
_____________________________________________________________________________________________________ 
 
*Corresponding author: Email: vfilara@gmail.com; 
 
 

 Physical Science International Journal 
8(4): 1-10, 2015, Article no.PSIJ.21711 

ISSN: 2348-0130 
 

SCIENCEDOMAIN international 
             www.sciencedomain.org 

 

 

Effects of the Magnetic Moments of the Interacting 
Particles on the Coulomb Potential:  

Application to Hydrogen Atom 
 

Voicu Dolocan 1* 

 
1Faculty of Physics, University of Bucharest, Bucharest, Romania. 

 
Author’s contribution 

 
The sole author designed, analyzed and interpreted and prepared the manuscript. 

 
Article Information 

 
DOI: 10.9734/PSIJ/2015/21711 

Editor(s): 
(1) Anonymous. 

(2) Stefano Moretti, School of Physics & Astronomy, University of Southampton, UK. 
Reviewers: 

(1) Francisco Bulnes, Tecnológico de Estudios Superiores de Chalco, Mexico. 
(2) Jagdish Prakash, University of Botswana, Botswana. 

Complete Peer review History: http://sciencedomain.org/review-history/12330 
 
 
 

Received 31 st August 2015 
Accepted 30 th October 2015  

Published 18 th  November 2015 
 

 
ABSTRACT 
 

By using a Coulomb potential, modified by the interaction between the magnetic moments of the 
electron and proton, we have calculated the energy levels of the hydrogen atom. We have obtained 
fine and hyperfine structure as well as the Lamb shift. All these effects are obtained from a simple 
formula which is a direct solution of the Schrödinger equation. The obtained results are in a good 
agreement with experimental data. For example, the hyperfine splitting between the energy levels 
of the states 1S1/2,1 and 1S1/2,o is of the order of 5.6×10-6 eV, which is the source of the famous “21 
cm line” which is strongly useful to radio astronomers for tracking hydrogen in the interstellar 
medium of galaxies. The energy of the states nP1/2 is lower than those of the states nS1/2 (Lamb 
shift) because in the first case the interaction between the magnetic moments of the proton and the 
electron spins is diminished by the spin-orbit coupling. 
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1. INTRODUCTION 
 
With the usual Hamiltonian of the hydrogen-like 
atom we have the n2-fold degeneracy states with 
the same principal quantum number, or 2n2 –fold 
once the spin degree of freedom is included. I 
this real world however, the degeneracy is lifted 
by corrections that arise due to the special 
relativity. These corrections (known as fine 
structure) derive from three (superficially) 
different sources: (a) relativistic corrections to the 
kinetic energy, (b) coupling between the spin and 
orbital degree of freedom, (c) and the 
contribution knowing as a Darwin term. 
Relativistic corrections split degenerate multiplets 
leading to small shift in energy, ca 10-4 – 10-6 eV. 
In additoon, nucleus has a spin which leads to a 
nuclear magnetic moment. Interaction of 
electronic magnetic moment with filed generated 
by nuclear magnetic moment leads to further 
splitting of multiplets (hyperfine structure), ca 10-7 
– 10-8 eV. In 1947, an experimental study by W. 
Lamb discovered that 2P1/2 state is slightly lower 
than 2S1/2 state – Lamb shift [1]. The effect is 
expalined by the theory of quantul 
electrodynamics [2], in which the electromagnetic 
interaction itself is quantized. Some of the effects 
of this theory which cause the Lamb shift are as 
follows: vacuum polarization, electron mass 
renormalization, anomalous magnetic moment. 
On the basis of this theory we have studied in a 
previous paper [3] the Lamb shift without taking 
into account the electron charge. Famous fine 
structure was first gotten by Bohr-Sommerfeld 
model in 1816 [4]. The fine structure used 
formally now is the hydrogen solution by Dirac 
equation [5]. Surprisingly, these solutions by 
Dirac equations are just equal to those of 
Sommerfeld model. However, Dirac’s hydrogen 
includes a lot of wrong states (= 1P1/2, 2D3/2, 
3F5/2, …). The interpretation of very tiny Lamb 
shift depends completely on the interpretation 
that Dirac’s hydrogen is right. Quantum 

electrodynamics Lamb shift is much more 
complicated and filled with artificial tricks. Lamb 
shift measurements is too difficult and vague in 
respect of accueacy. We cannot see what                     
is really happening in the key small                            
effect = 0.000004372 eV, 10n8 MHz) hyperfine 
level. Though the Lamb shift is very small, the 
author tried to measure this value believing 2S1/2 
state is “metastable” and the collision between 
excited hydrogen atom and plates is a precise 
method for Lamb shift. In this experiment there is 
no guarantee that modified Zeeman effect is 
always linearly effective, and excited metastable 
statesreally means 2S1/2. There are only 
assumpions. And, of course, the collision method 
is rough and not precise to measure this very tiny 
value. Even the latest optic methods, cannot 
confirm these states really express the ebergy 
difference between 2S1/2 and 2P1/2. They just 
estimate it. Considering Lamb shift is almost 
same as nuclear hyperfine structure some 
nuclear or electron’s vibrations may influence 
very tiny data. In this paper we calculate the 
hydrogen energy levels by solving Schrödinger 
equation with the modified Coulomb potential by 
interaction between the magnetic moments of 
nucleus and electron’s respectively, as we have 
proceed to study ferromagnetism [6]. Also, we 
have used this modified Coulomb potential to 
evaluate high excitation energy levels of helium 
atom [7], deuteron energy states [8], and energy 
levels of a pionic atom [9]. As we will see below, 
Lamb shift appears as a natural result for the 
energy eigenvalues of Schrödinger equation. 
 
2. EFFECTS OF THE INTERACTION 

BETWEEN THE MAGNETIC MOMENTS 
ON THE COULOMB POTENTIAL  

 
In a previous paper [10] we have found the 
following expression for the energy of interaction 
between two electrons via bosons. 
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where D is a coupling constant, m is the mass of an electron, R is the distance between the two 
electrons, ρο is the massive density of the interacting field, DR/c2 is the “mass density” associated to 
the energy of the ineracting field when this is not a massive field, ωθθθθ =cq is the classical oscillation 
frequency of the interacting field, ωθθθθο is the oscillation frequency of an electron, q is the wave vector of 
the interacting field, qo is the wave vector of the boson associated with the electron, k is the wave 
vector of the electron, εκκκκ = ћk

2/2m, nq is the occupation number of the bosons associated with the 
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interacting field, nqo is the occupation number of the bosons associated with an electron and nk is the 
occupation number of the electrons. When the interacting filed is a photon field, then ρο = 0. For a 
quasifree electron εκκκκ − εκ−θκ−θκ−θκ−θ = 0, ωθοθοθοθο = ћqo

2/2 m. The Coulomb interaction occurs via photons, so that we 
may assume that the interacting electron oscillates with ωθθθθο. By using that nq = nqo = 0, nk = nk-q = 1, 
Eq. (1) becomes 
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For R2 – R1 = R, we have 
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where Γ=qoR2 – qoR1. The interaction energy becomes 
 

R

c

R
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E i

hh α== 00729.0                                                                                                               (5) 

 
Taking the upper limit of qo as 0.94π/R, which is with 6% lower than π/R, one obtains the value of α 
just as the experimental value. The relation (4) represents the Coulomb’s law, which now is obtained 
without taking into account the electron charge concept. It was showed [10] that for charges of 
opposite sign the interaction energy (5) has the sign minus. In presence of a magnetic field in the 

above equation we introduce the potential vector and thus we substitute qoR by ∫− lA
c

e
Rq o d

h
 and 
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We consider the potential vector A=(µµµµ×R)/R3 where µµµµ is the magnetic dipole moment and R is a 
vector from the middle of the loop to the observation point. The theory and experiment demonstrate 
that the free electron has a magnetic moment equal to the Bohr magneton µΒ and a spin momentum 
s, the projections of which on a specified direction are sz = ±ћ/2 = ћms where ms = ±1/2 is the spin 
quantum number. For µζ

(σ)  = µBgms with g = 2, one obtains 
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where (h/e)ms2 and (h/e)ms1 are the flux vectors. For q1 = q2 =qo resukts 
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We have used the relation xqq oo 22
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where x is a unit vector which is perpendicular to 
R and µµµµ. The interaction enrgy between the two 
electrons when we take into account their 
magnetic moments is given by the expression 
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where Γο is given by Eq. (8). For ms1 = ms2 = 1/ 2, 
one obtains Γο = 0, so that Eq. (9) reduces to 
Eq.(4), that is when the spins of the two electrons 
are orienred in the same direction there is not a 
modification of the Coukomb potential. When ms1 
= 1/ 2, ms2 = - 1/ 2 one obtains Γο = 2πe2/mc2R, 
so that for a certain value of R one obtains 
Γο = π, and the interaction energy between           
the two electrons is reduced by a factor of 0.7/3.3 
≈ 1/5.  
 
However, like the electron the proton has a spin 
angular momentum with sp = 1/ 2, and 
associated with this angular momentum is an 
intrinsic dipole moment 
 

pp s
mc

epγ
µ =r

                                             (10) 

 

where M is the proton mass and γπ is a numerical 
factor known experimentally to be 2.7928. The 
magnetic moment of the electron moving around 
the proton is  
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where L is the orbital angular momentum and S 
is the epin angular momentum. For the hydrogen 
atom 
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sp=±1/ 2 is the proton spin quantum number, ms 
= ±1/ 2 is the electron spin quanum number and 
ml is the magnetic quantum number of the 
electron. If in relation (11) we replace  
 

L + 2S = gJ                                             (12a) 
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is the gyromagnetic factor, one obtains 
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where mj is the magnetic quantum number of the 
total angular momentum j of the electron. In 
Table 1 are given the values of parameter a for 
diferent states of the electron in hydrogen atom. 
 
The 6th column is for the value of a given by Eq. 
(12) and the last column is for that given by Eq. 
(12b) in the case mj =  j. 
 

3. THE ELECTRON ENERGY LEVELS IN 
THE HYDROGEN ATOM 

 
For the radial wve function Ψ = R(r)Yl

m                     
exp(-iEt/ћ), the non-relativistic Schrödinger 
equation for the hydrogrn atom becomes 
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Now we write R(r) = rlρ(r) where ρ(0) = 0. Eq. (13) is now 
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Table 1. The values of the parameters g and a for the hydrogen atom energy states 

 
State  m l sp ms g a, 10-15m a,10-15m 

nS1/2,1 0 1/2 1/2 2 8.88391067371418 8.8391967371418 

nS1/2,0 1 1/2 -1/2    2 8.8660139270782 8.8660139270782 

nP1/2 1 -1/2 1/2 2/3 0.01345262`38974 2.9373998490684 

nP1/2 1 -1/2 -1/2 2/3 0.01345262138974 2.96430703390049 

nP3/2,2 1 1/2 1/2 4/3 17.69166422937 17.691667069252 

nP3/2,1 1 1/2 -1/2 4/3 17.718569447215 17.718574259188 

nD3/2,2 2 -1/2 1/2 0.8 8.8391067371418 10.609618893964 

nD3/2,1 2 -1/2 -1/2 0.8 8.86601392707782 10.6365259935 

nD5/2,3 2 1/2 1/2 1.2 26.54422265475 26.544227401362 

nD5/2,2 2 1/2 -1/2 1.2 26.57112789753 26.571134591298 

nF5/2,3 3 -1/2 1/2 1.0285714 17.69166422937 22.750272973314 

nF5/2,2 3 -1/2 -1/2 1.0285714 17.718569447215 22.777130116355 

nF7/2,4 3 1/2 1/2 1.2380952 35.39678392921 38.347641177507 

nF7/2,3 3 1/2 -1/2 1.2380952 35.42368632291 38.374548367444 
 
We are interested in the bound state solutions and therefore we assume ρ(r )~e-βr for r→∞, so that we 
try the solution ρ(r }=f(r )exp(-βr[1+0.65013266cos(a/r) +0.65013266sin(a/r)]), Eq (4) becomes 
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To avoid f(r) to diverge at infinity to overcome the wanted exponential supression, we require f(r ) to 
be a polynomial in r 
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The differential equation then becomes 
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At this stage we assume the constraint condition that the argument of sine and cosine, a/r=a/n2ao, 
where n=l+k+1 is the principal quantum number and ao is the Bohr radius. Collecting coefficients of                
rk-1 the above equation gives us the recursion relation 
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We assume ck+1-0, ck+2=0, and  
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Further, 
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The values of the parameter a are given in Table 1.  For a→0, one obtains the usual formula 
 

2

22

2n

mc
E

α−=                                                                                                                               (22) 

 
By using series expansions 
 

...
!3

)sin(

...
!4!2

1)cos(

...
82

1)1(

3

42

2
2/1

+−=

−+−=

+−+=+

x
xx

xx
x

xx
x

                                                                                                         (23) 

 
Eq. (21) reduces to 
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where α=2×1.65013266/144π. For hydrogen-like 
atoms α is replaced by αZ. In Table 2 are 
presented the values of the hydrogen energy 
levels, which a calculated by using Eq. (26).The 
values from the second column are calculated by 
using for a relation (12), while the values from 
the third column are calculated by using          
Eq. (12a) for mj = j.  
 
We have used the following values                           
of the constants: m=9.109389×10-31 kg, 
c=2.997925×108m/s, ћ=1.054572×10-34Js, ao = 
0.529177×10-10m. With these values of the 
constants one obtains E1 = α2mc2/2 = 
13.598433643441 eV. The obtained results are 
in a good agreement with experimental data. In 
Fig. 1 are presented some low –energy states of 
yhe hydrogen atom including fine structure, 
hyperfine structure and the Lamb shift. For the 
specific case of the ground state of the hydrogen 

atom (n =1) the energy separation between the 
states 1S1/2,0 and 1S1/2,1 is 5.6×10-6 eV. The 
photon corresponding to the transitions between 
these states has wavelength close to 21 cm. This 
is the source of the famous “21 cm line” which is 
extremely useful to radio astronomers for 
tracking in the interstellar medium of galaxies. 
The separation between 2P3/2 and 2P1/2 states is 
10-4 eV in the second column and the separation 
is 9.35×10-5 eV in the third column, and is 
generated by the spin-orbit coupling. This 
appears to be two times larger than the 
experimental value. Lamb shift appears also as a 
natural result in our model. The difference in 
energy between the two energy levels 2S1/2 and 
2P1/2 is 5.6×10-5 eV in the second column  and 
3.7×10-5 eV in the third column, and are some 
larger than the experimental value. In Table 3 we 
present the values of a and E when we use 
relation (12a) for m < j. 
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Table 2. Theoretical values for the hydrogen energy  levels 
 

State  - E, eV -E, eV 
1S1/2,1 13.596644259086 13.596644298919 
1S1/2,0   13.596638854037 13.596638853414 
2P1/2,1                 3.3996083257277   3.3995898246396 
2P1/2,0            3.3996083257277       3.3995896537839 
2S1/2,1                  3.3995524824729 3.3995524824676 
2S1/2,0                   3.3995523122557   3.39955231222263 
2P3/2,2               3.3994964759455     3.399496475934 
2P3/2,1                3.3994963057496    3.399496305714 
3P1/2,1                1.5109370602782    1.5109346238136 
3P1/2,0                   1.5109370602782 1.5109346013966 
3S1/2,1           1.510863419155             1.5109297061781 
3S1/2,0                1.5109296837614      1.5109296837013 
3P3/2,2                 1.5109223300492    1.5109223300521 
3P3/2,1                 1.5109223076329     1.5109223076331 
3D3/2,2               1.510863419155         1.5109282309608 
3D3/2,1                       1.5109296837614     1.510928208500 
3D5/2,3                     1.5109149543317 1.51091495543264 
3D5/2,2                           1.5109149319167    1.5109149319085 
4P1/2,1                      0.8499021000561   0.8499015218678 
4P1/2,0                     0.8499021000361    0.8499015165472 
4S1/2,1                     0.8499003548712    0.8499003548702 
4S1/2,0                    0.8499003495472     0.8499003495496 
4P3/2,2                        0.8498986044214 0.8498986044178 
4P3/2,1               0.8498985990976           0.849898690874 
4D3/2,2                     0.8499003548712     0.8499000097754 
4D3/2,1                         0.8499003435472 0.8498999994549 
4D5/2,3                     0.8498970496022      0.8498968540181 
4D5/2,2                       0.8498970496022    0.8498968486979 
4F5/2,3                    0.8498986044214      0.8498976041829 
4F5/2,2                        0.8498985990976   0.8498975988626 
4F7/2,4                        0.8498985990976   0.8498941854055 
4F7/2,3                        0.8498950983502   0.849894514914 

 

 
 

Fig. 1. Some low-energy states of the hydrogen atom , including fine structure, hyperfine 
structure and the Lamb shift 
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Fig. 2. Some low-energy levels of the hydrogen atom  when we take into account the spin-orbit 
coupling on the form L+2S=gJ 

 
Table 3.  Values of the parameter a and of the energy E for m < j  in hydrogen atom 

 
State  m j a, 10-15 m  -E, eV 
2P3/2,2                    1/ 2   5.888253291095 3.3995711528654 
2P3/2, 1                        1/ 2 5.9151604830371 3.3995711528654 
3P3/2,2                     1/ 2    5.888253291695 1.5109321649756 
3P3/2,1                    1/ 2 5.9151604830371   1.510932142585 
4P3/2,2                        1/ 2   5.888253291095 0.84996093661 
4P3/2,1               1/ 2        5.9151604830371   0.849900930455 
3D3/2,2                  1/ 2   3.5275705378802    1.5109341320458 
3D3/2,1                      1/ 2   3.5546777278078 1.5109341094463 
4D3/2,2                       1/ 2   3.5275705378803 0.8499014051670 
4D3/2,1                      1/ 2     3.5546777278078 0.8499013998068 
3D5/2,3                           3/2   15.921155007834 1.5109357104893 
3D5/2,3                      1/ 2    5.2980826043022 1.5109366300179 
3D5/2,2                              3/2 15.948062192762 1.5109237828262 
3D5/2,2                            1/ 2 5.3248897942298 1.510932634421 
4D5/2,3                            3/ 2    15.921155007834 0.8498989542875 
4D5/2,3                          1/ 2    5.2980826043022 0.8499010590711 
4D5/2,2                            3/2    15.948062192762 0.8498989491837 
4D5/2,2                              1/ 2 5.3248897942298 0.8498994046181 
4F5/2,3                             3/2     13.644782348006 0.8498994046181 
4F5/2,3                         1/ 2      4.5392917186926    0.8498012051090 
4F5/2,2                               3/2 13.671689535933    0.8498993992976 
4F5/2,2                                1/ 2 4.5661999086202 0.8499011997882 
4F7/2,4                              5/2 27.387328385376   0.8498966873162 
4F7/2,4                               3/2   16.42701559324 0.8498988544792 
4F7/2,4                          1/ 2   5.4667028011041      0.8499010217233 
4F7/2,3                               5/2 27.4142355575303 0.8498966819961 
4F7/2,3                               3/2 16.453922783168 0.8498988481588 
4F7/2,3                         1/ 2     5.493609990317      0.8499010164025 

 
In Fig. 2 above are presented some energy 
levels in according to that presented in Table 3. It 
is observed that appears a new splitting due to 

different values of the magnetic quantum number 
mj. Because the total quantum number of the 
electron and proton, f = j + sp, takes two values, j 
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+1/2 and j – 1 /2, respectively, the energy levels 
are doublets. On this figure, the energy states 
are denoted by nXj,mj. The separation between 
2P3/2,1/2 (mj = 1/ 2) and 2P1/2 states is 1.87×10-5 
eV which is by 2.5 times lower than the 
experimental value. The separation between 
2P3/2,3/2 (mj = 3/2) and 2P1/2 states is 9.35 ×10-5 
eV which is ewo times larger than the 
experimental value. It is possible that the levels 
2P3/2 for mj = 3/2 and 1/ 2, respectively, 
participate to the transitions with a weight so that 
the result is that experimentally observed. 
 

4. CONCLUSIONS 
 
We have presented a theory which includes in a 
simple formula fine and hyperfine structure, as 
well as the Lamb shift for the hydrogen atom. 
The theory is based on the modification of the 
Coulomb potential due to the interaction between 
the magnetic moments of the electron and 
proton, respectively. Every level associated with 
a particular set of quantum numbers n, l and j is 
split into two levels of slightly different energy 
depending on the relative orientation of the 
proton magnetic dipole with the electron state. 
The obtained results are in a good agreement 
with experimental data. For example, the 
separation energy between the two states of the 
ground state is close to the famous wavelength 
of a photon of 21 cm. The energy of the states 
nP1/2 are lower than the energy of the states 
nS1/2 because in the first case the interaction 
between the magnetic moments of the proton 
and the electron spins is diminished by the spin-
orbit coupling. Some values of the separation 
between the energy states in our theory are 
overevaluated with respect to experimental data. 
This means that our theory may be improved. 
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