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ABSTRACT 
 

We verify some assertions in the prequel to this paper, in which certain functions which are referred 
to as proximity functions were introduced in order to study Dirichlet-type approximations in normed 
divisible groups and similar groups that enjoy a form of divisibility, for instance p-divisible groups. 
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1. INTRODUCTION 
 
A divisible group ��, . � is defined as a group such 
that for every � ∈ ��	 and natural number n there 
is an 
 ∈ ��	  such that � � 
�: � 
. 
��� ; 
informally, we say that G has n-th roots for all n. 
A foremost example is the group of rational 
numbers ℚ  under addition. Similarly, p-divisible 
group is a group with p-th roots. Now let � 
denote a subset of the prime numbers 
�2,3,5,7, … 	. In the prequel [1,2] to this paper, we 
studied the �-divisible groups, which are groups 

with p-th roots for all � ∈ �. Archetypal examples 
are the additive subgroups of ℚ  given by 
ℚ��	 � �� ∈ ℚ: �|D��� ⇒ � ∈ �	  where D���  is 
the denominator of q. We say a group is uniquely 
�-divisible if it is a �-divisible group with unique 
roots. For more introduction to divisible groups, 
see the references [1,3-7]. We recall the 
following definitions given in [2]: 
 
Definition 1.1 (Norm on �-Divisible Groups): 
For a set of primes �, let ��,∙� be a �-divisible 
group with identity element e and let |∙|: ℚ��	 →
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ℝ be an absolute value function. Then a function 
‖∙‖: � → ℝ is a norm on G if it satisfies: 
 

i. ‖�‖ � 0 only if � � " 
ii. ‖�
‖ ≤ ‖�‖ + ‖
‖ 
iii. ‖�%‖ � |&|‖�‖, & ∈ ℚ��	 

 
The absolute value|∙|: ℚ��	 → ℝ, essentially via 
Ostrowski's Theorem [8], is the usual one on the 
real numbers or on the p-adic numbers. We 
denote by ��,∙, ‖∙‖�  a � -divisible group with a 
norm ‖∙‖. 
 
Definition 1.2 (Proximity Function on 
Groups): Let G be a group with identity e. Then 
a function ': �\�"	 → ℝ is a proximity function on 
G if for all � ≠ 
: 
 

i. '�� ≠ "� � '����� > 0 
ii. '��
��� ≤ +'���'�
� 
iii. '��
��� ≤ +'��� if '��� � '�
� 

 
where C > 0 is an absolute constant. If in (ii) we 
have the stronger bound 
ϱ�gh��� ≤ C max�ϱ�g�, ϱ�h�	, then we say  ϱ is an 
ultra-metric proximity function. Furthermore, if ϱ 
is integer-valued with C � 1 and that (ii) and (iii) 
read ϱ�gh���| lcm6ϱ�g�, ϱ�h�7  and ϱ�gh���|ϱ�g�  if 
ϱ�g� � ϱ�h�  respectively, then we say ϱ  is an 
order function. 
 
For Abelian torsion groups G, the function '�.) = 
ord(.) is an order function (see Example 1.4 in [1] 
for more examples). 
 
Definition 1.3 (Proximity Function on Normed 
8-Divisible Groups): Let �G,∙, ‖∙‖� be a normed 
ϖ-divisible group with identity e and let ϱ be a 
proximity function on G. Then ϱ is said to be a 
close proximity function on G if there exists a 
μ< > 0  such that inf�ϱ�g@�A‖g@‖	 � 0  for some 
null sequence �g@	@B�C ⊂ G\�e	  if and only if 
μ < μ< ; otherwise, then ϱ  is an open proximity 
function on G. We shall say that the elements in 
G are in close proximity (andin close order) to 
each other; else, where necessary, we shall say 
the elements are in open proximity (resp. in open 
order) to each other. 
 
We typify a close proximity function on G by 
�'; +, H<� . The main result proved in [2] is the 
following theorem. 
 
Theorem 1.4: Let �'; +, H<� be a close proximity 
function on �G,∙, ‖∙‖� and let g ∈ G. Then for every 
μ > μ<  and Cauchy sequence �g@	@B�C ⊂ G\�g, e	 

converging to g, there exists N such that 
‖gg@��‖ � O�ϱ�g@��A� if and only if n ≤ N, where 
the implied constant is independent of n or g; 
moreover, this is also true for μ � μ< if ϱis ultra-
metric and the implied constant is less than 

�
LMN infOPOQ�ϱ�gg@���AN‖gg@��‖	. 
 
Theorem 1.4 implies that there can be only 
finitely many elements of G in close proximity to 
any element in G with respect to the given 
estimates; or equivalently, Cauchy sequences in 
G do not converge inside G with respect to the 
given estimates. A converse to this theorem, 
would give a Dirichlet-type approximation for 
(incomplete) � -divisible groups. In the present 
paper, we give a sketchy verification of some 
assertions on examples of proximity functions 
given in [2]. On the other hand, we have been 
unable to prove exactly the Dirichlet-type 
approximation theorem for � -divisible groups 
and we leave the task to other author(s). 
 
2. PRELIMINARIES 
 
We require the following definitions and results. 
A norm ‖. ‖ on an arbitrary group G with identity 
e is said to be discrete if 
 

(1) ‖. ‖: � → ℝR< 
(2) ‖ST‖ ≤ ‖S‖ + ‖T‖, ∀S, T ∈ � 
(3) ‖S�‖ � |V|‖S‖, S ∈ �, V ∈ ℤ 
(4) infX∈Y�Z	‖S‖ > 0 

 

Let [ be an algebraic number field and let ℚ\  be 
the field of algebraic numbers. The absolute Weil 
height 
: [ → ℝR<is given by 
 


�∙� ≔ ^ max�1, |∙|_	
_

 

 

where v runs through all places of [ and |∙|_is a 
normalised absolute value, hence ∏ |a|__ � 1 . 
We know (see [9]) that 
�ab� ≤ 2
�a�
�b�  and 
also 
�a��� � 
�a� if a ≠ 0. 
 
The p-adic norm |∙|cof a rational number � � X

d, 

where S, T are integers with T ≠ 0 is given by 
 

|�|c � ��e_f�X��_f�d�g 
 

Where �_f�X� is the greatest power dividing S and 
similarly �_f�d� is the greatest power dividing T. 
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3. MAIN RESULTS 
 
We now establish the main result of this paper, 
which was stated without proof in [2]. The proof 
here is a sketch. 
 
Lemma 3.1: The following are close proximity 
functions on the respective groups defined: 
 

(i) Suppose the absolute value function 
associated to the normed ϖ-divisible group 
�G,∙, ‖∙‖�  is the usual one on the real 
numbers. Assume S is a normal subgroup 
of G such that the quotient group G/S  is 
Abelian and torsion, and that the norm‖∙‖ 
is a discrete norm on S—i.e., there is an 
absolute constant l suchthat ‖g ∈ S\�e	‖ ≥
l. Then the function ϱk/l�g� � ord�g ∙  S� ≔
min�n ∈ ℤp<: g@ ∈ S	  is a close order 
function on G with μ< � 1 , C � 1 ; 
moreover, if ϖ is a singleton set then ϱ is 
ultra-metric. (We refer to this as a ϖ-ary 
order function on G). 

(ii) Given a prime p and the group ℚ�p	, then 
the function ϱr�q ≠ 0� � tpuvwO�|x|y�/ vwO rz{ 
(where u∙z  (resp. |∙} ) denotes the floor 
(resp. ceiling) function and where |∙|C  is 
the usual absolute value on the real 
numbers) is a close ultra-metric proximity 
function on ℚ�p	  with μ< � 1  and C � p 
given the usual p-adic norm on ℚ . (We 
refer to this proximity function as the p-adic 
proximity function on ℚ�p	). 

(iii) For an algebraic number field [  with the 
usual normalised absolute values |∙|~ over 
all places v such that ∏ |α|~~ � 1 for every 
α ∈ [\�0	 , the function ϱ[�α� ≔
∏ max�1, |α|~	~ —i.e., the Weil height—is a 
close proximity function on [� with μ< � 1 
and C � 2 given the norm defined by the 
usual absolute value on the complex 
numbers. (We shall refer to this as the [-
proximity function). 

 
Proof. The proof of the above lemma would be 
generally sketchy. 
 
For (i), it is easy to see that since 'Y/����  �
 �&��� ∙ �� ≔ ��V�V ∈ ℤp<: �� ∈ �	 , that is since 
'Y/�  denotes the order of agroup, then 
straightforwardly, it suffices for the definition of a 
proximity(indeed, an order function). To see that 
it is a close order function, we let ���	�R� ⊂ �\
�"	be any null sequence; then we observe that 
forH ≥ H< = 1, we have 
 

inf�'�����‖��‖	 ≥ inf‖��‖ > 0 
 
which is so since '���� ≥ 1. 
 
For (ii), we observe that for � ≠ &  and �, & ≠ 0 , 
we have 
 

'c��� � t�u����|�|∞�/ ��� cz{ � t�u����|��|∞�/ ��� cz{
� 'c�−�� 

 
and 
 

'c�� − &� � t�u����|��%|∞�/ ��� cz{ 
≤ t�u����|�|∞������|%|∞�/ ��� cz{ 
≤ t���u����|�|∞������|%|∞�/ ��� cz{ 
≤ �t�u����|�|

∞
�/ ��� cz{t�u����|%|

∞
�/ ��� cz{ 

� �'c���'c�&� 
 
If 'c��� � 'c�&�, we easily see that 'c�� − &� ≤
�'c��� . Finally, if ���	�R� ⊂ ℚ��	  is a non-zero 
null sequence, the we see that for allH ≥ H<= 1 
and with the p-adic norm |. |c, we have 
 

inf�'c�����|��|c� ≥ 1 
 
which is so since by definition we have the 
inequality 'c��� ≥ |�|c��. 
 
For (iii), we know that 
 

'[�a� � '[�a��� 
 
and that 
 

'[�ab��� ≤ 2'[�a�'[�b��� � 2'[�a�'[�b� 
 
It is easy to see that '[�ab��� ≤ 2'[�a�  when 
'[�a� � '[�b� . Finally, if �a�	�R� ⊂ [  is a non-
zero null sequence, then for all H ≥ H< = 1 and 
norm |. |, we have 
 

inf�'[�a���|a�|	 ≥ 1 
 
which is so since normalisation of absolute 
values implies that 
 

|a�|'[�a�� ^ |a�|_
_

|��|���

� 1 

 
which completes the proof. 
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