
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

A Systematic Overview of Android Malware
Detection

Li Meijin, Fang Zhiyang, Wang Junfeng, Cheng Luyu, Zeng Qi, Yang Tao, Wu
Yinwei & Geng Jiaxuan

To cite this article: Li Meijin, Fang Zhiyang, Wang Junfeng, Cheng Luyu, Zeng Qi, Yang Tao, Wu
Yinwei & Geng Jiaxuan (2022) A Systematic Overview of Android Malware Detection, Applied
Artificial Intelligence, 36:1, 2007327, DOI: 10.1080/08839514.2021.2007327

To link to this article: https://doi.org/10.1080/08839514.2021.2007327

© 2021 The Author(s). Published with
license by Taylor & Francis Group, LLC.

Published online: 14 Dec 2021.

Submit your article to this journal

Article views: 6450

View related articles

View Crossmark data

Citing articles: 5 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2021.2007327
https://doi.org/10.1080/08839514.2021.2007327
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.2007327
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.2007327
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.2007327&domain=pdf&date_stamp=2021-12-14
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.2007327&domain=pdf&date_stamp=2021-12-14
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2021.2007327#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2021.2007327#tabModule

REVIEW

A Systematic Overview of Android Malware Detection
Li Meijin a, Fang Zhiyang b, Wang Junfengc, Cheng Luyud, Zeng Qi c,
Yang Tao c, Wu Yinweia, and Geng Jiaxuanc

aCollege of Software Engineering, Sichuan University, Chengdu, China; bSchool of Cyber Science and
Engineering, Sichuan University, Chengdu, China; cCollege of Computer Science, Sichuan University,
Chengdu, China; dSchool of Business, Sichuan University, Chengdu, China

ABSTRACT
Due to the completely open-source nature of Android, the
exploitable vulnerability of malware attacks is increasing. To
stay ahead of other similar review work attempting to deal
with the serious security problem of the Android environment,
this work not only summarizes the approaches in the malware
classification phase but also lays emphasis on the Android
feature selection algorithm and presents some areas neglected
in previous works in the field of Android malware detection, like
limitations and commonly applied datasets in machine learn-
ing-based models. In this paper, the Android OS environment,
feature selection, classification models, and confronted chal-
lenges of machine learning detection are described in detail.
Based on the brief introduction to Android background knowl-
edge, feature selection methods are elaborated from key per-
spectives as feature extraction, raw data preprocessing, valid
feature subsets selection, and machine learning-based selection
models. For the algorithms of the malware classification,
machine learning methods are categorized according to differ-
ent standards to present an all-around view. Furthermore, this
paper focuses on the study of deterioration problems and eva-
sion attacks in machine learning detectors.

ARTICLE HISTORY
Received 5 August 2021
Revised 6 November 2021
Accepted 8 November 2021

Introduction

Due to the rapid development of mobile intelligent terminals, Android
becomes the most generally used computing platform on smartphones. As
TrendForce (Huang 2020) recently issued, a total of 1.25 billion smartphones
were produced in 2020 and Android captured 78.4% of the market shares.
However, due to the wide distribution and the open-source nature, Android
applications are accessible from potentially malicious third parties besides the
official Android Market, which makes the platform a target for malware
attacks. According to the 2019 Android Malware Special Report (360
Internet Security Center 2020) released by 360 Security on February 28,

CONTACT Fang Zhiyang fangzhiyang@scu.edu.cn School of Cyber Science and Engineering, Sichuan
University, Chengdu 610065, China
This article has been republished with minor changes. These changes do not impact the academic content of the
article.

APPLIED ARTIFICIAL INTELLIGENCE
2022, VOL. 36, NO. 1, e2007327 (524 pages)
https://doi.org/10.1080/08839514.2021.2007327

© 2021 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

http://orcid.org/0000-0001-8137-540X
http://orcid.org/0000-0001-6502-8053
http://orcid.org/0000-0002-6965-2969
http://orcid.org/0000-0001-9658-4319
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.2007327&domain=pdf&date_stamp=2022-05-17

2020, the platform intercepted about 1.809 million new malware samples on
mobile terminals in 2019, and about 5,000 new mobile malware samples were
intercepted on an average day.

Reviews for Android malware detection have been proposed in many
previous studies. (Liu et al. 2020a) studied machine learning models of
Android malware detection in recent years but neglected to see the limitations
of machine learning models mentioned. (Bakour, Ünver, and Ghanem 2019)
provided a wide taxonomy for all research directions. The overviews of static
analysis (Li et al. 2017) and traditional detection (e.g., signature, heuristics
based) (Sihwail, Omar and Ariffin 2018) are all included in this paper to draw
the conclusion from differential perspectives.

However, to address the limitations of the outdated collected research, the
ignorance of the importance of feature selection algorithms and the problems
of machine learning models, this paper gives a more all-around overview of
the work with a large volume of relative works from 2015 to 2021.

To our best knowledge, few reviews have systematically presented research
focused on feature on four feature processing stages and Android malware
classification models according to the taxonomy of detection tech and machine
learning type. Compared with other researches, this work points out some areas
neglected in previous works in the field of Android malware detection like
limitations and challenges in machine learning models. Additionally, widely
applied Android datasets and disassemble tools are summarized. The correla-
tive research on Android malware collected in this paper can provide valuable
reference and broaden the research direction for future researchers.

The main contributions of this paper are summarized as follows.
(1) Compared with other similar work, a comprehensive overview of

Android feature selection is provided from more detailed aspects of the feature
extraction, raw feature processing, and valid subsets stages. This paper con-
cludes each data preprocessing method in four-stage from data cleaning to
data transformation. How to pick features that stand the test of time without
frequent retraining of machine learning models in valid feature subsets selec-
tion is also discussed.

(2) This survey completes existing previous reviews in offering a systematic
overview of detection methods, including not only those based on machine
learning but also traditional methods (e.g., signature, heuristics based). For the
algorithms of the Android malware classifier, machine learning detectors are
elaborated from learning task and learning type. With the introduction of the
taxonomy of machine learning methods, the commonly used models in
Android malware detection are distinguished as traditional machine learning,
currently advanced detection models, and ensemble learning.

(3) This work bridges some research gaps in peer works by presenting the
limitations of machine learning models in Android malware detection. Due to
the evolution of the Android operating system, the deterioration issue of

APPLIED ARTIFICIAL INTELLIGENCE e2007327-493

machine learning-based detector and the problem of frequent model retrain-
ing to select valid feature subset are highlighted. And the vulnerability to
security attacks of machine learning detectors is also analyzed.

The paper is structured as follows: Section 2 describes the procedure used
for collecting the papers. Section 3 gives a brief introduction to background
knowledge of Android, the mechanism of Android operating system, and the
key components of Android. In Section 4, the researches that focused on
feature selection in recent years are summarized. Section 5 describes different
algorithms of the classifier, especially focused on machine learning models.
Section 6 takes a further look into the study on evasion attacks and deteriora-
tion issues to expose the vulnerability of many machine learning models.
Section 7 introduces the widely used Android datasets and disassemble tools
for Android applications. Finally, Section 8 makes a conclusion of this paper.

The following research questions have been brought out to help follow the
process of systematic review conduction:

RQ1 What are the significant feature extraction tech and data preprocessing
methods in Android feature engineering?

RQ2 How are valid feature subset selection models categorized? What kind of
machine learning models can be applied to feature subsets selection?

RQ3 How are the most advanced machine learning frameworks applied to the
research of Android malware classification in recent years, and what are the
limitations?

RQ4 What are the widely used Android datasets that can be applied to
establish longitudinal comprehensive experiments?

Method of Literature Collection

It is common practice to clarify the paper selection criteria for a literature
review, to establish representativeness and confidence regarding the source of
information. The procedure used for selecting the papers is described as
follows.

(1) The collection scope is based on the main content of this paper, so the
search scope is composed of two main parts as Android malware classifica-
tion and valid feature subsets selection, including the adversarial attack and
degradation problems in each stage. To find other relevant papers that may
not be collected through the keyword, an incomplete reverse snowball search
is carried on the reference list of the article determined by early keyword
search.

e2007327-494 L. MEIJIN ET AL.

(2) In each section, the keywords are determined by the categories. For
example, since malware analysis can be categorized into static/dynamic
analysis according to the type of extracted features, “static/dynamic analysis”
+ “Android malware detection” is applied after fusing the keywords. For
machine learning-based detectors and feature selection models, the key-
words are determined by combining “machine learning” with “Android
malware detection” or “feature selection.” And the same searching approach
is utilized for other signature and heuristics-based malware detection
methods.

(3) The captured literature is mainly searched from authoritative journals or
top conferences, indicating that the review has considered the most important
relevant papers. Most of the reviewed works collected in this paper are from
the following repositories: SpringerLink, IEEE Xplore Digital Library, Science
Direct, ACM Digital Libraries, and Web of Science. Additionally, third-party
online repositories such as ResearchGate, Baidu Scholar, and Google Scholar
are also used by us.

(4) The papers are filtered according to the publication time to maintain the
updated search of collections. Since Android security has attracted increasing
attention in recent years, most of the collected papers are from the new
journals from 2015 to 2021, but with a few old representative journals cited
to explain some concepts. Furthermore, this work attaches great importance to
research articles in recent three years.

The limitations exist since these articles are manually selected, so there are
inevitably some omissions in the coverage. However, these selected papers are
carefully screened to meet the requirements of good quality content and high
relevance. Therefore, the existing article collection is capable to provide
a sufficient basis for the review work of this paper.

Overview of Android

Android OS Architecture

Android OS is an open-source operating system based on Linux for mobile
platform, which is released by Google. Nowadays, Android is being updated
rapidly though the key architecture of Android OS has remained unchanged.
The architecture of Android can be divided into Modified Linux Kernel Layer,
Libraries, System Runtime Library Layer, and Application Framework Layer as
shown in Figure 1.

(1) Modified Linux Kernel. The core system services provided by Android
are based on the Linux system, such as security, power management, and
drivers. Acting as an abstraction layer between hardware and software, the
modified Linux kernel hides details in the hardware layer and provides services
to the upper layers to reduce coupling.

APPLIED ARTIFICIAL INTELLIGENCE e2007327-495

(2) Libraries. Linux-based process sandbox mechanism in Library Layer of
Android is one of the cornerstones of the entire security design. Relied on
modified Linux kernel layer for basic functions such as thread management
and memory management, the Dalvik virtual machine is built with optimiza-
tion to efficiently run multiple instances of virtual machines simultaneously in
limited memory, and each Android application executes as a Linux process
with a instance of the Dalvik virtual machine.

(3) System Runtime. From the perspective of the overall architecture, the
developer only has active control over the System Runtime Layer and the
structures above it, so the detection of Android malware should also focus on
the same location. It can be classified into system library and Android runtime.
The core library of Android runtime provides most of the APIs, such as
Android OS, Android.net, and Android.media.

(4) Application Framework Layer. Android has an application framework
layer that provides a variety of APIs for Android development. Developers are
free to use these APIs to build their applications, subject to the security
limitations of the framework’s implementation.

Key Components of Android Apps

The four key components of Android are Activity, Service, Broadcast Receiver,
and Content Provider, which are highly associated with the behavior of
Android Malware.

Figure 1. Android OS architecture.

e2007327-496 L. MEIJIN ET AL.

(1) Activity. The Activity provides the users with a graphical window for
actions such as buttons, text blocks, input blocks, etc. Users interact with the
application by tapping these elements. Activity typically acts as an intermediate
layer between users and app functions, responsible for conveying user intent.

(3) Service. Service is often used for the time-consuming logical processing
in the background therefore many malicious behaviors are associated with
Service for its invisibility to users. The Service does not run in a separate process
but depends on the application process in which the Service was created.

(3) Broadcast Receiver. As a widely used mechanism for transmitting
information between applications, Broadcast Receiver is usually used by mal-
ware developers to monitor various events related to sensitive information.
Broadcast Receiver filters, receives and responds to outgoing broadcasts.
Broadcast Receiver allows Android Apps the ability to respond to an external
event, such as powering on the phone, receiving a text message or a phone call.

(4) Content Provider. It is possible that Content Provider can help Android
malware implement malicious behavior for getting the permission to share
data. Content Provider supports storage and reading of data in multiple
applications, performing as a database to applications, so it allows accessibility
to the exposed data such as contact books and messages for malware
developers.

The required permissions and each of the four components used in an
Android application need to be registered in AndroidManifest.xml. Therefore,
analyzing AndroidManifest.xml can give an overview of the functionality and
malicious behavior of the applications. AndroidManifest.xml file is commonly
used as an auxiliary indicator to cooperate with other analysis methods for
detection (Bai et al. 2020) (Chen et al. 2021).

Android Feature Selection

Feature selection improves malware detection efficiency by eliminating redun-
dant and irrelevant features in Android malware detection. Figure 2 sketches
the process of the feature selection phase, which is described in detail in the
following subsections.

To demonstrate the importance of feature selection, (Babaagba and
Adesanya 2019) tested the efficiency of feature selection in malware detection,
by using supervised and unsupervised machine learning algorithms with or
without feature selection. Taking the prediction accuracy of the algorithm as
the performance indicator, the results showed that the best detection rate was
supervised learning using a feature selection algorithm. Compared with the
application without feature selection, the main accuracy jumped from 54.56%
to 74.5%, which showed the influence of feature selection.

APPLIED ARTIFICIAL INTELLIGENCE e2007327-497

Feature Extraction

According to the approach of feature extraction using static features,
dynamic features, or both, Android malware detection tech can be cate-
gorized into dynamic analysis, static analysis, and hybrid analysis as
illustrated in Table 1.

(1) Dynamic analysis. Dynamic analysis is an approach which runs the
program in a sandbox environment and tracks the behavior of the program’s
API call sequence, system call, network traffic, and CPU data to monitor the
data flow during the program running, thus revealing the real behavior of the
program processing closer to the actual situation. But it is not widely used on
account of a large number of resources and the slow detection speed while
running the program.

Figure 2. Detailed process of feature selection.

Table 1. Summary of Android feature extraction.
Reference Features Type Classifiers

(Onwuzurike et al.
2017)

API calls Dynamic
analysis

RF, KNN, SVM

(Cai et al. 2016) Behavioral features Dynamic
analysis

RF, SVM, DT, KNN, NB

(Afonso et al.,
2015)

API calls and system call traces Dynamic
analysis

RF

(Dash et al. 2016) System calls Dynamic
analysis

SVM

(Kumar et al. 2019) Manifest files, decompiling DEX, shared libraries Static
analysis

DNN

(Nicheporuk et al.,
2020)

APIs, permissions Static
analysis

CNN

(Cai et al. 2021) Function call graph Static
analysis

SVM

(Gao 2019) Strings, function call graph Static
analysis

SVM, KNN, RF

(Lu et al. 2019) API calls Static
analysis

Bidirectional LSTM

(Yung and Juang
2017)

Permission, activity, service, receiver, sensitive
strings, dexclass etc.

Hybrid
analysis

SVM

(Chen et al. 2016) Permissions, API calls, sensitive information request Hybrid
analysis

SVM, MLP, NB, IBK,
Bagging

e2007327-498 L. MEIJIN ET AL.

(Zhao et al. 2014) built a sandbox, monitored the system APIs, and used
scripts to simulate various events to see the software behaviors. (Cai et al.
2018) extracted dynamic features based on API calls and inter-component
communication (ICC) distilled from a behavioral characterization study, and
trained a multi-class classifier using supervised machine learning. (Martin,
Rodríguez-Fernández and Camacho 2018) utilized dynamic analysis with
a Markov chain-based presentation to simulate the behavior of individual
applications from different families of malware.

(2) Static analysis. Static analysis is performed by analyzing Android files
and extracting information like requested permissions, opcode sequences, and
API calls, etc. Static detection is widely used in the field of Android malware
detection for many optional features that is easy to extract.

(Kumar et al. 2019) proposed a static analysis method based on multi-
information features, using the integration of different features to promote
detection accuracy. (Nicheporuk et al. 2020) took static analysis method to detect
Android malware, using API method calls and permissions as features, applying
convolutional neural network for training. (Suarez-Tangil et al. 2017) proposed
an Android malware classifier that exploited features and artifacts introduced by
obfuscation mechanisms used in malware.

(3) Hybrid analysis. The combination of dynamic and static analysis can
make Android malware detection more accurate and efficient. (Onwuzurike
et al. 2018) compared the detection performance between static and dynamic
analysis on the same behavioral model relying on Markov chains built from
the API sequences. The result showed that dynamic code loading has better
performance for data in free conditions.

(Yung and Juang 2017) used Androguard to extract static features like
permissions and Android four components, DroidBox to obtain dynamic
features, and SVM to analyze the combination of the dynamic and static
features. (Chen et al. 2016) introduced two newly defined features determined
by the frequency of sensitive API calls and information requests. They adopted
a streaminglized machine learning-based framework to support large-scale
analysis, which observed app behaviors statically and dynamically.

Furthermore, API is commonly used to detect Android malware in both
static feature analysis and dynamic feature analysis. After processing the API
sequence or function call graph, and feeding it into RNN, the behavior path of
the software, which is different from the benign software can be discovered.
The problem of gigantic repetitive API sequences can be dealt through the size
of the information entropy of the API (Lu et al. 2019). Some researchers (Gao
2019) (Fan et al. 2018) converted the frequency relation matrix obtained from
the function call graph of sensitive into vectors and combined with other
features to detect Android malware.

APPLIED ARTIFICIAL INTELLIGENCE e2007327-499

Raw Feature Data Preprocessing

Data preprocessing is essential after obtaining the raw feature from the feature
extraction phase, which generally involves the stages as follows. Table 2 gives
a brief introduction to each data preprocessing method from different
researches.

(1) Data cleaning. Data cleaning removes the irrelevant features directly
after obtaining the original data through feature extraction. For example, the
irrelevant permissions possessed by both benign and malicious Android
applications should be cleaned.

(2) Data integration. Data integration means integrating information of
two or more features provided for comprehensive detection. It is necessary to
use effective data fusion methods when multi-source features are combined to
be the input of the classifier during the detection phase.

(3) Data reduction. Data reduction mostly refers to the process of dimen-
sionality reduction of the data involving complex algorithms, with an attempt to
address the problems of too large dimensionality of the Android feature vector.

(4) Data transformation. Data transformation is to transform data from
one form to another. The most commonly used research method is converting
the extracted features into images and feeding them into the deep neural
network.

It can be seen from Table 2 that there is a range of technologies usually
applied in each stage of data preprocessing.

In the data cleaning phase, some original data are cleaned up for meeting
the requirements of the next data processing step. For example, the data
unable to be analyzed was deleted for subsequent N-Gram processing. Also,
some papers removed redundant original features to generate a vector map
containing only features associated with malicious behavior.

In the data integration phase, static features and dynamic features can
be combined to obtain better performance. The multi-source features are
commonly the inputs of one branch of the neural network, and the
outputs of all branches are combined to form the input of a fully con-
nected layer.

In the data reduction phase, many algorithms such as feature weight-
ing, evolutionary genetic algorithm, and machine learning models like
natural language processing were adopted to reduce the dimensionality
of feature vectors. Meanwhile, some studies used the image embedding
method technique to represent the features and reduce the graph
dimensionality.

In the data transformation phase, many researchers transformed the extracted
features into audio files, directed graphs, grayscale images, color images, etc. to
take the advantage of the neural networks to process these kinds of data.

e2007327-500 L. MEIJIN ET AL.

Valid Feature Subsets Selection

Categories of Feature Selection
Android feature subsets selection refers to the procedure of choosing a valid
subset from the existing features. According to whether the execution process
of the feature selection algorithm is independent of the accuracy of the
classifier or not, it can be divided into two categories. Table 3 depicts the
traits of each category and Figure 3 illustrates the difference between them.

(1) Filter-based Approach. Independent of the result of the malware
classifier, filter models select valid feature subsets by the general characteristics
of the features. Due to the independence from classification results and high
time efficiency, it has been widely used in feature subset selection.

Table 2. Data preprocessing of Android raw features.
Reference Description Type

(Bai et al. 2020) FAMD combined filter, wrapper, and embedded based feature
selection method.

Data cleaning

(Xu et al. 2018) The N-Gram technique was used to remove irrelevant API
subsequences.

Data cleaning

(Pang et al.2019) This paper removed redundant features based on feature weighting Data cleaning
(Bai et al. 2020) FAMD used integration of permissions and Dalvik opcode sequences. Data integration
(Qiu et al. 2019) A3CM combined API calls and network addresses. Data integration
(Nicheporuk et al.

2020)
API method calls and permissions were the input of a convolutional

neural network.
Data integration

(Xu et al. 2018) Static features and dynamic features were combined. Data integration
(Yerima and Sezer

2019)
Android permissions and API calls were used as multi-source data

using static analysis.
Data integration

(Naway and Li 2019) The integration of permission, intention filter, API call, and invalid
certificate was used.

Data integration

(Bai et al. 2020) The N-Gram technique and the FCBF algorithm were used to reduce
dimensionality.

Data reduction

(Alam, Alharbi and
Yildirim 2020)

This paper reduced data by DroidDomTree that mines the dominance
tree of API calls.

Data reduction

(Lu et al. 2019) Redundant N-Gram subsequences were removed using Information
Gain.

Data reduction

(Li et al. 2018) Attribute Subset Selection and Principal Component Analysis were
used to reduce dimensionality.

Data reduction

(Li et al. 2018) Three levels of permission feature pruning methods were presented Data reduction
(Fatima et al.2019) Evolutionary genetic algorithm was applied for feature selection. Data reduction
(Cai, Li and Xiong 2021) Feature weighting was employed to reduce data. Data reduction
(Kim et al. 2018) Image embedding method was used to reduce dimension of different

graphs.
Data reduction

(Li et al. 2017) Android malware clustering system was adopted through iterative
mining of malicious payload.

Data reduction

(Bakour and Ünver
2021)

The source of APK was converted into grayscale images and
processed by deep learning.

Data
transformation

(Cai et al. 2021) API sequence was converted to the enhanced function call graphs. Data
transformation

(Fan et al. 2018) Raw data of API call sequence and sensitive data were converted to
frequent subgraphs.

Data
transformation

(Yen and Sun 2019) This paper digitized the importance of the word and converted them
to images.

Data
transformation

(Mercaldo and Santone
2021)

Features were presented in a form of audio files. Data
transformation

(Ünver and Bakour
2020)

The AndroidManifest.xml in samples was used to constructed
grayscale image datasets.

Data
transformation

(Vasan et al. 2020) Raw malware binaries were converted into color images. Data
transformation

APPLIED ARTIFICIAL INTELLIGENCE e2007327-501

(Salah, Shalabi and Khedr 2020) proposed a lightweight Android malware
classifier with a novel feature selection method inspired by TF-IDF. (Yildiz
and Doğru 2019) selected three Android permission feature subsets by the
genetic algorithm and evaluated by SVM and NB. (Zhang et al. 2021) used
automatic word-based sensitive Android feature engineering based on text
classification.

The typical filter selection algorithm is ranking-based. Each feature is
assigned to a score according to its importance calculated by the algorithm,
and then select the top N features as input of the classification stage. W. (Wang
et al. 2014) applied feature ranking methods to rank individual permissions
based on the risk of single permission and the group of permissions.
(Mahindru and Sangal 2020, 2021) applied six different feature ranking
approaches to select significant features, including Gain-ratio feature selec-
tion, Chi-Square, Information-gain, and logistic regression analysis.

(2) Wrapper-based Approach. Wrapper-based approach uses the accuracy
of the malware classification to estimate the efficiency of generated feature
subset. Evaluating the efficiency of generated feature subset by the accuracy of
the malware classification, the wrapper method can obtain a better perfor-
mance but is more complex and computationally costly compared with the
filter-based method. And it can be combined with the filter-based algorithm to
select Android features (Huda et al. 2016).

Table 3. Feature subsets selection in Android.
Method Description characteristics Algorithms

Filter The model is independent of any
result of classifier

Fast, lower computational
cost but without
considering feature
relevance

Correlation-based Feature Selection
(CFS), Consistency-based Filter
(Dash and Liu 2003),Information
Gain (Yerima, Sezer and Sezer 2014),
ReliefF(Spolar et al.2013)

Wrapper The model uses the accuracy of
the classifier to evaluate the
quality of the generated feature
subset

Capture feature
relevance, optimize
a predictor but high
computational cost

FFSR (Ye and Gong 2010),
WrapperSubsetEval (Witten and
Frank 2011)

Figure 3. Categories of feature selection.

e2007327-502 L. MEIJIN ET AL.

Recently, little research utilized the feedback from the accuracy of the
classifier in Android malware detection. Though less computational overhead
in the filtered-based algorithms, the valuable relevance information obtained
from the classifier between different features is ignored, which can conse-
quently choose a large number of redundant features while processing high
dimension feature vectors. To make a breakthrough in the efficiency of the
malware detection classifier, the problem of inexhaustible feature combination
in selected valid subsets in the previous wrapper-based method should be
tackled.

Machine Learning in Feature Subsets Selection
Due to the vulnerability of the syntax integrity of multi-source data during the
process of manual feature selection, more research has focused on feature
selection machine learning algorithm based as following summarized.

Traditional machine learning models can be optimized to select the valid
feature subsets. (Priya and Visalakshi 2020) proposed KNN-based relief algo-
rithm for feature selection, and the optimized SVM algorithm was applied for
malware detection with the result showing that it was equivalent to the
performance of the neural network. (Wang et al. 2020) presented a multi-
view neural network that can automatically generate multiple views of input
and assign soft attention weights to different Android features. Multi-view
preserved the rich semantic information of input without complex feature
engineering.

Besides, unsupervised learning and reinforcement learning are also utilized
in Android feature subsets selection. (Liu et al. 2021) proposed SRBM
(Subspace-based Restricted Boltzmann Machines) by introducing the concept
of subspace to optimize the model. Each RBM model in SRBM was used for
unsupervised learning to learn the features of each particular subspace, and the
lower dimension features are used to represent the original dataset. (Fang et al.
2019) used deep reinforcement learning to automatically select optimal feature
subsets by encouraging the agent to maximize the expected accuracy from the
malware classifiers in sequential interaction with the features space.

From the above discussion, the conclusion can be reached that the key to
using machine learning models to select Android features is to use its predic-
tion ability to calculate the weight of the feature or obtain the correlation
between features based on an evaluation metric. Additionally, wrapper-based
feature selection can also apply machine learning models to score the valid
feature subset selected by the optimization algorithms.

For machine learning models that perform well on classification tasks, like
SVM and DT, these models have a suitable separation capability in that they
maintain the largest distance from the points in either class. For neural net-
works, the score derived from the sum of the softmax weights of the input
features can be adopted as an evaluation indicator to select valid feature subsets.

APPLIED ARTIFICIAL INTELLIGENCE e2007327-503

Classification Tech of Android Malware

Categories of Classification Technology

This section outlines the process of Android malware classification based on
the features obtained from valid feature subsets selection. The Android mal-
ware detection methods can be categorized into signature, behavior, and
machine learning based, as summarized in Table 4, among which the most
mature method is signature-based detection. The following are introductions
of several detection methods.

(1) Signature-based detection
Based on pattern matching, signature-based detection maintains a malware

signature library containing the unique signature for each known Android
malware. Malware signature library includes different attributes like file
names, content strings, or bytes, that are manually identified by experts or
generated automatically. It detects an Android sample by testing whether there
is a matching malware signature in the library.

This technology is the most convenient and universally used due to its fast
detection speed and high accuracy. All the Android malware recorded in the
malware library can be detected correctly. However, the disadvantage is that
the maintenance of the malware signature library is time-consuming and is
not applicable to detecting new malware.

(2) Heuristic-based detection
Heuristic detection, also known as anomaly based and behavior-based

detection, emphasizes the ability to identify unknown malicious software.
This method compares the characteristics of unknown samples with known
malware families, and each malware family is represented by a set of rules
defined to mine the common experience and knowledge of the software. It is
considered malware when the characteristics of the detected sample conform
to the rules of one malware family. Known rule sets include attributes like
software structure features, the API calls, operation code sequences, and
multiple views integration rules, etc.

Heuristic-based detection techniques have the ability to self-discover of
unknown malicious software and advocate the use of multiple methods to deter-
mine the difference between malicious and benign software. It makes up for the
deficiency of traditional detection and can also identify unknown malicious soft-
ware but with the disadvantage of a higher error rate for zero-day malware.

(3) Machine learning-based detection
Machine learning trains a learner by adjusting the parameters to make the best

predictions. Existing research demonstrated that machine learning is an effective
and promising method to detect Android malware. In recent years, many mal-
ware detection works have attempted to harness machine learning to seek
a breakthrough in unknown Android malware detection. The following subsec-
tions will introduce the detection technology based on machine learning in detail.

e2007327-504 L. MEIJIN ET AL.

Machine Learning Based Android Malware Classification

In an attempt to deal with the lack of ability to identify unknown malware or
zero-day malware for the traditional methods, machine learning is employed
in Android malware detection universally in recent years’ research. Machine
learning can be roughly divided into five categories: symbolism, bayesism,
connectionism, evolutionism, and behavioral analogism, according to the
basic concept (Zhou 2016).

Firstly, according to learning type, machine learning used in Android
malware detection can be divided into four categories depicted in
Table 5.

(1) Supervised learning. The training data labeled with the category is the
input into machine learning models in supervised learning. It is a classification
task when supervised learning makes discrete predictions about various
things, a regression task when supervised learning makes predictions about
continuous values.

(2) Unsupervised learning. The prediction model is trained through unla-
beled data sets, with the subject to explore and infer potential connections
from unlabeled data in unsupervised learning. The typical tasks are clustering
and dimensionality reduction.

Table 4. Summary of Android malware detection technology.

Year Reference
Detection

technology Description

2018 (Saracino et al. 2018) Signature and
heuristics

Host-based malware detection system

2018 (Sihwail, Omar and
Ariffin 2018)

Signature and
heuristics

A review of signature and heuristics method

2018 (Rehman et al. 2018) Signature and
heuristics

A hybrid framework using signature and heuristics method

2021 (Li et al., 2021) Heuristics A review of heuristic malware detection
2010 (Firdausi et al. 2010) Heuristics Five classifiers were compared to verify the effectiveness of

heuristics analysis
2020 (Alazab et al. 2020) Heuristics Integrate permissions with API calls based on heuristic analysis
2015 (Talha, Alper and

Aydin 2015)
Heuristics A permission-based Android malware detection system using

heuristic analysis
2020 (Priya and Visalakshi

2020)
Machine

learning
The KNN-based Relief algorithm and the optimized SVM were

adopted to detect Android malware.
2018 (Chen et al. 2018) Machine

learning
Generate adversarial samples to evade the detection of current

machine learning based detectors.
2020 (Pektaş and

Acarman, 2020a)
Machine

learning
Employ deep neural network as malware classification.

2019 (Kumar et al. 2019) Machine
learning

Combine dynamic analysis and static analysis machine learning.

2020 (Pektaş and
Acarman, 2020b)

Machine
learning

Deep learning was applied using features extracted from
instruction call graphs

2018 (Hasegawa and
Iyatomi 2018)

Machine
learning

One-dimensional convolutional neural networks was applied for
Android malware detection.

2019 (Yen and Sun 2019) Machine
learning

Utilize CNN to process images generated from the importance of
words

APPLIED ARTIFICIAL INTELLIGENCE e2007327-505

(3) Semi-supervised learning. Combined with supervised learning and
unsupervised learning, only some parts of training data are labeled in semi-
supervised learning (Zhu and Goldberg 2009). It learns the internal structure
of the data and then reasonably organizes the data for prediction with only
a few marked data sets (Engelen and Hoos 2020).

(4) Reinforcement learning. Reinforcement learning can be applied to
select Android features, using the classification result of the input data as
feedback to the classification model, with the principle that the agent opti-
mizes its next action to maximize the reward value.

Secondly, according to learning tasks, machine learning models can be
categorized into classification model, regression model, clustering model and
dimension reduction model. The training samples are to be classified into the
given category in classification task, but without acknowledging of given
categories in the clustering task. In the regression task, the input data need
to fit a set of points using a function. As the machine learning models can be
applied to solve different problems, it is difficult to categorize all machine
learning algorithms from the same perspective. For example, decision tree can
be utilized both in classification and regression tasks. There is no absolute
boundary between different categories. Therefore, one model may belong to
multiple categories.

With the basic knowledge of the taxonomy of machine learning methods,
the commonly used models in Android malware detection were summarized
as follows. Traditional machine learning and other current state-of-the-art
detection models are distinguished, with a detailed summary as shown in
Table 6. Three main types of models and algorithms used for Android mal-
ware detection are as follows: the first (1)-(6) is traditional machine learning
models, the second are neural network and deep learning (7)-(8), and the third
uses ensemble learning (9) which combines multiple classifiers to detect
Android malware.

Table 5. Machine learning models applied in Android malware detection categorized by learning
type.

Learning type Models Reference

Supervised learning 1.DT (Mantoo 2020)
2.NB (Firdaus et al. 2018)
3.KNN (Mantoo 2020)
4.SVM (Mantoo 2020)

Semi-supervised learning 1.SSL-NNR (Taheri et al. 2020) (Chen et al. 2017)
2.GIL (Atzeni et al. 2018)
3.Laplace SVM (Mahdavifar et al. 2020) (Ribeiro et al. 2020)

Unsupervised learning 1.K-means (Fan et al. 2019)
2.PCA (Wen and Yu 2017) (Tiwari and Shukla 2018)
3.SVD (Singh et al. 2021)
4.ICA (Zhang et al2015)

Reinforcement learning 1.Q-
Learning

(Fang et al. 2019)

2.DQN, DDQN (Rathore et al.2020)
3.A2C, A3C (Khowaja and Khuwaja 2021)

e2007327-506 L. MEIJIN ET AL.

(1)Linear Model. Simple and highly interpretable, linear functions using
Android features as input are applied to give malware prediction. The typical
linear model includes logistic regression and linear regression, with the dif-
ference that logistic regression is to solve the classification problem while
linear regression deals with regression problems. (Zhang et al. 2019) provided
indirect methods for diagnosing anomalies by building specialized linear
models to locally approximate the anomaly scores generated by black-box
models.

(2) Support Vector Machine. It shows significant improvement to effec-
tively monitor the resources consumption of running Android malware with
Support Vector Machine (SVM). SVM is to find a hyperplane (Boswell 2002)
that perfectly divides n-dimensional data into two categories. (Faiz, Hussain
and Marchang 2020) applied SVM using features extracted from Android
permissions, broadcast receivers, and APIs to detect Android malware, with
the highest classification accuracy of 98.55% achieved by personaCateg-SVM.

(3) Naive Bayes. Based on Bayes’ theorem, Naive Bayes (NB) assumes that
the effect of an attribute value on a given class is independent of the values of
other attributes (Leung 2007). (Alqahtani, Zagrouba and Almuhaideb 2019)
provided a review of machine learning detectors, summarizing NB, SVM, and
DNN applied in Android malware detection in detail.

(4) Decision Tree. As one of the most typically applied supervised learning
models used in inductive reasoning, Decision Tree (DT) builds a flowchart-
like tree structure from training data. (Lashkari et al. 2018) applied RF, KNN,
and DT as the Android malware detection classifier for comparison, with each
machine learning algorithm trained, tested, and evaluated with the same
selected features.

(5) K Nearest Neighbor. As a supervised learning model, K Nearest
Neighbor (KNN) can obtain Android malware classification results through
measuring Euclidean distance in geometric space between different eigenva-
lues (Ray 2019).

(6) K-means Clustering. K-means clustering algorithm is an unsupervised
learning algorithm typically applied in Android malware family classification
(Ilham, Abderrahim and Abdelhakim 2018). Given a set of N data points Rd

and an integer K in a real D-dimensional space, it is to find the center point in
N data points, thus minimizing the mean square distance of each data point to
its nearest center (Kanungo et al. 2002).

(7) Neural Network. Composed of a large number of connected artificial
neurons, Neural Network (NN) uses neurons to reflect the received signal and
the weight to present the strength of the signal (Gershenson 2003). The most
typically used neural network algorithms are Perceptron Neural Network,
Hopfield Neural Network, and Self-Organized Map.

APPLIED ARTIFICIAL INTELLIGENCE e2007327-507

(8) Deep learning. With multiple levels of data representation obtained by
composing nonlinear modules that convert a level of representation to
a higher and more abstract level of representation (LeCun, Bengio and
Hinton 2015), deep learning originates from NN (Du et al. 2016) as illustrated
in (Qiu 2020). It is used to detect Android malware usually when features are
transformed into images. A hybrid malware classification using segmentation-
based fractal texture analysis and deep convolution neural network features
was proposed in (Vinayakumar et al. 2018), which binarized Android APK
into grayscale images generated using bytecode information. (Vinayakumar et
al. 2018) used a Back-Propagation Through Time (BPTT) to train an LSTM
model to detect Android malware. (Vinayakumar et al. 2018) used two
different network topologies with multiple network parameters, a standard
LSTM network containing only one hidden layer, and a stacked LSTM net-
work with three hidden layers, which exhibited high Android malware detec-
tion accuracy on both static and dynamic analysis.

(9) Ensemble learning. Multiple classifiers were combined to improve the
Android malware detection accuracy in ensemble learning (Zhao et al. 2018)
(Rana and Sung 2020). More specifically, ensemble learning describes a way of
combining learners. A new classifier fusion method based on the multi-level
structure was proposed by (Yerima and Sezer 2019), training basic Android

Table 6. Summary of machine learning models in Android malware detection.
Model Advantages Disadvantages Reference

Linear
Model

The main algorithm of statistics;
direct and fast

The premise of the algorithm is
strict, and is unable to deal with
high-dimensional Android
features

(Ham et al. 2014)(Zhang
et al. 2019)

Support
Vector
Machine

Easy to deal with small-scale; low
dimensional and nonlinear
problems

Large amount of data
preprocessing; sensitive to
missing values

(Mantoo 2020)(Faiz,
Hussain and Marchang
2020)

Naive Bayes Model training is simple and fast Not available when the extracted
features are correlated

(Firdaus et al. 2018)

Decision
Tree

Capable to deal with large-scale
and missing value model

Conspire toward overfitting; does
not support online learning

(Mantoo 2020)(Lashkari et
tl. 2018)

Deep
Learning

Address difficult problems by
complex model with more
parameters

Low training efficiency of complex
model; easy to be overfitting

(Murtaz et al. 2018)
(McLaughlin et al. 2017)

Random
Forest

Easy to implement; low
computational overhead;
strong generalization ability

The initial performance of random
forest is unsatisfactory

(Lashkari et al. 2017)
(Murtaz et al. 2018)

Neural
Network

High accuracy and strong fault
tolerance

Requires a lot of training data; the
parameters and topology are
difficult to choose

(Nisa et al. 2020)(Zhu et al.
2018)

K-nearest
Neighbor

Can be implemented without
parameter estimation; suitable
for solving multi-classification
problems

Allergic to the dataset; the
amount of calculation is
relatively large

(Mantoo 2020) (Priya and
Visalakshi 2020)
(Lashkari et al. 2017)

K-means
Clustering

Low computational overhead The results are affected by the
initial settings; sensitive to
noise and discrete values

(Ilham, Abderrahim and
Abdelhakim 2018)(Faiz,
Hussain and Marchang
2020)

e2007327-508 L. MEIJIN ET AL.

classifiers at a lower level to generate models, using a set of sorting algorithms to
select the final classifier and assigning the weight of the prediction results of the
chosen classifier according to the prediction accuracy of the basic classifiers at
a higher level. However, it is computationally costly to apply ensemble learning,
for the reason that each APK file should be analyzed by multiple detectors. To
tackle the problem, (Birman et al. 2019) applied deep reinforcement learning to
automatically start-up and stop the base classifiers, using DNN to dynamically
determine if there is adequate information to classify a given APK file.

Limitations and Challenges in ML Based Detection

There are notable challenges confronting mainstream technologies especially
machine learning in Android malware detection that is necessary to be
considered in future work. As described in this section, these challenges
can be divided into two aspects. Firstly, machine learning is vulnerable to
adversarial sample attacks. Moreover, there are more serious problems
caused by the upgrade of the Android ecosystem and the emergence of
new malware. The machine learning-based detector suffers from degradation
problems, and the feature selection algorithms are not strongly adaptable to
the evolution.

Vulnerability to Security Attacks

Although the enhanced performance of Android malware detection was
observed in machine learning-based classifiers, a variety of countermeasures
have been proposed by attackers to evade the detection. For example, they may
add adversarial examples to interfere with machine learning detectors, which
makes it easier to evade detection while retaining the malicious function.
(Papernot et al.2016; Amodei et al. 2016) reviewed the existing work on
security risk and summarized the security problems of machine learning.

As described in Table 7, machine learning model security problems can be
divided into three categories: training integrity threat, test integrity threat, and
lack of robustness of the model. Among these different attacks, the most
common situation is test integrity threat, for the little opportunities to manip-
ulate the training dataset of the detection classifier.

Recent works have highlighted the vulnerability of many machine learning
models of Android malware detection to adversarial examples, which can be
used to evaluate the security and robustness of the model before it is
deployed.

The existing approach to generate adversarial samples is modifying the
feature vector of the Android malware, intending to be misclassified by
machine learning detectors, at the same time guaranteeing the malicious
functionality. (Grosse et al. 2017) used the augmented adversarial crafting

APPLIED ARTIFICIAL INTELLIGENCE e2007327-509

algorithm to mislead this classifier while adding individual features to
AndroidManifest.xml to preserve semantics. (Rosenberg et al. 2017) applied
a query-efficient black-box attack that generated adversarial examples by
modifying the malware’s API call sequences and non-sequential features.

However, there are some defects in the above attack models, which should
be emphasized when building a robust detector against the adversarial sam-
ples. For example, (Grosse et al. 2017) modified AndroidManifest.xml to fool
the classification model, but it fails when hybrid analysis or features contained
in AndroidManifest.xml are not extracted as input to the classifier. So multi-
source features extracted from different Android dissembled files, which
provide more all-round analysis with comprehensive information, can be
combined in future research to defense against the attack based on single
feature modification.

Besides the lack of feasibility in such an adversarial attack, the impact of the
mutation may also lead the Android malware to crash. In other words, the
malicious behaviors could be lost or sometimes the codes cannot be compiled
appropriately due to the modification of the feature vector. Therefore, to
enhance the feasibility of the feature-space attacks, (Yang et al. 2017) com-
bined malware evolution attack and malware confusion attack to preserve the
critical structure of malware. Phylogenetic analysis for the Android malware
family was conducted to interpret evolving malware patterns in evolution
attacks, and then it was complemented by mutating permission and API
features less differentiable from Android malware. Furthermore, instead of
focusing on feature-space attacks, other researchers built attack models on
problem-space. (Pierazzi et al.2020) applied a problem-space attack focused on
test-time evasion in the Android malware detection, through modifying real

Table 7. Security attacks of machine learning models.

Threat types
Attack

method Description Reference

Training
integrity
threat

Poison attack The attacked model is unable to work
appropriately in the test phase with poisoned
data mixed into the training dataset.

(Biggio, Nelson and Laskov
2013)

Backdoor
attack

The attacked model classifies the data of the
backdoor trigger into the target category due to
the poisoned training set.

(Gu, Dolan-Gavitt, and Garg
2019) (Liu et al. 2018)

Test integrity
threats

Adversarial
sample
attack

The attacked model is cheated by adversarial
samples that are deliberately added with subtle
interference

(Kurakin, Goodfellow and
Bengio 2019) (Carlini and
Wagner 2017)

Lack of
robustness
of the
model

Not
explainable

Machine learning models cannot be clearly
explained how it makes decisions and why it
performs well

(Papernot and Nicolas 2018)

Insufficient
training
data

It destroys the adaptability of the machine learning
model confronted with the changing
environment for the insufficient training dataset

(Papernot and Nicolas 2018)

e2007327-510 L. MEIJIN ET AL.

input-space objects that correspond to an adversarial feature vector. The result
of the experiment on a dataset of 170 K apps demonstrated the feasibility for
an attacker to evade DREBIN (Arp et al. 2014) and its hardened version, Sec-
SVM (Demontis et al. 2017).

Although the escape rate of these attacks to machine learning detectors is
generally high, defenders can still build an effective classifier against the
adversarial samples through some methods as follows: (i) Adversarial
Training. Training a new detection model with adversarial samples. (ii)
Variant Detector (Yang et al. 2017). Developing a detector in addition to the
original malware detector to detect whether an app is a variant derived from
existing malware. (iii) Feature Integration. Integrating more features as pos-
sible to fully extract the various information of the sample.

From the discussion, the future research focused on the Android malware
classification is suggested to adopt the adversarial models to evaluate the
robustness of the model, and consider the above-mentioned approach to
help address the vulnerability problems of machine learning-based detectors.

Deterioration Issues

The upgrade of the Android ecosystem proposed difficulties in feature subsets
selection and malware classification stage. Despite numerous malware family
classification approaches being available, there remains a valuable topic since it
has not been well solved. One of these challenges is how to pick features and
build robust detectors that stand the test of time without frequent retraining,
since a key issue is the problem caused by the evolution of the Android
ecosystem.

For the Android feature selection stage, it is vitally essential to select valid
Android features to build anti-malware tools that are resilient to the evolution.
(Suarez-Tangil and Stringhini 2018) tracked massive amounts of malware
from 2010 to 2017 and explored how the repackaging malware evolved by
using differential analysis. They discussed some areas that should be specially
paid attention to when extracting Android features to detect malware.
Building an infrastructure able to mine a mobile software ecosystem, (Cai
2020a) depicted how the behavior of Android software has changed over time
by focusing on three ecosystem elements’ ecological interaction and behavioral
evolution patterns. These changes in Android software tracked by the above
researchers proposed challenges in the future work focused on the Android
feature engineering.

For the malware classification stage, machine learning-based Android
detectors have been noted that they suffer from sustainability issues.
Machine learning-based detectors deteriorate due to the constant evolution

APPLIED ARTIFICIAL INTELLIGENCE e2007327-511

of the Android ecosystem and the new malware. The aging problem in
Android malware classifier was emphasized in (Fu and Cai 2019) and identi-
fied by the framework proposed in (Jordaney et al. 2017).

Some researchers (Kantchelian et al. 2013) (Maggi et al. 2009) attempted to
address the problem by frequent retraining of the malware classification
model, but consequently the performance of the classifier tends to be untrust-
worthy with a loose retraining frequency and it results in high cost for
manually labeling all Android samples in retraining process. Therefore,
a thorough solution to the sustainability issues focuses on the promotion of
the rapid-aging classifier. From the reviewed literature, the approach to slow-
down the aging of classification models is depicted as follows.

(1) Present Features in Abstraction. The key to solving the problem is
developing detectors resilient to changes and achieving scalability, so the
concept of abstraction is utilized to make the machine learning model more
adaptable for its insensitivity to the detailed changes of the Android frame-
work. For example, (Onwuzurike et al. 2017) used the family, package, or class
information to generate abstracted API calls rather than relying on the raw
API calls, and they tested the model on the dataset containing samples
captured over six years to display its consistency. Similarly, (Zhang et al.
2020) also dealt with the problem by exploring the semantic similarity despite
the different implementations.

(2) Track the Evolutionary Patterns. Another strategy (Cai, 2020b) is to
understand the evolutionary patterns of extracted features in benign samples
and malware and then leverage the findings to build a sustainable malware
detector. (Cai 2020) studied the five-year evolution trajectory of a new beha-
vior profile described by run-time behaviors and proposed a detection system
based on observations of consistent differences between benign and malicious
software over years. It showed better sustainability performance than
MamaDroid (Onwuzurike et al. 2016) for the ability to maintain high
accuracy.

(3) Build Self-evolving Detector. For this method, the detection model
will be updated if identified as aging in the detection stage. (Xu et al. 2019)
proposed a self-evolving Android malware detection system that maintains
a different set of detection models and automatically self-updates through
online learning techniques to improve sustainability and reduce
deterioration.

In a conclusion, as the research trends paid more attention to the deteriora-
tion problem of machine learning classification models in Android malware
detection, it should not be ignored in future experiments. The researchers can
demonstrate the resilience of the proposed classification model by testing it on
the datasets over years without frequent retraining.

e2007327-512 L. MEIJIN ET AL.

Android Datasets and Dissemble Tools

Datasets

As a literature survey, it is essential to propose a separate survey dimension
of the datasets and disassemble tools generally used in Android malware
detection. Taking experiments on well-known and updated datasets that are
sufficient for a longitudinal comparative experiment is of concern in the
research. Recent typically used public Android datasets are discussed as
follows.

(1) Drebin (Arp et al. 2014). As the most-used android malware dataset in
previous studies serving as a benchmark, Drebin contains 5,560 files from
179 different malware families. The applications were captured from
August 2010 to October 2012 but have been never updated since then.

(2) RmvDroid (Wang et al. 2019). RmvDroid is a malware dataset contain-
ing 9,133 samples collected from 2014 to 2018 that belong to 56 malware
families based on Google Play’s app maintenance results over several years and
analyzed by VirusTotal.

(3) Androzoo (Allix et al. 2016). AndroZoo is a well-known collection of
Android Applications mainly captured from Google Play, AnZhi, and
AppChina, with samples analyzed by tens of different AntiVirus products. It
is still being updated and contains 16,941,455 different benign and malware
samples at present.

(4) AndroZooOpen (Liu et al. 2020b). As a supplement dataset for
AndroZoo that is made up of close-sourced android apps, AndroZooOpen
presents a growing collection of open-source Android apps collected from
several sources including Github and Google Play, having over 45,000 app
repositories currently.

(5) AndroCT (Li, Fu and Cai 2021). AndroCT is a large-scale dataset on the
run-time traces of function calls in 35,974 benign and malicious Android apps
from 2010 to 2019. Each app was exercised both on an emulator and a real
device, and the traces were separately curated by running each sample app
against automatically generated test inputs.

(6) AMD (Wei et al. 2017). AMD contains 24,553 samples, categorized in
135 varieties among 71 malware families ranging from 2010 to 2016. The
dataset includes detailed descriptions of each malware variety’s behaviors
generated based on the manual analysis result.

It is notable from the above datasets that some data have not been main-
tained in the last three years, such as Drebin (Arp et al. 2014) and Android
Malware Genome (Zhou and Jiang 2012), so using the latest Android reverse
engineering tools to disassemble the outdated samples can be problematic.
More significantly, these datasets no longer represent the present Android
malware landscape. It is recommended to carry out experiments on well
labeled, advised studied datasets released or updated after 2019 (e.g.,

APPLIED ARTIFICIAL INTELLIGENCE e2007327-513

Androzoo, AndroZooOpen). Most of the existing datasets are static, including
no information about the runtime behavior of apps. For dynamic analysis,
AndroCT is recommended for its extracted run-time trace features.

Dissemble Tools

Disassembly is the reverse process of compilation, turning executable
Android machine source code into higher-level code. The disassembly of
the object code can be divided into static disassembly and dynamic
disassembly. Static disassembly is to get the assembly code directly by
parsing the binary instructions of the object code without executing the
program. Dynamic disassembly, on the other hand, tracks instructions as
the program executes, so dynamic disassembly can only handle instruc-
tions that the object code executes.

At present, a lot of professional disassembly tools have been produced in
domestic and foreign researches in recent years. The mainstream disassembly
software in the current professional field are introduced as follows.

(1) Smali & Baksmali (Gruver 2021). It is a powerful APK file editing tool
for the Dalvik Virtual Machine to decompile and back-compile classes.dex.
The syntax is a loose Jasmin in smali and– dedexer syntax in Baksmali, and it
implements all the features of the.dex format.

(2) Androguard (Halder et al. 2020). As the reverse engineering of Android
applications, it functions include: support for multiple platforms (such as
Linux, Windows, OSX, etc.); mainly used for static analysis; written primarily
in Python; implement visualization.

(3) APKTool (Wiśniewski and Tumbleson 2021). The main functions of
APKTool include dissembling resource files to the original format (including
Resources.arsc, classes.dex, png, XML, etc.), rebuilding decoded resources back
to binary APK/JAR, and processing APKs that depend on framework resources.

(4) AndroPyTool (Melbshark 2019). Capable to extract static and dynamic
features from the Android APK, it combines various well-known Android app
analysis tools such as Droidbox, FlowDroid, Strace, Androguard, and
Virustotal. A source directory is needed for AndroPyTool to implement
analysis and generate json and CSV format properties files.

(5) FlowDroid (Arzt et al. 2014). FlowDroid is an Android static taint
analysis tool oriented on context, flow, fields, object sensitivity, and
lifecycle awareness, which has higher accuracy and recall rates than
other static analysis approaches. Based on IFSP framework, it can ana-
lyze all possible paths of information flow to generate CFG (Control
Flow Graph) and label the taint leak path of sensitive information flow
from source to sink.

e2007327-514 L. MEIJIN ET AL.

Conclusion

Relying on reviewing the captured work, this paper provides a systematic
overview of the Android OS environment, feature selection, and classification
technology. Also, the limitations of machine learning and the commonly
applied datasets and disassemble tools are included. The main objective of
this paper is to depict a full portrait in the field of Android malware detection,
especially machine learning based.

Compared with other reviews, this paper not only gives a brief introduction
to Android system mechanism and malware classification algorithms but also
summarizes the data preprocessing approach and valid feature subsets selec-
tion models systematically, including the limitations and challenges in
Android malware detection, which gives a more comprehensive look in the
techs of feature selection and malware detection in recent years. This article
can provide readers with a fundamental overview of Android malware detec-
tion and inspire them to pursue new research avenues.

However, after a comprehensive research of Android malware detection, there
are still some challenges in future research, for example, the vulnerability of
Android detectors to adversarial sample attacks, the aging classification models
due to the emergence of new malware, the difficulty to build Android feature
selection models resilient to the evolution of the Android system, etc. In addition,
while there are a variety of machine learning methods used to classify Android
malware, little research on these methods has focused on feature selection that
has a fundamental impact on detection efficiency. Although the ensemble learn-
ing models that combine multiple learners are widely utilized, many models used
traditional machine learning as base classifiers, instead of presenting the combi-
nation of state-of-the-art machine learning algorithms such as deep learning
models. Moreover, the way to automatically select and remove the base classifiers
can be exploited to solve the problem of computational expense and to find the
optimal combinations of base classifiers. Therefore, future research can make full
use of reinforcement learning in Android detection for ensemble learning.

Finally, little research utilizes the feedback from the accuracy of the classifier
in Android malware detection, consequently the valuable relevance information
obtained from the classifier between different features is ignored. However, to
make a breakthrough in the efficiency of the wrapper-based feature selection
procedure, the problem of inexhaustible feature combination in selected valid
subsets in the previous wrapper-based method should be tackled.

Disclosure statement

No potential conflict of interest was reported by the author(s).

APPLIED ARTIFICIAL INTELLIGENCE e2007327-515

Funding

This work was supported in part by the National Natural Science Foundation of China under
Grant 62101368, Grant U20A20161, and Grant U1836103; and in part by the Basic Research
Program of China under Grant 2019-JCJQ-ZD-113.

ORCID

Li Meijin http://orcid.org/0000-0001-8137-540X
Fang Zhiyang http://orcid.org/0000-0001-6502-8053
Zeng Qi http://orcid.org/0000-0002-6965-2969
Yang Tao http://orcid.org/0000-0001-9658-4319

References

Afonso, V. M., M. F. de Amorim, A. R. A. Grégio, G. B. Junquera, and P. L. de Geus. 2015.
Identifying Android malware using dynamically obtained features. Journal of Computer
Virology & Hacking Techniques 11 (1):9–17. 2015. doi:10.1007/s11416-014-0226-7.

Alam, S., and Alharbi S. A., Yildirim, S. 2020. Mining nested flow of dominant APIs for
detecting android malware. Computer Networks 167:107026. doi:10.1016/j.
comnet.2019.107026.

Alazab, M., Alazab, M., Shalaginov, A., Mesleh A., and Awajan A. 2020. Intelligent mobile
malware detection using permission requests and API calls. Future Generation Computer
Systems 107:509–21. doi:10.1016/j.future.2020.02.002.

Allix, K., T. Bissyandé, J. Klein, and Y. Traon. (2016). AndroZoo: Collecting millions of
Android apps for the research community. In Proceedings of the 13th International
Conference on Mining Software Repositories (MSR ‘16). Association for Computing
Machinery, New York, NY, USA, 468–71. DOI:10.1145/2901739.2903508

Alqahtani, E. J., Zagrouba, R., and Almuhaideb A. (2019). A survey on android malware
detection techniques using machine learning algorithms. In 2019 Sixth International
Conference on Software Defined Systems (SDS), Rome, 110–17. IEEE.

Amodei, D., and C. Olah, Steinhardt, J., Christiano, P., Schulman, J., Mané, D. 2016. Concrete
Problems in AI Safety

Arp, D., Spreitzenbarth, Hübner, Gascon, and Rieck. 2014. Drebin: effective and explainable
detection of android malware in your pocket Network and Distributed System Security
Symposium February 23-26, 2014 San Diego, CA

Arzt, S., S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, L. T. Yves, D. Octeau, and
M. Patrick. (2014). FlowDroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for Android apps. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation. Association for
Computing Machinery, New York, NY, USA, 259–69. DOI:10.1145/2594291.2594299

Atzeni, A., Díaz, F., Marcelli, Sánchez, Squillero, and Tonda. 2018. Countering android
malware: A scalable semi-supervised approach for family-signature generation. IEEE
Access 6:59540–56. doi:10.1109/ACCESS.2018.2874502.

Babaagba, and Adesanya. 2019. A study on the effect of feature selection on malware
analysis using machine learning. ACM International Conference Proceeding Series
F148151:51–55.

e2007327-516 L. MEIJIN ET AL.

https://doi.org/10.1007/s11416-014-0226-7
https://doi.org/10.1016/j.comnet.2019.107026
https://doi.org/10.1016/j.comnet.2019.107026
https://doi.org/10.1016/j.future.2020.02.002
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1109/ACCESS.2018.2874502

Bai, H., Xie, N., X. Di, and Q. Ye. 2020. FAMD: A fast multifeature android malware detection
framework, design, and implementation. IEEE Access 8:194729–40. doi:10.1109/
ACCESS.2020.3033026.

Bakour, and Ünver. 2021. DeepVisDroid: Android malware detection by hybridizing
image-based features with deep learning techniques. Neural Computing and Applications
33(18):11499–516. 2021. doi:10.1007/s00521-021-05816-y.

Bakour, Ünver, and Ghanem. 2019. The Android malware detection systems between hope and
reality. SN Applied Sciences 1 (9):2019. doi:10.1007/s42452-019-1124-x.

Biggio, Nelson, and Laskov. 2013. Poisoning attacks against support vector machines.
Computer Science 28:331–44. doi:10.1007/s00450-013-0251-7.

Birman, Hindi, Katz, and Shabtai. (2019). Transferable cost-aware security policy implementa-
tion for malware detection using deep reinforcement learning.

Boswell. (2002). Introduction to support vector machines.
Cai, H., N. Meng, B. Ryder, and D. Yao. 2018. Droidcat: effective android malware detection

and categorization via app-level profiling. IEEE Transactions on Information Forensics &
Security 14:1455- 70 .

Cai, H., N. Meng, and B. Ryder, Yao, D. 2016. DroidCat: unified dynamic detection of android
malware https://vtechworks.lib.vt.edu/handle/10919/77523 . .

Cai, H. 2020. A preliminary study on the sustainability of android malware detection. ACM
Transactions on Software Engineering and Methodology, 1807.08221, 1–28. http://dx.doi.org/
10.1145/3371924 .

Cai, H. 2020a. Assessing and improving malware detection sustainability through app evolu-
tion studies. ACM Transactions on Software Engineering and Methodology. 29 (2): 28. April
2020. Article 8. doi: 10.1145/3371924.

Cai, H. (2020b). Embracing mobile app evolution via continuous ecosystem mining and
characterization. MOBILESoft ‘20: IEEE/ACM 7th International Conference on Mobile
Software Engineering and Systems July 13-15, 2020. Seoul, ROK: ACM.

Cai, L., Li, Y., and Xiong Z. 2021. JOWMDroid: Android malware detection based on feature
weighting with joint optimization of weight-mapping and classifier parameters. Computers
and Security 100:102086. doi:10.1016/j.cose.2020.102086.

Cai, M., Jiang, Y., C. Gao, Li, H., and Yuan W. 2021. Learning features from enhanced function
call graphs for Android malware detection. Neurocomputing 423:301–07. doi:10.1016/j.
neucom.2020.10.054.

Carlini N., and Wagner D. 2017. Towards evaluating the robustness of neural networks 2017
IEEE Symposium on Security and Privacy (SP) San Jose, CA. 39–57 doi:10.1109/SP.2017.49.

Chen, Li, Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and K. Ren. 2018. Android HIV: A study
of repackaging malware for evading machine-learning detection. arXiv 15:987–1001.

Chen, S., M. Xue, Z. Tang, L. Xu, and H. Zhu. (2016). StormDroid: A streaminglized machine
learning-based system for detecting android malware. In Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security, pp. 377–388. Xi'an, CN: ACM.

Chen, Shi, Xie, Yang, Fang, and Wen. 2021. Suip: an android malware detection method based
on data flow features. Journal of Physics: Conference Series 1812 (1):12010.

Chen, Zhang, Yang, and Sahita. (2017). Poster: semi-supervised classification for dynamic
android malware detection. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, Dallas, USA, 2479–81.

Dash, S., G. Suarez-Tangil, S. Khan, K. Tam, and R. Holloway. 2016. DroidScribe: classifying
android malware based on runtime behavior 2016 IEEE Security and Privacy Workshops
(SPW) 22-26 May 2016 San Jose, CA. 252–61 doi:10.1109/SPW.2016.25.

Dash, and Liu. 2003. Consistency-based search in feature selection. Artificial Intelligence
151 (1–2):155–76. doi:10.1016/S0004-3702(03)00079-1.

APPLIED ARTIFICIAL INTELLIGENCE e2007327-517

https://doi.org/10.1109/ACCESS.2020.3033026
https://doi.org/10.1109/ACCESS.2020.3033026
https://doi.org/10.1007/s00521-021-05816-y
https://doi.org/10.1007/s42452-019-1124-x
https://doi.org/10.1007/s00450-013-0251-7
https://vtechworks.lib.vt.edu/handle/10919/77523
http://dx.doi.org/10.1145/3371924
http://dx.doi.org/10.1145/3371924
https://doi.org/10.1145/3371924
https://doi.org/10.1016/j.cose.2020.102086
https://doi.org/10.1016/j.neucom.2020.10.054
https://doi.org/10.1016/j.neucom.2020.10.054
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SPW.2016.25
https://doi.org/10.1016/S0004-3702(03)00079-1

Demontis, A., M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona, G. Giacinto, and
F. Roli. 2017. Yes, machine learning can be more secure! a case study on android malware
detection. IEEE Transactions on Dependable & Secure Computing PP (99):1–1.

Du, X., Cai, Y., Wang S., and Zhang L. (2016). Overview of deep learning. In 2016 31st Youth
Academic Annual Conference of Chinese Association of Automation (YAC),Wuhan, CN,
159– 64. IEEE.

Engelen, and Hoos. 2020. A survey on semi-supervised learning. Machine Learning 109:02.
Faiz, M. F. I., Hussain, M. A., and Marchang N. (2020). Android malware detection using

multi-stage classification models. In Conference on Complex, Intelligent, and Software
Intensive Systems Lodz, PL, 244–54. Springer.

Fan, M., Liu, J., X. Luo, Chen, K., Z. Tian, Zheng, Q., and T. Liu. 2018. Android malware
familial classification and representative sample selection via frequent subgraph analysis.
IEEE Transactions on Information Forensics and Security 13 (8):1890–905. doi:10.1109/
TIFS.2018.2806891.

Fan, M., Luo, X., J. Liu, M. Wang, Nong, C., Zheng Q., and T. Liu. (2019). Graph embedding
based familial analysis of android malware using unsupervised learning. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE) Montreal, Quebec, 771–82.
IEEE.

Fang, Wang, and Geng, Kan. 2019. Feature selection for malware detection based on reinforce-
ment learning. IEEE Access 7:176177–87. doi:10.1109/ACCESS.2019.2957429.

Fatima, A., Maurya, R., M. S. Dutta, Burget, R., and Masek J. (2019). Android malware
detection using genetic algorithm based optimized feature selection and machine learning.
2019 42nd International Conference on Telecommunications and Signal Processing, Budapest,
Hungary, TSP 2019, 220–23.

Firdaus, Anuar, A., Karim N. B., and Razak. 2018. Discovering optimal features using static
analysis and a genetic search based method for android malware detection. Frontiers of
Information Technology & Electronic Engineering 19 (6):712–36. doi:10.1631/
FITEE.1601491.

Firdausi, I., Lim, C., Erwin A., and Nugroho A. S. (2010). Analysis of machine learning
techniques used in behavior-based malware detection. In Proceedings - 2010 2nd
International Conference on Advances in Computing, Control and Telecommunication
Technologies, ACT 2010, Washington, DC, 201–03.

Fu, X., and H. Cai. (2019). On the deterioration of learning-based malware detectors for
android. 2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion)ACM, Montreal, Quebec, 2019.

Gao. (2019). Detecting android malicious applications based on string and function function
call graph features. Master’s thesis, BJTU.

Gershenson. (2003).Artificial neural networks for beginners. arXiv preprint cs/0308031.
Grosse, K., N. Papernot, P. Manoharan, M. Backes, and P. Mcdaniel. 2017. Adversarial

examples for malware detection ESORICS 2017: Computer Security – ESORICS Oslo,
Norway (Springer International Publishing)62–79 .

Gruver, B. (2021). JesusFreke/smali: Smali/baksmali. https://github.com/JesusFreke/smali
Gu T., Dolan-Gavitt B., and Garg S. 2019. Badnets: Identifying vulnerabilities in the machine

learning model supply chain. . https://arxiv.org/abs/1708.06733
Halder, Reox, S., A. Desnos, and A. Desnos. (2020). androguard/androguard: Reverse engi-

neering, Malware and goodware analysis of Android applications . . . and more (ninja !).
https://github.com/androguard/androguard

Ham H.-S., -H.-H. Kim, M.-S. Kim, M.-J. Choi, and . 2014. Linear svm-based android malware
detection for reliable iot services. Journal of Applied Mathematics 2014:1–10. doi:10.1155/
2014/594501.

e2007327-518 L. MEIJIN ET AL.

https://doi.org/10.1109/TIFS.2018.2806891
https://doi.org/10.1109/TIFS.2018.2806891
https://doi.org/10.1109/ACCESS.2019.2957429
https://doi.org/10.1631/FITEE.1601491
https://doi.org/10.1631/FITEE.1601491
https://github.com/JesusFreke/smali
https://arxiv.org/abs/1708.06733
https://github.com/androguard/androguard
https://doi.org/10.1155/2014/594501
https://doi.org/10.1155/2014/594501

Hasegawa, C. Iyatomi, H. (2018). One-dimensional convolutional neural networks for Android
malware detection. In Proceedings - 2018 IEEE 14th International Colloquium on Signal
Processing and its Application Penang, Malaysia, CSPA 2018.

Huang, M. (2020). Yearly 5G smartphone production projected to exceed 200 million units
thanks to smartphone brands’ proactive push in 2H20, Says TrendForce. https://www.
trendforce.com/presscenter/news/20200722-10398.html

Huda, Abawajy, Alazab, Abdollalihian, and Islam, John. 2016. Hybrids of support vector
machine wrapper and filter based framework for malware detection. Future Generation
Computer Systems 55:376–90. doi:10.1016/j.future.2014.06.001.

Ilham, S., Abderrahim, G., and Abdelhakim B. A. (2018). Clustering android applications using
k-means algorithm using permissions. In The Proceedings of the Third International
Conference on Smart City Applications Tétouan, Morocco, 678–90. Springer.

Internet Security Center. (2020). Android malware special report. https://cert.360.cn/report/
detail?id=0d66c8ba239680d6674f2dba9f2be5f7

Jordaney, R., Sharad, K., S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov, and L. Cavallaro.
(2017). Transcend: Detecting concept drift in malware classification models. In Proceedings
of the 26th USENIX Conference on Security Symposium (SEC’17). USENIX Association, USA,
625–42.

Kantchelian, A., Afroz, S., L. Huang, A. C. Islam, B. Miller, M. C. Tschantz, R. Greenstadt,
A. D. Joseph, and J. D. Tygar. (2013). Approaches to adversarial drift. In roceedings of the
2013 ACM workshop on Artificial intelligence and security (AISec ‘13). Association for
Computing Machinery, New York, NY, USA, 99–110. DOI:10.1145/2517312.2517320

Kanungo, Mount, Netanyahu, Piatko, Silverman, and A. Y. Wu. 2002. An efficient k-means
clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis
and Machine Intelligence 24 (7):881–92. doi:10.1109/TPAMI.2002.1017616.

Khowaja, S., and P. Khuwaja. 2021. Q-learning and lstm based deep active learning strategy for
malware defense in industrial iot applications. Multimedia Tools and Applications 1–27.
doi:10.1007/s11042-020-10371-0.

Kim, T., Kang, B., M. Rho, Sezer, S., and E. G. Im. 2018. A multimodal deep learning method
for android malware detection using various features. IEEE Transactions on Information
Forensics and Security PP:1–1, 08.

Kumar, R., X. Zhang, Wang W., R. U. Khan, , J. Kumar, and A. Sharif. 2019. A multimodal
malware detection technique for android iot devices using various features. IEEE Access
7:64411–30. doi:10.1109/ACCESS.2019.2916886.

Kurakin, A., Goodfellow, I., and Bengio S. (2019). Adversarial examples in the physical world. .
https://arxiv.org/abs/1607.02533v4

Lashkari, A. H., Kadir, Taheri, and Ghorbani. (2018). Toward developing a systematic
approach to generate benchmark android malware datasets and classification. In 2018
International Carnahan Conference on Security Technology (ICCST) Montreal, QC, 1–7.
IEEE.

Lashkari, Kadir, Gonzalez, Mbah, and Ghorbani. (2017). Towards a network-based framework
for android malware detection and characterization. In 2017 15th Annual conference on
privacy, security and trust (PST) Calgary, AB, 233–23309. IEEE.

LeCun, Y., Bengio, Y., and Hinton G. 2015. Deep learning. nature 521 (7553):436–44.
doi:10.1038/nature14539.

Leung. 2007. Naive Bayesian classifier. Polytechnic University Department of Computer Science/
Finance and Risk Engineering (2007:123–56.

Li, J., Wang, Z., T. Wang, J. Tang, Yang, Y., and Zhou Y. 2018. An android malware detection
system based on feature fusion. Chinese Journal of Electronics 27 (6):1206–13. doi:10.1049/
cje.2018.09.008.

APPLIED ARTIFICIAL INTELLIGENCE e2007327-519

https://www.trendforce.com/presscenter/news/20200722-10398.html
https://www.trendforce.com/presscenter/news/20200722-10398.html
https://doi.org/10.1016/j.future.2014.06.001
https://cert.360.cn/report/detail?id=0d66c8ba239680d6674f2dba9f2be5f7
https://cert.360.cn/report/detail?id=0d66c8ba239680d6674f2dba9f2be5f7
https://doi.org/10.1145/2517312.2517320
https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1007/s11042-020-10371-0
https://doi.org/10.1109/ACCESS.2019.2916886
https://arxiv.org/abs/1607.02533v4
https://doi.org/10.1038/nature14539
https://doi.org/10.1049/cje.2018.09.008
https://doi.org/10.1049/cje.2018.09.008

Li, L., T.F. Bissyandé, Papadakis, M., S. Rasthofer, A. Bartel, D. Octeau, J. Klein, and L. Traon.
2017. Static analysis of android apps: A systematic literature review. Information and
Software Technology 88(2017):67–95. 0950-5849. doi:10.1016/j.infsof.2017.04.001.

Li, W., X. Fu, and H. Cai. (2021). AndroCT: ten years of app call traces in android. 570–74.
10.1109/MSR52588.2021.00076.

Li, Y., Jang, J., Hu, X., Ou, X. (2017). Android malware clustering through malicious payload
mining. International symposium on research in attacks, intrusions, and defenses Atlanta,
GA. Springer, Cham, 2017. 192–214.

Li, Zhang, Che, Guo, and Cai. 2021. A survey on feature extraction methods of heuristic
malware detection. Journal of Physics: Conference Series 1757 (1):012071.

Liu Y., S. Ma, Y. AaFer, W. C. Lee, and X. Zhang. 2018. Trojaning attack on neural networks
Network and Distributed System Security Symposium San Diego, CA.

Liu, K., S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu. 2020a. A review of android malware
detection approaches based on machine learning. IEEE Access 8:124579–607. doi:10.1109/
ACCESS.2020.3006143.

Liu, P., L. Li, Y. Zhao, X. Sun, and J. Grundy. (2020b). AndroZooOpen: collecting large-scale
open source android apps for the research community. In Proceedings of the 17th
International Conference on Mining Software Repositories (MSR ‘20). Association for
Computing Machinery, New York, NY, USA, 548–52. DOI:10.1145/3379597.3387503

Liu, Wang, Japkowicz, Tang, and Zhao. 2021. Research on unsupervised feature learning for
Android malware detection based on restricted boltzmann machines. Future Generation
Computer Systems 120:91–108. doi:10.1016/j.future.2021.02.015.

Lu, X., , , and , Jiang, F., Zhou, X., Yi, S., Sha, J., Pietro, L. 2019. ASSCA: API sequence and
statistics features combined architecture for malware detection. Computer Networks
157:99–111. doi:10.1016/j.comnet.2019.04.007.

Maggi, F., Robertson, W., C. Kruegel, and G. Vigna. (2009). Protecting a Moving Target:
Addressing Web Application Concept Drift. In Proceedings of the 12th International
Symposium on Recent Advances in Intrusion Detection (RAID ‘09). Springer-Verlag, Berlin,
Heidelberg, 21–40. DOI:10.1007/978-3-642-04342-0_2

Mahdavifar, S., Kadir, A. F. A., R. Fatemi, Alhadidi, D., and Ghorbani A. A. (2020). Dynamic
android malware category classification using semi-supervised deep learning. In 2020 IEEE
Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive
Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on
Cyber Science and Technology Congress Calgary, AB, 515–22. IEEE.

Mahindru A., and Sangal A. L. 2020. SOMDROID: Android malware detection by artificial
neural network trained using unsupervised learning. Springer Berlin Heidelberg doi:10.1007/
s12065-020-00518-1.

Mahindru, and Sangal. 2021. FSDroid: A feature selection technique to detect malware from
android using machine learning techniques: FSDroid. Multimedia Tools and Applications
80 (9):13271–323. doi:10.1007/s11042-020-10367-w.

Mantoo B. A. (2020). A hybrid approach with intrinsic feature-based android malware detec-
tion using lda and machine learning. In The International Conference on Recent Innovations
in Computing Jammu, India, 295–306. Springer.

Martin, A., V. Rodriguez-Fernandez, Camacho D., and . 2018. Candyman: Classifying android
malware families by modelling dynamic traces with markov chains. Engineering Applications
of Artificial Intelligence: The International Journal of Intelligent Real-Time Automation
74:121–33. doi:10.1016/j.engappai.2018.06.006.

e2007327-520 L. MEIJIN ET AL.

https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1109/MSR52588.2021.00076
https://doi.org/10.1109/MSR52588.2021.00076
https://doi.org/10.1109/ACCESS.2020.3006143
https://doi.org/10.1109/ACCESS.2020.3006143
https://doi.org/10.1145/3379597.3387503
https://doi.org/10.1016/j.future.2021.02.015
https://doi.org/10.1016/j.comnet.2019.04.007
https://doi.org/10.1007/978-3-642-04342-0_2
https://doi.org/10.1007/s12065-020-00518-1
https://doi.org/10.1007/s12065-020-00518-1
https://doi.org/10.1007/s11042-020-10367-w
https://doi.org/10.1016/j.engappai.2018.06.006

McLaughlin, N., Rincon, J. M., B. Kang, Yerima, S., P. Miller, Sezer, S., Y. Safaei, Trickel, E.,
Z. Zhao, Doupé, A. et al, et al. (2017). Deep android malware detection. In Proceedings of the
Seventh ACM on Conference on Data and Application Security and Privacy Scottsdale, AZ,
301–08.

Melbshark. (2019). melbshark/AndroPyTool: A framework for automated extraction of static
and dynamic features from Android applications. https://github.com/melbshark/
AndroPyTool

Mercaldo, and Santone. 2021. Audio signal processing for Android malware detection and
family identification. Journal of Computer Virology and Hacking Techniques 17 (2):139–52.
doi:10.1007/s11416-020-00376-6.

Murtaz, M., Azwar, H., Ali S. B., and Rehman S. A framework for android malware detection
and classification. (2018). In 2018 IEEE 5th International Conference on Engineering
Technologies and Applied Sciences (ICETAS) Bangkok, Thailand, 1–5. IEEE.

Naway, A., and W. Li. (2019). Android malware detection using autoencoder.
Nicheporuk, A., Savenko, O., A. Nicheporuk, and Y. Nicheporuk. 2020. An android malware

detection method based on CNN mixed-data model CEUR Workshop Proceedings Kharkiv,
Ukraine. 2732:198–213.

Nisa, M., Shah, J. H., S. Kanwal, Raza, M., M. A. Khan, Damaševičius, R., and Blažauskas T.
2020. Hybrid malware classification method using segmentation-based fractal texture ana-
lysis and deep convolution neural network features. Applied Sciences 10 (14):4966.
doi:10.3390/app10144966.

Onwuzurike, L., E. Mariconti, P. Andriotis, E. Cristofaro, G. Ross, and G. Stringhini. 2016.
Mamadroid: detecting android malware by building markov chains of behavioral models. . .
https://arxiv.org/abs/1711.07477

Onwuzurike, L., E. Mariconti, P. Andriotis, E. Cristofaro, G. Ross, and G. Stringhini. 2017.
MaMaDroid: detecting android malware by building markov chains of behavioral models
(Extended version). ACM Transactions on Privacy and Security (TOPS) 22 (2):14. 2019.

Onwuzurike, L., M. Almeida, E. Mariconti, J. Blackburn, G. Stringhini, and Cristofaro E. D.
(2018). A family of droids – Android malware detection via behavioral modeling: Static vs
dynamic analysis. In 2018 16th Annual Conference on Privacy, Security and Trust (PST)
Belfast, Ireland, (pp. 1–10). IEEE.

Pang, Y., Peng, L., Z. Chen, Yang, B., and Zhang H. 2019. Imbalanced learning based on
adaptive weighting and Gaussian function synthesizing with an application on Android
malware detection. Information Sciences 484:95–112. doi:10.1016/j.ins.2019.01.065.

Papernot, N., Mcdaniel, P., Sinha A., and Wellman M. 2016. Towards the science of security
and privacy in machine learning. . https://arxiv.org/abs/1611.03814

Papernot, and Nicolas. (2018). Characterizing the limits and defenses of machine learning in
adversarial settings. PhD thesis, The Pennsylvania State University.

Pektaş A., and Acarman T. 2020a. Deep learning for effective Android malware detection using
API call graph embeddings. Soft Computing 24 (2):1027–43. doi:10.1007/s00500-019-03940-
5.

Pektaş A., and Acarman T. 2020b. Learning to detect Android malware via opcode sequences.
Neurocomputing 396:599–608. 2020. doi:10.1016/j.neucom.2018.09.102.

Pierazzi, F., Pendlebury, F., Cortellazzi J., and Cavallaro L. 2020. Intriguing properties of
adversarial ml attacks in the problem space 2020 IEEE Symposium on Security and
Privacy San Francisco, CA. 1332–49.

Priya P. D., and Visalakshi P. 2020. Detecting android malware using an improved filter based
technique in embedded software. Microprocessors and Microsystems 76 doi:10.1016/j.
micpro.2020.103115.

APPLIED ARTIFICIAL INTELLIGENCE e2007327-521

https://github.com/melbshark/AndroPyTool
https://github.com/melbshark/AndroPyTool
https://doi.org/10.1007/s11416-020-00376-6
https://doi.org/10.3390/app10144966
https://arxiv.org/abs/1711.07477
https://doi.org/10.1016/j.ins.2019.01.065
https://arxiv.org/abs/1611.03814
https://doi.org/10.1007/s00500-019-03940-5
https://doi.org/10.1007/s00500-019-03940-5
https://doi.org/10.1016/j.neucom.2018.09.102
https://doi.org/10.1016/j.micpro.2020.103115
https://doi.org/10.1016/j.micpro.2020.103115

Qiu J., Zhang J., Luo W., L. Pan, S. Nepal, Y. Wang, and Y. Xiang. 2019. A3CM: automatic
capability annotation for android malware. IEEE Access 7 147156–168 doi:10.1109/
ACCESS.2019.2946392 .

Qiu. 2020. Neural network and deep learning. Beijing: China Machine Press.
Rana, and Sung. 2020. Evaluation of advanced ensemble learning techniques for android

malware detection. Vietnam Journal of Computer Science 7 (2):145–59. doi:10.1142/
S2196888820500086.

Rathore, H., Sahay, S. K., Nikam P., and Sewak M. 2020. Robust android malware detection
system against adversarial attacks using q-learning. Information Systems Frontiers 1–16.
doi:10.1007/s10796-020-10083-8.

Ray S. (2019). A quick review of machine learning algorithms. In 2019 International conference
on machine learning, big data, cloud and parallel computing (COMITCon) Faridabad, India,
35–39. IEEE.

Rehman, Z.-U., Khan, S. N., K. Muhammad, Lee, J. W., Z. Lv, S. W. Baik, P. A. Shah, K. Awan,
and I. Mehmood. 2018. Machine learning-assisted signature and heuristic-based detection of
malwares in Android devices. Computers and Electrical Engineering 69:828–41. doi:10.1016/
j.compeleceng.2017.11.028.

Ribeiro, J., Saghezchi, F. B., G. Mantas, Rodriguez, J., Shepherd, and Abd-Alhameed R. A. 2020.
An autonomous host-based intrusion detection system for android mobile devices. Mobile
Networks and Applications 25 (1):164–72. doi:10.1007/s11036-019-01220-y.

Rosenberg, I., A. Shabtai, L. Rokach, and Y. Elovici. (2017). Generic black-box end-to-end
attack against state of the art API call based malware classifiers. https://arxiv.org/abs/1707.
05970

Salah, A., Shalabi, E., and Khedr W. 2020. A lightweight android malware classifier using novel
feature selection methods. Symmetry 12 (5):858. doi:10.3390/sym12050858.

Saracino, A., Sgandurra, D., Dini G., and Martinelli F. 2018. MADAM: effective and efficient
behavior-based android malware detection and prevention. IEEE Transactions on
Dependable and Secure Computing 15 (1):83–97. doi:10.1109/TDSC.2016.2536605.

Sihwail, R., Omar, K., and Ariffin K. A. Z. 2018. A Survey on Malware Analysis Techniques:
Static, Dynamic, Hybrid and Memory Analysis. International Journal on Advanced Science,
Engineering and Information Technology 8 (4–2):1662–71. doi:10.18517/ijaseit.8.4-2.6827.

Singh, S., Gera, T., F. Ali, D. Thakur, K. Singh, and K.-S. Kwak. 2021. Understanding research
trends in android malware research using information modelling techniques. CMC-
COMPUTERS MATERIALS & CONTINUA 66 (3):2655–70. doi:10.32604/cmc.2021.014504.

Spolar, N., Cherman, E. A., Monard M. C., and Lee H. D. (2013). Relieff for multi-label feature
selection. In Proceedings of the 2013 Brazilian Conference on Intelligent Systems Fortaleza,
Brazil.

Suarez-Tangil G., and Stringhini G. 2018. Eight years of rider measurement in the android
malware ecosystem: evolution and lessons learned. arXiv preprint arXiv:1801.08115. 2018.

Suarez-Tangil, G., S. K. Dash, M. Ahmadi, J. Kinder, and L. Cavallaro. (2017). DroidSieve: fast
and accurate classification of obfuscated android malware. In Conference on Data and
Application Security and Privacy (CODASPY) Scottsdale, AZ,2017 doi:10.1145/
3029806.3029825.

Taheri, R., Javidan, R., M. Shojafar, Pooranian, Z., A. Miri, and M. Conti. 2020. On defending
against label flipping attacks on malware detection systems. Neural Computing and
Applications 32 14781–800 doi:10.1007/s00521-020-04831-9.

Talha, K. A., Alper, D. I., and Aydin C. 2015. APK auditor: permission-based android malware
detection system. Digital Investigation 13:1–14. doi:10.1016/j.diin.2015.01.001.

e2007327-522 L. MEIJIN ET AL.

https://doi.org/10.1109/ACCESS.2019.2946392
https://doi.org/10.1109/ACCESS.2019.2946392
https://doi.org/10.1142/S2196888820500086
https://doi.org/10.1142/S2196888820500086
https://doi.org/10.1007/s10796-020-10083-8
https://doi.org/10.1016/j.compeleceng.2017.11.028
https://doi.org/10.1016/j.compeleceng.2017.11.028
https://doi.org/10.1007/s11036-019-01220-y
https://arxiv.org/abs/1707.05970
https://arxiv.org/abs/1707.05970
https://doi.org/10.3390/sym12050858
https://doi.org/10.1109/TDSC.2016.2536605
https://doi.org/10.18517/ijaseit.8.4-2.6827
https://doi.org/10.32604/cmc.2021.014504
https://doi.org/10.1145/3029806.3029825
https://doi.org/10.1145/3029806.3029825
https://doi.org/10.1007/s00521-020-04831-9
https://doi.org/10.1016/j.diin.2015.01.001

Tiwari S. R., and Shukla R. U. (2018). An android malware detection technique using
optimized permission and api with pca. In 2018 Second International Conference on
Intelligent Computing and Control Systems Madurai, India, 2611–16 doi:10.1109/
ICCONS.2018.8662939. IEEE.

Ünver, H. M., and K. Bakour. 2020. Android malware detection based on image-based features
and machine learning techniques. SN Applied Sciences 2 (7):1299. doi:10.1007/s42452-020-
3132-2.

Vasan, D., Alazab, M., S. Wassan, Naeem, H., Safaei B., and Zheng Q. 2020. IMCFN: Image-based
malware classification using fine-tuned convolutional neural network architecture. Computer
Networks 171 (April 2019):107138. doi:10.1016/j.comnet.2020.107138.

Vinayakumar, R., Soman, K. P., Poornachandran, and Kumar. 2018. Detecting android mal-
ware using long short-term memory (lstm). Journal of Intelligent & Fuzzy Systems
34 (3):1277–88. doi:10.3233/JIFS-169424.

Wang, H., J. Si, H. Li, and Y. Guo. (2019). RmvDroid: Towards a reliable Android malware
dataset with app metadata. In Proceedings of the 16th International Conference on Mining
Software Repositories (MSR ‘19) Montreal, QC. IEEE Press, 404–08. DOI:10.1109/
MSR.2019.00067

Wang, S., Chen, Z., Yan Q., Ji K., Peng L., and Yang B., Conti, M. 2020. Deep and broad URL
feature mining for android malware detection Information Sciences . 513:600–13.

Wang, W., X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang. 2014. Exploring permission-induced
risk in android applications for malicious application detection. IEEE Transactions on
Information Forensics and Security 9 (11):1869–82. doi:10.1109/TIFS.2014.2353996.

Wei, F., Y. Li, S. Roy, X. Ou, and Z. Wu. (2017). Deep ground truth analysis of current android
malware. International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, Cham, 2017.

Wen L., and Yu H. 2017. An android malware detection system based on machine learning.
AIP Conference Proceedings 1864:020136 doi:10.1063/1.4992953. AIP Publishing LLC.

Wiśniewski, and Tumbleson. (2021). Apktool - A tool for reverse engineering 3rd party, closed,
binary Android apps. https://ibotpeaches.github.io/Apktool/

Witten I. H., and Frank E. 2011. Data mining: Practical machine learning tools and techniques.
Acm Sigmod Record 31 (1):76–77. doi:10.1145/507338.507355.

Xu, K., Y. Li, R. Deng, K. Chen, and J. Xu. (2019). DroidEvolver: self-evolving Android
malware detection system. 2019 IEEE European Symposium on Security and Privacy
(EuroS&P) Stockholm, Sweden, 47–62 doi:10.1109/EuroSP.2019.00014.

Xu, L., Zhang, D., Jayasena N., and J. Cavazos. 2018. HADM: hybrid analysis for detection of
malware Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016 London, UK.
16:702–24.

Yang, W., D. Kong, T. Xie, and C. A. Gunter. (2017). Malware detection in adversarial
settings: exploiting feature evolutions and confusions in Android apps. In Proceedings of
the 33rd Annual Computer Security Applications Conference (ACSAC 2017). Association
for Computing Machinery, New York, NY, USA, 288–302. DOI:10.1145/
3134600.3134642

Ye J.-X., and Gong X.-L. 2010. A novel fast wrapper for feature subset selection. Journal of
Changsha University of Science & Technology(Natural Science) 7 69–73 .

Yen Y.-S., and Sun H.-M. 2019. An Android mutation malware detection based on deep
learning using visualization of importance from codes. Microelectronics Reliability
93 (October 2018):109–14. doi:10.1016/j.microrel.2019.01.007.

Yerima S. Y., and Sezer S. 2019. DroidFusion: A novel multilevel classifier fusion approach for
Android malware detection. IEEE Transactions on Cybernetics 49 (2):453–66. doi:10.1109/
TCYB.2017.2777960.

APPLIED ARTIFICIAL INTELLIGENCE e2007327-523

https://doi.org/10.1109/ICCONS.2018.8662939
https://doi.org/10.1109/ICCONS.2018.8662939
https://doi.org/10.1007/s42452-020-3132-2
https://doi.org/10.1007/s42452-020-3132-2
https://doi.org/10.1016/j.comnet.2020.107138
https://doi.org/10.3233/JIFS-169424
https://doi.org/10.1109/MSR.2019.00067
https://doi.org/10.1109/MSR.2019.00067
https://doi.org/10.1109/TIFS.2014.2353996
https://doi.org/10.1063/1.4992953
https://ibotpeaches.github.io/Apktool/
https://doi.org/10.1145/507338.507355
https://doi.org/10.1109/EuroSP.2019.00014
https://doi.org/10.1145/3134600.3134642
https://doi.org/10.1145/3134600.3134642
https://doi.org/10.1016/j.microrel.2019.01.007
https://doi.org/10.1109/TCYB.2017.2777960
https://doi.org/10.1109/TCYB.2017.2777960

Yerima, S. Y., , S. Sezer, and G. McWilliams. 2014. Analysis of Bayesian classification-based
approaches for android malware detection. IET Information Security 8 (1):25–36.
doi:10.1049/iet-ifs.2013.0095.

Yildiz O., and Doğru I. A. 2019. Permission-based android malware detection system using
feature selection with genetic algorithm. International Journal of Software Engineering and
Knowledge Engineering 29 (2):245–62. doi:10.1142/S0218194019500116.

Yung C.-H., and Juang W.-S. 2017. Static and dynamic integrated analysis scheme for android
malware. Journal of Electronic Science and Technology. doi:10.11989/JEST.1674-
862X.60804053.

Zhang, N., Tan, Y., Yang C., and Li Y. 2021. Deep learning feature exploration for android
malware detection. Applied Soft Computing 102:107069. doi:10.1016/j.asoc.2020.107069.

Zhang, W., Ren, H., Jiang Q., and K. Zhang. (2015). Exploring feature extraction and elm in
malware detection for android devices. In International Symposium on Neural Networks Jeju,
KOR, 489–98 doi:10.1007/978-3-319-25393-0_54. Springer.

Zhang, X., Marwah, M., Lee I., M. Arlitt, and Goldwasser. 2019. Arlitt. An anomaly contribu-
tion explainer for cyber-security applications. . https://arxiv.org/abs/1912.00314v1

Zhang, X., Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang, M. Zhang, and M. Yang. (2020).
Enhancing state-of-the-art classifiers with API semantics to detect evolved Android
malware. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS ‘20) Virtual Event, USA, 757–70 doi:10.1145/
3372297.3417291.

Zhao, C., Zheng, W., L. Gong, M. Zhang, and C. Wang. (2018). Quick and accurate android
malware detection based on sensitive apis. In 2018 IEEE International Conference on Smart
Internet of Things Xi'an, China, 143–48.

Zhao, Y., Hu, L., Xiong, H., Qin, Z.-G. 2014. Dynamic analysis scheme of android malware
based on sandbox. Netinfo Security 12 21–26 doi:10.3969/j.issn.1671-1122.2014.12.005.

Zhou Z. 2016. Machine Learning. Beijing: Tsinghua University Press.
Zhou, Y., and X. Jiang. 2012. Dissecting Android malware: characterization and evolution 2012

IEEE Symposium on Security and Privacy San Francisco, CA. 2012:95–109. doi:10.1109/
SP.2012.16.

Zhu, H.-J., You, Z.-H., Z.-X. Zhu, Shi, W.-L., X. Chen, and L. Cheng. 2018. Droiddet: Effective
and robust detection of android malware using static analysis along with rotation forest
model. Neurocomputing 272:638–46. doi:10.1016/j.neucom.2017.07.030.

Zhu, and Goldberg. 2009. Introduction to semi-supervised learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning 3 (1):1–130. doi:10.2200/S00196ED1V01Y200906AIM006.

e2007327-524 L. MEIJIN ET AL.

https://doi.org/10.1049/iet-ifs.2013.0095
https://doi.org/10.1142/S0218194019500116
https://doi.org/10.11989/JEST.1674-862X.60804053
https://doi.org/10.11989/JEST.1674-862X.60804053
https://doi.org/10.1016/j.asoc.2020.107069
https://doi.org/10.1007/978-3-319-25393-0_54
https://arxiv.org/abs/1912.00314v1
https://doi.org/10.1145/3372297.3417291
https://doi.org/10.1145/3372297.3417291
https://doi.org/10.3969/j.issn.1671-1122.2014.12.005
https://doi.org/10.1109/SP.2012.16
https://doi.org/10.1109/SP.2012.16
https://doi.org/10.1016/j.neucom.2017.07.030
https://doi.org/10.2200/S00196ED1V01Y200906AIM006

	Abstract
	Introduction
	Method of Literature Collection
	Overview of Android
	Android OS Architecture
	Key Components of Android Apps

	Android Feature Selection
	Feature Extraction
	Raw Feature Data Preprocessing
	Valid Feature Subsets Selection
	Categories of Feature Selection
	Machine Learning in Feature Subsets Selection

	Classification Tech of Android Malware
	Categories of Classification Technology
	Machine Learning Based Android Malware Classification

	Limitations and Challenges in ML Based Detection
	Vulnerability to Security Attacks
	Deterioration Issues

	Android Datasets and Dissemble Tools
	Datasets
	Dissemble Tools

	Conclusion
	Disclosure statement
	Funding
	ORCID
	References

