section, we will give the L-moment estimators (LMEs) for the logistic distribution. If refers to the 

order sample ):():2():1( ... nnnn XXX ≤≤≤ , the first two sample L-moments will be given as follows:  
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Equating the first two L-moments of the population
1λ , 

2λ , to a similar sample L-moments 
1l , 

2l , we 

will get:  

                                                                             (3-32) 

 
and 

 .                                                                           (3-33) 

 

Then, the LMEs of α and β , say **α  and **k , respectively, can be found by using numerical 

examples. 
 
4. LQ-MOMENTS ESTIMATORS 
 
In this section, the use of the LQ-moments for finding the unknown parameters of the logistic 
distribution will be derived. Three special cases (trimean, median and Gastwirth) of the LQ-moments 
used to find the unknown parameters of the logistic distribution. 
 
4.1 LQ-moments 
 

Let, nXXX ,...,, 21 be a random sample from a continuous distribution function )(xF  with quantile 

function )()(
1

uFuQ XX

−= , also, ):():2():1( ... nnnn XXX ≤≤≤ denote the order statistics. Mudholkar 

and Hutson [6] introduced the rth population LQ-moments 
rζ of X, as follows: 

 

                                     (4-1) 

where ,210,210 ≤≤≤≤ pd
 
and 

 

              (4-2) 

 

The linear combination dp,τ  is a 'quick' measure of the location of the sampling distribution of the 

order statistic ):( rkrX − . The candidates for dp,τ  including the function generating the common quick 

estimators by using the trimean ( 41,41 == dp ), the median ( 5.0,5.0 == dp )and the 

Gastwirth ( 31,3.0 == dp ). They also gave the LQ-kurtosis and LQ-skewness for the population 

by 
244 ζζη = and 233 ζζη =  respectively; it may be employed for describing the population and 

estimating its parameters. The symmetrical distributions have the value zero for The LQ-skewness.  
 
The LQ-moments with the three cases (trimean, median, and Gastwirth) will be given for the logistic 
distribution as follows: 
 

4.1.1 The trimean case ( 41,41 == dp ): 

 
Employing the quantile function for the logistic distribution, then the first four LQ-moments for the 
logistic distribution will be given as follows: 
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Where                                                                                                       (4-7) 

 

4.1.2 The median case ( 5.0,5.0 == dp ): 

 
Employing the quantile function for the logistic distribution, then the first four LQ-moments for the 
logistic distribution will be given as follows: 
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4.1.3 The Gastwirth case ( 31,3.0 == dp ):  

 
Employing the quantile function for the logistic distribution, then the first four LQ-moments for the 
logistic distribution will be given as follows: 
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and 
 

           (4-15) 

 
Then, the LQ-kurtosis and the LQ-skewness for each case (trimean, median and Gastwirth) for the 
logistic distribution can be given by using the conclusions for the first four LQ-moments of the logistic 
distribution. 
 
4.2 LQ-Moments Estimators 
 

To evaluate the unknown parameters  and of the logistic distribution employing the LQ-

moments, the first two sample LQ-moments for the logistic distribution will be given by employing the 
following definition of the rth sample LQ-moments: 
 

                                         (4-16) 

where 
 

                  (4-17) 
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):(, rkrdp X −τ is the quick estimator of the location of the distribution of ):( rkrX −  in a random sample of 

size r, and (.)ˆ
XQ denotes the linear interpolation estimator of Q(u) which given by: 

                                                                    (4-18) 

 

where 1],[ +=′′−′= nnununε , and ][ un′  denote the integral part of un′ . Then, the first two 

sample LQ-moments will be given by:  
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By equating the first two population LQ-moments with the first two sample LQ-moments of the logistic 
distribution for each case (trimean, median and Gastwirth), the LQ-moments estimators for the two 
unknown parameters α and β  will be given for each case. 

 

For the trimean case, the LQ-moments estimates (LQMEt) α̂̂ and β
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moments is a function also of α  and β , then solving the equations numerically for  and  to 
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 where  ,    (4-21) 

and 

                            (4-22) 

 

For the median case, the LQ-moments estimates (LQMEm) α̂̂ and β
ˆ̂

will be given by solving the 

following two equations: 
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and, for the Gastwirth case, the LQ-moments estimates (LQMEg) α̂̂ and β
ˆ̂

  will be given using the 

following two equations: 
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  (4-26)

  
5. FUZZY LEAST-SQUARES METHOD 
 
The fuzzy least-squares parameters for the logistic distribution can be obtained by using equation            
(1-1), then we have the following: 
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Taking logarithms of both sides we obtained: 
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                           (5-4) 

 
We can use the estimator for the ordinate of the ith empirical point for the logistic plotting technique as 
follows: 
 

                                                                                          (5-5) 

where iF̂  is a point estimator of ),;( )( βαixF . Several estimators can be employed, for example, the 

mean rank estimator )1(ˆ += niFi
, the median rank estimator )41()83(ˆ +−= niFi

,    

niFi )21(ˆ −=  and )4.0()3.0(ˆ +−= niFi . In this paper, we will employ the mean rank estimator 

)1(ˆ += niFi  to find the fuzzy least squares estimator for the logistic distribution. The least square 

procedure for evaluating the parameters α  and β  is given below.  

Regression analysis may be employed into the model-fitting of observations. The heterogeneous 
problem is generally difficult to be handled in the regression model. But the heterogeneity of 
observations is normally presented in practice. Yang and Ko [13] might take into consideration the 
heterogeneity of observations because of difference clusters of observations. They first cluster the 
observations and then use the class memberships as weights in the weighted least-squares 
estimation, it enables there to treat the heterogeneous problem in the regression model fitting. 
Considering this kind of idea, Yang and Ko [13] advised the use ofthe cluster fuzzy regression 
analysis which embeds fuzzy clustering into fuzzy regression model fitting at each phase in the 

iterations. Given a data set },...,1),,{( njyx jj = , now, we want to fit a data set to the cluster-wise 

fuzzy linear regression model: 
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                                       (5-9) 

 

                                                           (5-10)     

and  
 

                    (5-11) 

 
Therefore, a cluster-wise FLS algorithm for computing a minimizer of ),,( 10 aaJ µ has iterations 

through the necessary conditions (5-9)-(5-11). 
 
A noise cluster is a cluster which has the noise points or outliers. The notion of a noise cluster 
introduced by Dave [14] is that all of the points have equal prior possibility of belonging to a noise 
cluster. However, the "good" points increase their chance of being classified into a "good" cluster as 
the clustering algorithm progresses. It is hoped that all of the noise points (or outliers) can be dumped 
into a noise cluster during a clustering algorithm in progress. Therefore, Dave [14] introduced a noise 

prototype as follows: A point v is called a noise prototype in the distance δν =),( jxd  between the 

data point jx  and v are all equal to a constant δ  , i.e. δν =),( jxd for j=1,…,n. Now the noise 

cluster concept is applied to the cluster-wise FLS. Assume that the cluster (c+1) is a noise cluster, 
then the objective function will be: 
 

         with                (5-12) 

 
and 

  (5-13) 

where  

                                                                                  (5-14) 
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0>γ is a constant. Thus, when c=1, the algorithm with a noise cluster is iterated with the necessary 

conditions (5-9) and (5-10) and also with  
 

                                  (5-15) 

 
Thus, when c=1, the algorithm becomes a robust FLS algorithm for cluster-wise fuzzy regression 

modal .,...,1,1101 njxaay jj =+= This is because outliers will be dumped to a noise cluster 

according to the weight of its membership. This algorithm is used to estimate the logistic parameters 
as follows. In general, we can choose 1=γ  and the index of fuzziness m = 2. Let  
 

                                                          (5-16) 

 

In the cluster-wise fuzzy regression model .,...,1,1101 njxaay jj =+=  then the FLS estimators will 

be:  
 

    and                                                                      (5-17) 

 

6. A SIMULATION STUDY OF THE 
LOGISTIC DISTRIBUTION 

 
A simulation study will be introduced to compare 
between the properties of fuzzy least square 
estimators (FLSEs) with different estimators: 
maximum likelihood estimators (MLEs), TL-
moment estimators (TLMEs), L-moment 
estimators (LMEs) and the three LQ-moment 
estimators {LQMEt (trimean), LQMEm (median) 
and LQMEg (Gastwirth)} for the two unknown 
parameters of the logistic distribution. 
Comparison will be mainly based on their biases 
and root mean squared errors (RMSEs). The 
simulation experiments are performed using the 
Mathcad (14) software, different sample sizes 10, 
30 and 50, and different values for the location 

parameter ,1,1,3 −−=α  and 3 and for 3=β . 

For each combination of the sample size and the 
shape parameters values, the experiment will be 
repeated 10,000 times. In each experiment, the 
biases and RMSEs for the estimates of α  and 

β  will be obtained and listed in (Tables 1 and 2). 

7. RESULTS AND CONCLUSION 
 
It is observed in (Table 1) that the fuzzy least 
square estimators (FLSEs) are the minimum 
RMSEs for all different values of α and for all 
values of n = 30 and 50 are considered here. For 
n = 10, the MLEs are the minimum RMSEs for all 
different values ofα . As far as biases are 
concerned, the MLEs are less unbiased for some 
values of α  and n = 10 which are considered 
here and LMEs for n = 30, and for n = 50, TLMEs 
and LQMEs are less unbiased. The MLEs and 
TLMEs be the next one respectively, after the 
FLSEs which has the minimum RMSEs for n = 
50 for estimating α  for the logistic distribution. 
Also, it is observed in (Table 1) that the RMSEs 
of the TLMEs and the MLEs are also quite close 
to the FLSEs. Comparing all the methods, we 
conclude that for the parameterα , the FLSEs 
should be used for estimating α  for the logistic 
distribution for large sample size.  
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Table 1. Biases and RMSEs of the parameter estimators for the MLEs, LMEs, TLMEs, LQMEs, 
and FLSEs for different types of moments for α  

 
n = 10 MLE LME TLME LQMEm LQMEt LQMEg FLSE 

 

 
 

0.00522 0.01055 -0.01399 -0.00378* -0.01309 -0.00843 -0.00969 

(1.65607)* (1.73328) (1.67291) (1.82456) (1.68228) (1.70014) (1.70548) 

 
0.02098 0.00188* -0.02284 -0.01715 -0.02194 -0.0228 -0.03313 

(1.63319)* (1.74460) (1.69018) 1.84404 1.69888 1.72387 1.73367 
 

 
  

0.02221 0.01221 0.00465 0.02828 0.00372* 0.00557 0.05536 

(1.65914)* (1.71463) (1.67793) (1.80289) (1.68588) (1.70986) (1.74494) 
 

 
  

-0.01486 -0.00634 0.00829 0.00704 0.00965 0.01026 -0.00244* 

(1.67102)* (1.71489) (1.67165) (1.80110) (1.68022) (1.69923) (1.71304) 

n = 30 MLE LME TLME LQMEm LQMEt LQMEg FLSE 

 

 
  

0.00101 0.00242 0.00324 -0.00089 0.00024* 0.00241 0.02642 

(0.95154) (0.99199) (0.94961) (1.06845) (0.97223) (0.98029) (0.93206)
* 

 
-0.00453 -0.00166* -0.00620 0.00505 -0.00654 -0.00718 -0.01027 

(0.94560) (0.99210) (0.95012) (1.08465) (0.97258) (0.98525) (0.92620)
*  

 
  

-0.01013 -0.00121* 0.00607 -0.01149 0.00967 0.00405 0.01986 

(0.94926) (1.00027) (0.94925) (1.08192) (0.97485) (0.98436) (0.94266)
*  

 
  

-0.00080* -0.01551 -0.00644 0.00190 -0.00713 -0.00827 -0.00637 

(0.94755) (1.00660) (0.96420) (1.08967) (0.98925) (0.99653) (0.94625)
* n = 50 MLE LME TLME LQMEm LQMEt LQMEg FLSE 

 

 
  

0.01018 0.00710 0.00464 0.00177* 0.00499 0.00262 0.00269 

(0.72953) (0.75973) (0.73275) (0.84093) (0.75702) (0.76756) (0.72110)
* 

 
0.00118 0.01258 0.00053* 0.00794 -0.00123 -0.00066 -0.00452 

(0.73334) (0.77198) (0.74044) (0.83847) (0.76292) (0.77429) (0.73090)
*  

 
  

0.00735 0.00204 -0.00111* 0.011050 -0.00298 -0.00261 -0.00151 

(0.74287) (0.77574) (0.74430) (0.83768) (0.76504) (0.77558) (0.74146)
*  

 
  

0.00302 0.00374 -0.00518 -0.00091* -0.00655 -0.00492 -0.00910 

(0.73273) (0.77059) (0.73473) (0.84955) (0.75716) (0.76727) (0.73118)
* The root mean squared errors (RMSEs) are reported in brackets in the table. 

*: The least biased value or the least root mean squared errors 

 
Table 2. Biases and RMSEs of the parameter estimators for the MLEs, LMEs, TLMEs, LQMEs, 

and FLSEs for different types of moments for β  

 
n = 10 MLE LME TLME LQMEm LQMEt LQMEg FLSE 

 

 
 

-0.22019 -0.00297* 0.01633 0.38577 0.56090 0.41566 0.92789 
(0.94404) (0.82743)

* 
(0.97087) (1.32627) (1.16715) (1.16628) (1.51949) 

 -0.22051 0.01087* 0.01796 0.38173 0.55245 0.41831 0.88472 

(0.93132) (0.83486)
* 

(0.97386) (1.33034) (1.15686) (1.17056) (1.47553) 

 

 
  

-0.18385 0.00101 -0.00020* 0.38069 0.53937 0.39754 0.90177 

(0.86038) (0.83451)
* 

(0.97202) (1.32198) (1.15372) (1.16247) (1.47630) 

 

 
  

-0.17572 -0.00470 0.00152* 0.34266 0.54027 0.39893 0.91215 

(0.80445)
* 

(0.82667) (0.97347) (1.31292) (1.15174) (1.16404) (1.49171) 

n = 30 MLE LME TLME LQMEm LQMEt LQMEg FLSE 

 -0.05347 0.00491 -0.00313* 0.11715 0.14489 0.13336 0.38011 

3−=α

1−=α

1=α

3=α

3−=α

1−=α

1=α

3=α

3−=α

1−=α

1=α

3=α

3−=α

1−=α

1=α

3=α
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(0.45542)
* 

(0.46548) (0.50151) (0.75108) (0.58402) (0.62030) (0.46160) 

 -0.05418 0.00767* 0.01015 0.10847 0.16034 0.14888 0.37935 

(0.46537)
* 

(0.46567) (0.51494) (0.74841) (0.60095) (0.63816) (0.46541) 

 

 
  

-0.04375 -0.00032* -0.00385 0.12836 0.14426 0.13237 0.38321 

(0.45769) (0.46358) (0.51069) (0.75468) (0.59218) (0.63032) (0.45537)
*  

 
  

-0.06399 0.00988 0.00405* 0.11639 0.15429 0.14348 0.38966 

(0.46197) (0.46753) (0.51396) (0.75272) (0.59955) (0.63534) (0.46075)
* n = 50 MLE LME TLME LQMEm LQMEt LQMEg FLSE 

 

 
  

-0.03944 0.00576 0.00403* 0.07110 0.09238 0.08662 0.25837 
(0.35737) (0.36070) (0.38725) (0.57780) (0.44885) (0.48041) (0.34298)

* 
 -0.03670 -0.00187* -0.00202 0.07054 0.08425 0.07786 0.26045 

(0.35379) (0.35903) (0.38850) (0.57725) (0.44944) (0.47843) (0.35175)
*  

 
  

-0.03062 0.00464 0.00047* 0.07251 0.08947 0.08304 0.25303 

(0.36077) (0.35653) (0.38539) (0.57411) (0.44347) (0.47626) (0.34732)
*  

 
  

-0.03432 0.00146* 0.00328 0.07008 0.09335 0.08509 0.26277 

(0.35640) (0.35570) (0.39200) (0.57966) (0.45457) (0.48416) (0.35178)
* The root mean squared errors (RMSEs) are reported in brackets in the table. 

*: The least biased value or the least root mean squared errors 

 

Now consider the estimation of β . In this case, it 

is observed in (Table 2) that the FLSEs are the 
minimum RMSEs for all different values of α and 

n = 50 and for n = 30, with 3,1=α . For n = 10,   

the LMEs are the minimum RMSEs for all 
different values of α , for n = 30, the MLEs are 
quite close to the FLSEs. Also, from (Table 2), it 
is observed that most of the estimators usually 
overestimate β except the MLEs and LMEs are 

under estimat β . As far as biases are 

concerned, for different values of n, the LMEs 
and TLMEs are less unbiased. Comparing all the 
methods, we conclude that for the parameter β , 

the FLSEs should be used for estimating β  for 

large sample size. 
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