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ABSTRACT
Due to the completely open-source nature of Android, the 
exploitable vulnerability of malware attacks is increasing. To 
stay ahead of other similar review work attempting to deal 
with the serious security problem of the Android environment, 
this work not only summarizes the approaches in the malware 
classification phase but also lays emphasis on the Android 
feature selection algorithm and presents some areas neglected 
in previous works in the field of Android malware detection, like 
limitations and commonly applied datasets in machine learn-
ing-based models. In this paper, the Android OS environment, 
feature selection, classification models, and confronted chal-
lenges of machine learning detection are described in detail. 
Based on the brief introduction to Android background knowl-
edge, feature selection methods are elaborated from key per-
spectives as feature extraction, raw data preprocessing, valid 
feature subsets selection, and machine learning-based selection 
models. For the algorithms of the malware classification, 
machine learning methods are categorized according to differ-
ent standards to present an all-around view. Furthermore, this 
paper focuses on the study of deterioration problems and eva-
sion attacks in machine learning detectors.
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Introduction

Due to the rapid development of mobile intelligent terminals, Android 
becomes the most generally used computing platform on smartphones. As 
TrendForce (Huang 2020) recently issued, a total of 1.25 billion smartphones 
were produced in 2020 and Android captured 78.4% of the market shares. 
However, due to the wide distribution and the open-source nature, Android 
applications are accessible from potentially malicious third parties besides the 
official Android Market, which makes the platform a target for malware 
attacks. According to the 2019 Android Malware Special Report (360 
Internet Security Center 2020) released by 360 Security on February 28, 
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2020, the platform intercepted about 1.809 million new malware samples on 
mobile terminals in 2019, and about 5,000 new mobile malware samples were 
intercepted on an average day.

Reviews for Android malware detection have been proposed in many 
previous studies. (Liu et al. 2020a) studied machine learning models of 
Android malware detection in recent years but neglected to see the limitations 
of machine learning models mentioned. (Bakour, Ünver, and Ghanem 2019) 
provided a wide taxonomy for all research directions. The overviews of static 
analysis (Li et al. 2017) and traditional detection (e.g., signature, heuristics 
based) (Sihwail, Omar and Ariffin 2018) are all included in this paper to draw 
the conclusion from differential perspectives.

However, to address the limitations of the outdated collected research, the 
ignorance of the importance of feature selection algorithms and the problems 
of machine learning models, this paper gives a more all-around overview of 
the work with a large volume of relative works from 2015 to 2021.

To our best knowledge, few reviews have systematically presented research 
focused on feature on four feature processing stages and Android malware 
classification models according to the taxonomy of detection tech and machine 
learning type. Compared with other researches, this work points out some areas 
neglected in previous works in the field of Android malware detection like 
limitations and challenges in machine learning models. Additionally, widely 
applied Android datasets and disassemble tools are summarized. The correla-
tive research on Android malware collected in this paper can provide valuable 
reference and broaden the research direction for future researchers.

The main contributions of this paper are summarized as follows.
(1) Compared with other similar work, a comprehensive overview of 

Android feature selection is provided from more detailed aspects of the feature 
extraction, raw feature processing, and valid subsets stages. This paper con-
cludes each data preprocessing method in four-stage from data cleaning to 
data transformation. How to pick features that stand the test of time without 
frequent retraining of machine learning models in valid feature subsets selec-
tion is also discussed.

(2) This survey completes existing previous reviews in offering a systematic 
overview of detection methods, including not only those based on machine 
learning but also traditional methods (e.g., signature, heuristics based). For the 
algorithms of the Android malware classifier, machine learning detectors are 
elaborated from learning task and learning type. With the introduction of the 
taxonomy of machine learning methods, the commonly used models in 
Android malware detection are distinguished as traditional machine learning, 
currently advanced detection models, and ensemble learning.

(3) This work bridges some research gaps in peer works by presenting the 
limitations of machine learning models in Android malware detection. Due to 
the evolution of the Android operating system, the deterioration issue of 
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machine learning-based detector and the problem of frequent model retrain-
ing to select valid feature subset are highlighted. And the vulnerability to 
security attacks of machine learning detectors is also analyzed.

The paper is structured as follows: Section 2 describes the procedure used 
for collecting the papers. Section 3 gives a brief introduction to background 
knowledge of Android, the mechanism of Android operating system, and the 
key components of Android. In Section 4, the researches that focused on 
feature selection in recent years are summarized. Section 5 describes different 
algorithms of the classifier, especially focused on machine learning models. 
Section 6 takes a further look into the study on evasion attacks and deteriora-
tion issues to expose the vulnerability of many machine learning models. 
Section 7 introduces the widely used Android datasets and disassemble tools 
for Android applications. Finally, Section 8 makes a conclusion of this paper.

The following research questions have been brought out to help follow the 
process of systematic review conduction: 

RQ1 What are the significant feature extraction tech and data preprocessing 
methods in Android feature engineering?

RQ2 How are valid feature subset selection models categorized? What kind of 
machine learning models can be applied to feature subsets selection?

RQ3 How are the most advanced machine learning frameworks applied to the 
research of Android malware classification in recent years, and what are the 
limitations?

RQ4 What are the widely used Android datasets that can be applied to 
establish longitudinal comprehensive experiments?

Method of Literature Collection

It is common practice to clarify the paper selection criteria for a literature 
review, to establish representativeness and confidence regarding the source of 
information. The procedure used for selecting the papers is described as 
follows.

(1) The collection scope is based on the main content of this paper, so the 
search scope is composed of two main parts as Android malware classifica-
tion and valid feature subsets selection, including the adversarial attack and 
degradation problems in each stage. To find other relevant papers that may 
not be collected through the keyword, an incomplete reverse snowball search 
is carried on the reference list of the article determined by early keyword 
search.
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(2) In each section, the keywords are determined by the categories. For 
example, since malware analysis can be categorized into static/dynamic 
analysis according to the type of extracted features, “static/dynamic analysis” 
+ “Android malware detection” is applied after fusing the keywords. For 
machine learning-based detectors and feature selection models, the key-
words are determined by combining “machine learning” with “Android 
malware detection” or “feature selection.” And the same searching approach 
is utilized for other signature and heuristics-based malware detection 
methods.

(3) The captured literature is mainly searched from authoritative journals or 
top conferences, indicating that the review has considered the most important 
relevant papers. Most of the reviewed works collected in this paper are from 
the following repositories: SpringerLink, IEEE Xplore Digital Library, Science 
Direct, ACM Digital Libraries, and Web of Science. Additionally, third-party 
online repositories such as ResearchGate, Baidu Scholar, and Google Scholar 
are also used by us.

(4) The papers are filtered according to the publication time to maintain the 
updated search of collections. Since Android security has attracted increasing 
attention in recent years, most of the collected papers are from the new 
journals from 2015 to 2021, but with a few old representative journals cited 
to explain some concepts. Furthermore, this work attaches great importance to 
research articles in recent three years.

The limitations exist since these articles are manually selected, so there are 
inevitably some omissions in the coverage. However, these selected papers are 
carefully screened to meet the requirements of good quality content and high 
relevance. Therefore, the existing article collection is capable to provide 
a sufficient basis for the review work of this paper.

Overview of Android

Android OS Architecture

Android OS is an open-source operating system based on Linux for mobile 
platform, which is released by Google. Nowadays, Android is being updated 
rapidly though the key architecture of Android OS has remained unchanged. 
The architecture of Android can be divided into Modified Linux Kernel Layer, 
Libraries, System Runtime Library Layer, and Application Framework Layer as 
shown in Figure 1.

(1) Modified Linux Kernel. The core system services provided by Android 
are based on the Linux system, such as security, power management, and 
drivers. Acting as an abstraction layer between hardware and software, the 
modified Linux kernel hides details in the hardware layer and provides services 
to the upper layers to reduce coupling.
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(2) Libraries. Linux-based process sandbox mechanism in Library Layer of 
Android is one of the cornerstones of the entire security design. Relied on 
modified Linux kernel layer for basic functions such as thread management 
and memory management, the Dalvik virtual machine is built with optimiza-
tion to efficiently run multiple instances of virtual machines simultaneously in 
limited memory, and each Android application executes as a Linux process 
with a instance of the Dalvik virtual machine.

(3) System Runtime. From the perspective of the overall architecture, the 
developer only has active control over the System Runtime Layer and the 
structures above it, so the detection of Android malware should also focus on 
the same location. It can be classified into system library and Android runtime. 
The core library of Android runtime provides most of the APIs, such as 
Android OS, Android.net, and Android.media.

(4) Application Framework Layer. Android has an application framework 
layer that provides a variety of APIs for Android development. Developers are 
free to use these APIs to build their applications, subject to the security 
limitations of the framework’s implementation.

Key Components of Android Apps

The four key components of Android are Activity, Service, Broadcast Receiver, 
and Content Provider, which are highly associated with the behavior of 
Android Malware.

Figure 1. Android OS architecture.
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(1) Activity. The Activity provides the users with a graphical window for 
actions such as buttons, text blocks, input blocks, etc. Users interact with the 
application by tapping these elements. Activity typically acts as an intermediate 
layer between users and app functions, responsible for conveying user intent.

(3) Service. Service is often used for the time-consuming logical processing 
in the background therefore many malicious behaviors are associated with 
Service for its invisibility to users. The Service does not run in a separate process 
but depends on the application process in which the Service was created.

(3) Broadcast Receiver. As a widely used mechanism for transmitting 
information between applications, Broadcast Receiver is usually used by mal-
ware developers to monitor various events related to sensitive information. 
Broadcast Receiver filters, receives and responds to outgoing broadcasts. 
Broadcast Receiver allows Android Apps the ability to respond to an external 
event, such as powering on the phone, receiving a text message or a phone call.

(4) Content Provider. It is possible that Content Provider can help Android 
malware implement malicious behavior for getting the permission to share 
data. Content Provider supports storage and reading of data in multiple 
applications, performing as a database to applications, so it allows accessibility 
to the exposed data such as contact books and messages for malware 
developers.

The required permissions and each of the four components used in an 
Android application need to be registered in AndroidManifest.xml. Therefore, 
analyzing AndroidManifest.xml can give an overview of the functionality and 
malicious behavior of the applications. AndroidManifest.xml file is commonly 
used as an auxiliary indicator to cooperate with other analysis methods for 
detection (Bai et al. 2020) (Chen et al. 2021).

Android Feature Selection

Feature selection improves malware detection efficiency by eliminating redun-
dant and irrelevant features in Android malware detection. Figure 2 sketches 
the process of the feature selection phase, which is described in detail in the 
following subsections.

To demonstrate the importance of feature selection, (Babaagba and 
Adesanya 2019) tested the efficiency of feature selection in malware detection, 
by using supervised and unsupervised machine learning algorithms with or 
without feature selection. Taking the prediction accuracy of the algorithm as 
the performance indicator, the results showed that the best detection rate was 
supervised learning using a feature selection algorithm. Compared with the 
application without feature selection, the main accuracy jumped from 54.56% 
to 74.5%, which showed the influence of feature selection.
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Feature Extraction

According to the approach of feature extraction using static features, 
dynamic features, or both, Android malware detection tech can be cate-
gorized into dynamic analysis, static analysis, and hybrid analysis as 
illustrated in Table 1.

(1) Dynamic analysis. Dynamic analysis is an approach which runs the 
program in a sandbox environment and tracks the behavior of the program’s 
API call sequence, system call, network traffic, and CPU data to monitor the 
data flow during the program running, thus revealing the real behavior of the 
program processing closer to the actual situation. But it is not widely used on 
account of a large number of resources and the slow detection speed while 
running the program.

Figure 2. Detailed process of feature selection.

Table 1. Summary of Android feature extraction.
Reference Features Type Classifiers

(Onwuzurike et al. 
2017)

API calls Dynamic 
analysis

RF, KNN, SVM

(Cai et al. 2016) Behavioral features Dynamic 
analysis

RF, SVM, DT, KNN, NB

(Afonso et al., 
2015)

API calls and system call traces Dynamic 
analysis

RF

(Dash et al. 2016) System calls Dynamic 
analysis

SVM

(Kumar et al. 2019) Manifest files, decompiling DEX, shared libraries Static 
analysis

DNN

(Nicheporuk et al., 
2020)

APIs, permissions Static 
analysis

CNN

(Cai et al. 2021) Function call graph Static 
analysis

SVM

(Gao 2019) Strings, function call graph Static 
analysis

SVM, KNN, RF

(Lu et al. 2019) API calls Static 
analysis

Bidirectional LSTM

(Yung and Juang 
2017)

Permission, activity, service, receiver, sensitive 
strings, dexclass etc.

Hybrid 
analysis

SVM

(Chen et al. 2016) Permissions, API calls, sensitive information request Hybrid 
analysis

SVM, MLP, NB, IBK, 
Bagging
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(Zhao et al. 2014) built a sandbox, monitored the system APIs, and used 
scripts to simulate various events to see the software behaviors. (Cai et al. 
2018) extracted dynamic features based on API calls and inter-component 
communication (ICC) distilled from a behavioral characterization study, and 
trained a multi-class classifier using supervised machine learning. (Martin, 
Rodríguez-Fernández and Camacho 2018) utilized dynamic analysis with 
a Markov chain-based presentation to simulate the behavior of individual 
applications from different families of malware.

(2) Static analysis. Static analysis is performed by analyzing Android files 
and extracting information like requested permissions, opcode sequences, and 
API calls, etc. Static detection is widely used in the field of Android malware 
detection for many optional features that is easy to extract.

(Kumar et al. 2019) proposed a static analysis method based on multi- 
information features, using the integration of different features to promote 
detection accuracy. (Nicheporuk et al. 2020) took static analysis method to detect 
Android malware, using API method calls and permissions as features, applying 
convolutional neural network for training. (Suarez-Tangil et al. 2017) proposed 
an Android malware classifier that exploited features and artifacts introduced by 
obfuscation mechanisms used in malware.

(3) Hybrid analysis. The combination of dynamic and static analysis can 
make Android malware detection more accurate and efficient. (Onwuzurike 
et al. 2018) compared the detection performance between static and dynamic 
analysis on the same behavioral model relying on Markov chains built from 
the API sequences. The result showed that dynamic code loading has better 
performance for data in free conditions.

(Yung and Juang 2017) used Androguard to extract static features like 
permissions and Android four components, DroidBox to obtain dynamic 
features, and SVM to analyze the combination of the dynamic and static 
features. (Chen et al. 2016) introduced two newly defined features determined 
by the frequency of sensitive API calls and information requests. They adopted 
a streaminglized machine learning-based framework to support large-scale 
analysis, which observed app behaviors statically and dynamically.

Furthermore, API is commonly used to detect Android malware in both 
static feature analysis and dynamic feature analysis. After processing the API 
sequence or function call graph, and feeding it into RNN, the behavior path of 
the software, which is different from the benign software can be discovered. 
The problem of gigantic repetitive API sequences can be dealt through the size 
of the information entropy of the API (Lu et al. 2019). Some researchers (Gao 
2019) (Fan et al. 2018) converted the frequency relation matrix obtained from 
the function call graph of sensitive into vectors and combined with other 
features to detect Android malware.
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Raw Feature Data Preprocessing

Data preprocessing is essential after obtaining the raw feature from the feature 
extraction phase, which generally involves the stages as follows. Table 2 gives 
a brief introduction to each data preprocessing method from different 
researches.

(1) Data cleaning. Data cleaning removes the irrelevant features directly 
after obtaining the original data through feature extraction. For example, the 
irrelevant permissions possessed by both benign and malicious Android 
applications should be cleaned.

(2) Data integration. Data integration means integrating information of 
two or more features provided for comprehensive detection. It is necessary to 
use effective data fusion methods when multi-source features are combined to 
be the input of the classifier during the detection phase.

(3) Data reduction. Data reduction mostly refers to the process of dimen-
sionality reduction of the data involving complex algorithms, with an attempt to 
address the problems of too large dimensionality of the Android feature vector.

(4) Data transformation. Data transformation is to transform data from 
one form to another. The most commonly used research method is converting 
the extracted features into images and feeding them into the deep neural 
network.

It can be seen from Table 2 that there is a range of technologies usually 
applied in each stage of data preprocessing.

In the data cleaning phase, some original data are cleaned up for meeting 
the requirements of the next data processing step. For example, the data 
unable to be analyzed was deleted for subsequent N-Gram processing. Also, 
some papers removed redundant original features to generate a vector map 
containing only features associated with malicious behavior.

In the data integration phase, static features and dynamic features can 
be combined to obtain better performance. The multi-source features are 
commonly the inputs of one branch of the neural network, and the 
outputs of all branches are combined to form the input of a fully con-
nected layer.

In the data reduction phase, many algorithms such as feature weight-
ing, evolutionary genetic algorithm, and machine learning models like 
natural language processing were adopted to reduce the dimensionality 
of feature vectors. Meanwhile, some studies used the image embedding 
method technique to represent the features and reduce the graph 
dimensionality.

In the data transformation phase, many researchers transformed the extracted 
features into audio files, directed graphs, grayscale images, color images, etc. to 
take the advantage of the neural networks to process these kinds of data.
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Valid Feature Subsets Selection

Categories of Feature Selection
Android feature subsets selection refers to the procedure of choosing a valid 
subset from the existing features. According to whether the execution process 
of the feature selection algorithm is independent of the accuracy of the 
classifier or not, it can be divided into two categories. Table 3 depicts the 
traits of each category and Figure 3 illustrates the difference between them.

(1) Filter-based Approach. Independent of the result of the malware 
classifier, filter models select valid feature subsets by the general characteristics 
of the features. Due to the independence from classification results and high 
time efficiency, it has been widely used in feature subset selection.

Table 2. Data preprocessing of Android raw features.
Reference Description Type

(Bai et al. 2020) FAMD combined filter, wrapper, and embedded based feature 
selection method.

Data cleaning

(Xu et al. 2018) The N-Gram technique was used to remove irrelevant API 
subsequences.

Data cleaning

(Pang et al.2019) This paper removed redundant features based on feature weighting Data cleaning
(Bai et al. 2020) FAMD used integration of permissions and Dalvik opcode sequences. Data integration
(Qiu et al. 2019) A3CM combined API calls and network addresses. Data integration
(Nicheporuk et al. 

2020)
API method calls and permissions were the input of a convolutional 

neural network.
Data integration

(Xu et al. 2018) Static features and dynamic features were combined. Data integration
(Yerima and Sezer 

2019)
Android permissions and API calls were used as multi-source data 

using static analysis.
Data integration

(Naway and Li 2019) The integration of permission, intention filter, API call, and invalid 
certificate was used.

Data integration

(Bai et al. 2020) The N-Gram technique and the FCBF algorithm were used to reduce 
dimensionality.

Data reduction

(Alam, Alharbi and 
Yildirim 2020)

This paper reduced data by DroidDomTree that mines the dominance 
tree of API calls.

Data reduction

(Lu et al. 2019) Redundant N-Gram subsequences were removed using Information 
Gain.

Data reduction

(Li et al. 2018) Attribute Subset Selection and Principal Component Analysis were 
used to reduce dimensionality.

Data reduction

(Li et al. 2018) Three levels of permission feature pruning methods were presented Data reduction
(Fatima et al.2019) Evolutionary genetic algorithm was applied for feature selection. Data reduction
(Cai, Li and Xiong 2021) Feature weighting was employed to reduce data. Data reduction
(Kim et al. 2018) Image embedding method was used to reduce dimension of different 

graphs.
Data reduction

(Li et al. 2017) Android malware clustering system was adopted through iterative 
mining of malicious payload.

Data reduction

(Bakour and Ünver 
2021)

The source of APK was converted into grayscale images and 
processed by deep learning.

Data  
transformation

(Cai et al. 2021) API sequence was converted to the enhanced function call graphs. Data 
transformation

(Fan et al. 2018) Raw data of API call sequence and sensitive data were converted to 
frequent subgraphs.

Data 
transformation

(Yen and Sun 2019) This paper digitized the importance of the word and converted them 
to images.

Data 
transformation

(Mercaldo and Santone 
2021)

Features were presented in a form of audio files. Data 
transformation

(Ünver and Bakour 
2020)

The AndroidManifest.xml in samples was used to constructed 
grayscale image datasets.

Data 
transformation

(Vasan et al. 2020) Raw malware binaries were converted into color images. Data 
transformation
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(Salah, Shalabi and Khedr 2020) proposed a lightweight Android malware 
classifier with a novel feature selection method inspired by TF-IDF. (Yildiz 
and Doğru 2019) selected three Android permission feature subsets by the 
genetic algorithm and evaluated by SVM and NB. (Zhang et al. 2021) used 
automatic word-based sensitive Android feature engineering based on text 
classification.

The typical filter selection algorithm is ranking-based. Each feature is 
assigned to a score according to its importance calculated by the algorithm, 
and then select the top N features as input of the classification stage. W. (Wang 
et al. 2014) applied feature ranking methods to rank individual permissions 
based on the risk of single permission and the group of permissions. 
(Mahindru and Sangal 2020, 2021) applied six different feature ranking 
approaches to select significant features, including Gain-ratio feature selec-
tion, Chi-Square, Information-gain, and logistic regression analysis.

(2) Wrapper-based Approach. Wrapper-based approach uses the accuracy 
of the malware classification to estimate the efficiency of generated feature 
subset. Evaluating the efficiency of generated feature subset by the accuracy of 
the malware classification, the wrapper method can obtain a better perfor-
mance but is more complex and computationally costly compared with the 
filter-based method. And it can be combined with the filter-based algorithm to 
select Android features (Huda et al. 2016).

Table 3. Feature subsets selection in Android.
Method Description characteristics Algorithms

Filter The model is independent of any 
result of classifier

Fast, lower computational 
cost but without 
considering feature 
relevance

Correlation-based Feature Selection 
(CFS), Consistency-based Filter 
(Dash and Liu 2003),Information 
Gain (Yerima, Sezer and Sezer 2014), 
ReliefF(Spolar et al.2013)

Wrapper The model uses the accuracy of 
the classifier to evaluate the 
quality of the generated feature 
subset

Capture feature 
relevance, optimize 
a predictor but high 
computational cost

FFSR (Ye and Gong 2010), 
WrapperSubsetEval (Witten and 
Frank 2011)

Figure 3. Categories of feature selection.
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Recently, little research utilized the feedback from the accuracy of the 
classifier in Android malware detection. Though less computational overhead 
in the filtered-based algorithms, the valuable relevance information obtained 
from the classifier between different features is ignored, which can conse-
quently choose a large number of redundant features while processing high 
dimension feature vectors. To make a breakthrough in the efficiency of the 
malware detection classifier, the problem of inexhaustible feature combination 
in selected valid subsets in the previous wrapper-based method should be 
tackled.

Machine Learning in Feature Subsets Selection
Due to the vulnerability of the syntax integrity of multi-source data during the 
process of manual feature selection, more research has focused on feature 
selection machine learning algorithm based as following summarized.

Traditional machine learning models can be optimized to select the valid 
feature subsets. (Priya and Visalakshi 2020) proposed KNN-based relief algo-
rithm for feature selection, and the optimized SVM algorithm was applied for 
malware detection with the result showing that it was equivalent to the 
performance of the neural network. (Wang et al. 2020) presented a multi- 
view neural network that can automatically generate multiple views of input 
and assign soft attention weights to different Android features. Multi-view 
preserved the rich semantic information of input without complex feature 
engineering.

Besides, unsupervised learning and reinforcement learning are also utilized 
in Android feature subsets selection. (Liu et al. 2021) proposed SRBM 
(Subspace-based Restricted Boltzmann Machines) by introducing the concept 
of subspace to optimize the model. Each RBM model in SRBM was used for 
unsupervised learning to learn the features of each particular subspace, and the 
lower dimension features are used to represent the original dataset. (Fang et al. 
2019) used deep reinforcement learning to automatically select optimal feature 
subsets by encouraging the agent to maximize the expected accuracy from the 
malware classifiers in sequential interaction with the features space.

From the above discussion, the conclusion can be reached that the key to 
using machine learning models to select Android features is to use its predic-
tion ability to calculate the weight of the feature or obtain the correlation 
between features based on an evaluation metric. Additionally, wrapper-based 
feature selection can also apply machine learning models to score the valid 
feature subset selected by the optimization algorithms.

For machine learning models that perform well on classification tasks, like 
SVM and DT, these models have a suitable separation capability in that they 
maintain the largest distance from the points in either class. For neural net-
works, the score derived from the sum of the softmax weights of the input 
features can be adopted as an evaluation indicator to select valid feature subsets.
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Classification Tech of Android Malware

Categories of Classification Technology

This section outlines the process of Android malware classification based on 
the features obtained from valid feature subsets selection. The Android mal-
ware detection methods can be categorized into signature, behavior, and 
machine learning based, as summarized in Table 4, among which the most 
mature method is signature-based detection. The following are introductions 
of several detection methods.

(1) Signature-based detection
Based on pattern matching, signature-based detection maintains a malware 

signature library containing the unique signature for each known Android 
malware. Malware signature library includes different attributes like file 
names, content strings, or bytes, that are manually identified by experts or 
generated automatically. It detects an Android sample by testing whether there 
is a matching malware signature in the library.

This technology is the most convenient and universally used due to its fast 
detection speed and high accuracy. All the Android malware recorded in the 
malware library can be detected correctly. However, the disadvantage is that 
the maintenance of the malware signature library is time-consuming and is 
not applicable to detecting new malware.

(2) Heuristic-based detection
Heuristic detection, also known as anomaly based and behavior-based 

detection, emphasizes the ability to identify unknown malicious software. 
This method compares the characteristics of unknown samples with known 
malware families, and each malware family is represented by a set of rules 
defined to mine the common experience and knowledge of the software. It is 
considered malware when the characteristics of the detected sample conform 
to the rules of one malware family. Known rule sets include attributes like 
software structure features, the API calls, operation code sequences, and 
multiple views integration rules, etc.

Heuristic-based detection techniques have the ability to self-discover of 
unknown malicious software and advocate the use of multiple methods to deter-
mine the difference between malicious and benign software. It makes up for the 
deficiency of traditional detection and can also identify unknown malicious soft-
ware but with the disadvantage of a higher error rate for zero-day malware.

(3) Machine learning-based detection
Machine learning trains a learner by adjusting the parameters to make the best 

predictions. Existing research demonstrated that machine learning is an effective 
and promising method to detect Android malware. In recent years, many mal-
ware detection works have attempted to harness machine learning to seek 
a breakthrough in unknown Android malware detection. The following subsec-
tions will introduce the detection technology based on machine learning in detail.
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Machine Learning Based Android Malware Classification

In an attempt to deal with the lack of ability to identify unknown malware or 
zero-day malware for the traditional methods, machine learning is employed 
in Android malware detection universally in recent years’ research. Machine 
learning can be roughly divided into five categories: symbolism, bayesism, 
connectionism, evolutionism, and behavioral analogism, according to the 
basic concept (Zhou 2016).

Firstly, according to learning type, machine learning used in Android 
malware detection can be divided into four categories depicted in 
Table 5.

(1) Supervised learning. The training data labeled with the category is the 
input into machine learning models in supervised learning. It is a classification 
task when supervised learning makes discrete predictions about various 
things, a regression task when supervised learning makes predictions about 
continuous values.

(2) Unsupervised learning. The prediction model is trained through unla-
beled data sets, with the subject to explore and infer potential connections 
from unlabeled data in unsupervised learning. The typical tasks are clustering 
and dimensionality reduction.

Table 4. Summary of Android malware detection technology.

Year Reference
Detection 

technology Description

2018 (Saracino et al. 2018) Signature and 
heuristics

Host-based malware detection system

2018 (Sihwail, Omar and 
Ariffin 2018)

Signature and 
heuristics

A review of signature and heuristics method

2018 (Rehman et al. 2018) Signature and 
heuristics

A hybrid framework using signature and heuristics method

2021 (Li et al., 2021) Heuristics A review of heuristic malware detection
2010 (Firdausi et al. 2010) Heuristics Five classifiers were compared to verify the effectiveness of 

heuristics analysis
2020 (Alazab et al. 2020) Heuristics Integrate permissions with API calls based on heuristic analysis
2015 (Talha, Alper and 

Aydin 2015)
Heuristics A permission-based Android malware detection system using 

heuristic analysis
2020 (Priya and Visalakshi 

2020)
Machine 

learning
The KNN-based Relief algorithm and the optimized SVM were 

adopted to detect Android malware.
2018 (Chen et al. 2018) Machine 

learning
Generate adversarial samples to evade the detection of current 

machine learning based detectors.
2020 (Pektaş and 

Acarman, 2020a)
Machine 

learning
Employ deep neural network as malware classification.

2019 (Kumar et al. 2019) Machine 
learning

Combine dynamic analysis and static analysis machine learning.

2020 (Pektaş and 
Acarman, 2020b)

Machine 
learning

Deep learning was applied using features extracted from 
instruction call graphs

2018 (Hasegawa and 
Iyatomi 2018)

Machine 
learning

One-dimensional convolutional neural networks was applied for 
Android malware detection.

2019 (Yen and Sun 2019) Machine 
learning

Utilize CNN to process images generated from the importance of 
words
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(3) Semi-supervised learning. Combined with supervised learning and 
unsupervised learning, only some parts of training data are labeled in semi- 
supervised learning (Zhu and Goldberg 2009). It learns the internal structure 
of the data and then reasonably organizes the data for prediction with only 
a few marked data sets (Engelen and Hoos 2020).

(4) Reinforcement learning. Reinforcement learning can be applied to 
select Android features, using the classification result of the input data as 
feedback to the classification model, with the principle that the agent opti-
mizes its next action to maximize the reward value.

Secondly, according to learning tasks, machine learning models can be 
categorized into classification model, regression model, clustering model and 
dimension reduction model. The training samples are to be classified into the 
given category in classification task, but without acknowledging of given 
categories in the clustering task. In the regression task, the input data need 
to fit a set of points using a function. As the machine learning models can be 
applied to solve different problems, it is difficult to categorize all machine 
learning algorithms from the same perspective. For example, decision tree can 
be utilized both in classification and regression tasks. There is no absolute 
boundary between different categories. Therefore, one model may belong to 
multiple categories.

With the basic knowledge of the taxonomy of machine learning methods, 
the commonly used models in Android malware detection were summarized 
as follows. Traditional machine learning and other current state-of-the-art 
detection models are distinguished, with a detailed summary as shown in 
Table 6. Three main types of models and algorithms used for Android mal-
ware detection are as follows: the first (1)-(6) is traditional machine learning 
models, the second are neural network and deep learning (7)-(8), and the third 
uses ensemble learning (9) which combines multiple classifiers to detect 
Android malware.

Table 5. Machine learning models applied in Android malware detection categorized by learning 
type.

Learning type Models Reference

Supervised learning 1.DT (Mantoo 2020)
2.NB (Firdaus et al. 2018)
3.KNN (Mantoo 2020)
4.SVM (Mantoo 2020)

Semi-supervised learning 1.SSL-NNR (Taheri et al. 2020) (Chen et al. 2017)
2.GIL (Atzeni et al. 2018)
3.Laplace SVM (Mahdavifar et al. 2020) (Ribeiro et al. 2020)

Unsupervised learning 1.K-means (Fan et al. 2019)
2.PCA (Wen and Yu 2017) (Tiwari and Shukla 2018)
3.SVD (Singh et al. 2021)
4.ICA (Zhang et al2015)

Reinforcement learning 1.Q- 
Learning

(Fang et al. 2019)

2.DQN, DDQN (Rathore et al.2020)
3.A2C, A3C (Khowaja and Khuwaja 2021)
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(1)Linear Model. Simple and highly interpretable, linear functions using 
Android features as input are applied to give malware prediction. The typical 
linear model includes logistic regression and linear regression, with the dif-
ference that logistic regression is to solve the classification problem while 
linear regression deals with regression problems. (Zhang et al. 2019) provided 
indirect methods for diagnosing anomalies by building specialized linear 
models to locally approximate the anomaly scores generated by black-box 
models.

(2) Support Vector Machine. It shows significant improvement to effec-
tively monitor the resources consumption of running Android malware with 
Support Vector Machine (SVM). SVM is to find a hyperplane (Boswell 2002) 
that perfectly divides n-dimensional data into two categories. (Faiz, Hussain 
and Marchang 2020) applied SVM using features extracted from Android 
permissions, broadcast receivers, and APIs to detect Android malware, with 
the highest classification accuracy of 98.55% achieved by personaCateg-SVM.

(3) Naive Bayes. Based on Bayes’ theorem, Naive Bayes (NB) assumes that 
the effect of an attribute value on a given class is independent of the values of 
other attributes (Leung 2007). (Alqahtani, Zagrouba and Almuhaideb 2019) 
provided a review of machine learning detectors, summarizing NB, SVM, and 
DNN applied in Android malware detection in detail.

(4) Decision Tree. As one of the most typically applied supervised learning 
models used in inductive reasoning, Decision Tree (DT) builds a flowchart- 
like tree structure from training data. (Lashkari et al. 2018) applied RF, KNN, 
and DT as the Android malware detection classifier for comparison, with each 
machine learning algorithm trained, tested, and evaluated with the same 
selected features.

(5) K Nearest Neighbor. As a supervised learning model, K Nearest 
Neighbor (KNN) can obtain Android malware classification results through 
measuring Euclidean distance in geometric space between different eigenva-
lues (Ray 2019).

(6) K-means Clustering. K-means clustering algorithm is an unsupervised 
learning algorithm typically applied in Android malware family classification 
(Ilham, Abderrahim and Abdelhakim 2018). Given a set of N data points Rd 

and an integer K in a real D-dimensional space, it is to find the center point in 
N data points, thus minimizing the mean square distance of each data point to 
its nearest center (Kanungo et al. 2002).

(7) Neural Network. Composed of a large number of connected artificial 
neurons, Neural Network (NN) uses neurons to reflect the received signal and 
the weight to present the strength of the signal (Gershenson 2003). The most 
typically used neural network algorithms are Perceptron Neural Network, 
Hopfield Neural Network, and Self-Organized Map.
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(8) Deep learning. With multiple levels of data representation obtained by 
composing nonlinear modules that convert a level of representation to 
a higher and more abstract level of representation (LeCun, Bengio and 
Hinton 2015), deep learning originates from NN (Du et al. 2016) as illustrated 
in (Qiu 2020). It is used to detect Android malware usually when features are 
transformed into images. A hybrid malware classification using segmentation- 
based fractal texture analysis and deep convolution neural network features 
was proposed in (Vinayakumar et al. 2018), which binarized Android APK 
into grayscale images generated using bytecode information. (Vinayakumar et 
al. 2018) used a Back-Propagation Through Time (BPTT) to train an LSTM 
model to detect Android malware. (Vinayakumar et al. 2018) used two 
different network topologies with multiple network parameters, a standard 
LSTM network containing only one hidden layer, and a stacked LSTM net-
work with three hidden layers, which exhibited high Android malware detec-
tion accuracy on both static and dynamic analysis.

(9) Ensemble learning. Multiple classifiers were combined to improve the 
Android malware detection accuracy in ensemble learning (Zhao et al. 2018) 
(Rana and Sung 2020). More specifically, ensemble learning describes a way of 
combining learners. A new classifier fusion method based on the multi-level 
structure was proposed by (Yerima and Sezer 2019), training basic Android 

Table 6. Summary of machine learning models in Android malware detection.
Model Advantages Disadvantages Reference

Linear 
Model

The main algorithm of statistics; 
direct and fast

The premise of the algorithm is 
strict, and is unable to deal with 
high-dimensional Android 
features

(Ham et al. 2014)(Zhang 
et al. 2019)

Support 
Vector  
Machine

Easy to deal with small-scale; low 
dimensional and nonlinear 
problems

Large amount of data 
preprocessing; sensitive to 
missing values

(Mantoo 2020)(Faiz, 
Hussain and Marchang 
2020)

Naive Bayes Model training is simple and fast Not available when the extracted 
features are correlated

(Firdaus et al. 2018)

Decision 
Tree

Capable to deal with large-scale 
and missing value model

Conspire toward overfitting; does 
not support online learning

(Mantoo 2020)(Lashkari et 
tl. 2018)

Deep  
Learning

Address difficult problems by 
complex model with more 
parameters

Low training efficiency of complex 
model; easy to be overfitting

(Murtaz et al. 2018) 
(McLaughlin et al. 2017)

Random 
Forest

Easy to implement; low 
computational overhead; 
strong generalization ability

The initial performance of random 
forest is unsatisfactory

(Lashkari et al. 2017) 
(Murtaz et al. 2018)

Neural 
Network

High accuracy and strong fault 
tolerance

Requires a lot of training data; the 
parameters and topology are 
difficult to choose

(Nisa et al. 2020)(Zhu et al. 
2018)

K-nearest  
Neighbor

Can be implemented without 
parameter estimation; suitable 
for solving multi-classification 
problems

Allergic to the dataset; the 
amount of calculation is 
relatively large

(Mantoo 2020) (Priya and 
Visalakshi 2020) 
(Lashkari et al. 2017)

K-means  
Clustering

Low computational overhead The results are affected by the 
initial settings; sensitive to 
noise and discrete values

(Ilham, Abderrahim and 
Abdelhakim 2018)(Faiz, 
Hussain and Marchang 
2020)
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classifiers at a lower level to generate models, using a set of sorting algorithms to 
select the final classifier and assigning the weight of the prediction results of the 
chosen classifier according to the prediction accuracy of the basic classifiers at 
a higher level. However, it is computationally costly to apply ensemble learning, 
for the reason that each APK file should be analyzed by multiple detectors. To 
tackle the problem, (Birman et al. 2019) applied deep reinforcement learning to 
automatically start-up and stop the base classifiers, using DNN to dynamically 
determine if there is adequate information to classify a given APK file.

Limitations and Challenges in ML Based Detection

There are notable challenges confronting mainstream technologies especially 
machine learning in Android malware detection that is necessary to be 
considered in future work. As described in this section, these challenges 
can be divided into two aspects. Firstly, machine learning is vulnerable to 
adversarial sample attacks. Moreover, there are more serious problems 
caused by the upgrade of the Android ecosystem and the emergence of 
new malware. The machine learning-based detector suffers from degradation 
problems, and the feature selection algorithms are not strongly adaptable to 
the evolution.

Vulnerability to Security Attacks

Although the enhanced performance of Android malware detection was 
observed in machine learning-based classifiers, a variety of countermeasures 
have been proposed by attackers to evade the detection. For example, they may 
add adversarial examples to interfere with machine learning detectors, which 
makes it easier to evade detection while retaining the malicious function. 
(Papernot et al.2016; Amodei et al. 2016) reviewed the existing work on 
security risk and summarized the security problems of machine learning.

As described in Table 7, machine learning model security problems can be 
divided into three categories: training integrity threat, test integrity threat, and 
lack of robustness of the model. Among these different attacks, the most 
common situation is test integrity threat, for the little opportunities to manip-
ulate the training dataset of the detection classifier.

Recent works have highlighted the vulnerability of many machine learning 
models of Android malware detection to adversarial examples, which can be 
used to evaluate the security and robustness of the model before it is 
deployed.

The existing approach to generate adversarial samples is modifying the 
feature vector of the Android malware, intending to be misclassified by 
machine learning detectors, at the same time guaranteeing the malicious 
functionality. (Grosse et al. 2017) used the augmented adversarial crafting 
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algorithm to mislead this classifier while adding individual features to 
AndroidManifest.xml to preserve semantics. (Rosenberg et al. 2017) applied 
a query-efficient black-box attack that generated adversarial examples by 
modifying the malware’s API call sequences and non-sequential features.

However, there are some defects in the above attack models, which should 
be emphasized when building a robust detector against the adversarial sam-
ples. For example, (Grosse et al. 2017) modified AndroidManifest.xml to fool 
the classification model, but it fails when hybrid analysis or features contained 
in AndroidManifest.xml are not extracted as input to the classifier. So multi- 
source features extracted from different Android dissembled files, which 
provide more all-round analysis with comprehensive information, can be 
combined in future research to defense against the attack based on single 
feature modification.

Besides the lack of feasibility in such an adversarial attack, the impact of the 
mutation may also lead the Android malware to crash. In other words, the 
malicious behaviors could be lost or sometimes the codes cannot be compiled 
appropriately due to the modification of the feature vector. Therefore, to 
enhance the feasibility of the feature-space attacks, (Yang et al. 2017) com-
bined malware evolution attack and malware confusion attack to preserve the 
critical structure of malware. Phylogenetic analysis for the Android malware 
family was conducted to interpret evolving malware patterns in evolution 
attacks, and then it was complemented by mutating permission and API 
features less differentiable from Android malware. Furthermore, instead of 
focusing on feature-space attacks, other researchers built attack models on 
problem-space. (Pierazzi et al.2020) applied a problem-space attack focused on 
test-time evasion in the Android malware detection, through modifying real 

Table 7. Security attacks of machine learning models.

Threat types
Attack 

method Description Reference

Training 
integrity 
threat

Poison attack The attacked model is unable to work 
appropriately in the test phase with poisoned 
data mixed into the training dataset.

(Biggio, Nelson and Laskov 
2013)

Backdoor 
attack

The attacked model classifies the data of the 
backdoor trigger into the target category due to 
the poisoned training set.

(Gu, Dolan-Gavitt, and Garg 
2019) (Liu et al. 2018)

Test integrity 
threats

Adversarial 
sample 
attack

The attacked model is cheated by adversarial 
samples that are deliberately added with subtle 
interference

(Kurakin, Goodfellow and 
Bengio 2019) (Carlini and 
Wagner 2017)

Lack of 
robustness 
of the 
model

Not  
explainable

Machine learning models cannot be clearly 
explained how it makes decisions and why it 
performs well

(Papernot and Nicolas 2018)

Insufficient 
training 
data

It destroys the adaptability of the machine learning 
model confronted with the changing 
environment for the insufficient training dataset

(Papernot and Nicolas 2018)
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input-space objects that correspond to an adversarial feature vector. The result 
of the experiment on a dataset of 170 K apps demonstrated the feasibility for 
an attacker to evade DREBIN (Arp et al. 2014) and its hardened version, Sec- 
SVM (Demontis et al. 2017).

Although the escape rate of these attacks to machine learning detectors is 
generally high, defenders can still build an effective classifier against the 
adversarial samples through some methods as follows: (i) Adversarial 
Training. Training a new detection model with adversarial samples. (ii) 
Variant Detector (Yang et al. 2017). Developing a detector in addition to the 
original malware detector to detect whether an app is a variant derived from 
existing malware. (iii) Feature Integration. Integrating more features as pos-
sible to fully extract the various information of the sample.

From the discussion, the future research focused on the Android malware 
classification is suggested to adopt the adversarial models to evaluate the 
robustness of the model, and consider the above-mentioned approach to 
help address the vulnerability problems of machine learning-based detectors.

Deterioration Issues

The upgrade of the Android ecosystem proposed difficulties in feature subsets 
selection and malware classification stage. Despite numerous malware family 
classification approaches being available, there remains a valuable topic since it 
has not been well solved. One of these challenges is how to pick features and 
build robust detectors that stand the test of time without frequent retraining, 
since a key issue is the problem caused by the evolution of the Android 
ecosystem.

For the Android feature selection stage, it is vitally essential to select valid 
Android features to build anti-malware tools that are resilient to the evolution. 
(Suarez-Tangil and Stringhini 2018) tracked massive amounts of malware 
from 2010 to 2017 and explored how the repackaging malware evolved by 
using differential analysis. They discussed some areas that should be specially 
paid attention to when extracting Android features to detect malware. 
Building an infrastructure able to mine a mobile software ecosystem, (Cai 
2020a) depicted how the behavior of Android software has changed over time 
by focusing on three ecosystem elements’ ecological interaction and behavioral 
evolution patterns. These changes in Android software tracked by the above 
researchers proposed challenges in the future work focused on the Android 
feature engineering.

For the malware classification stage, machine learning-based Android 
detectors have been noted that they suffer from sustainability issues. 
Machine learning-based detectors deteriorate due to the constant evolution 
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of the Android ecosystem and the new malware. The aging problem in 
Android malware classifier was emphasized in (Fu and Cai 2019) and identi-
fied by the framework proposed in (Jordaney et al. 2017).

Some researchers (Kantchelian et al. 2013) (Maggi et al. 2009) attempted to 
address the problem by frequent retraining of the malware classification 
model, but consequently the performance of the classifier tends to be untrust-
worthy with a loose retraining frequency and it results in high cost for 
manually labeling all Android samples in retraining process. Therefore, 
a thorough solution to the sustainability issues focuses on the promotion of 
the rapid-aging classifier. From the reviewed literature, the approach to slow-
down the aging of classification models is depicted as follows.

(1) Present Features in Abstraction. The key to solving the problem is 
developing detectors resilient to changes and achieving scalability, so the 
concept of abstraction is utilized to make the machine learning model more 
adaptable for its insensitivity to the detailed changes of the Android frame-
work. For example, (Onwuzurike et al. 2017) used the family, package, or class 
information to generate abstracted API calls rather than relying on the raw 
API calls, and they tested the model on the dataset containing samples 
captured over six years to display its consistency. Similarly, (Zhang et al. 
2020) also dealt with the problem by exploring the semantic similarity despite 
the different implementations.

(2) Track the Evolutionary Patterns. Another strategy (Cai, 2020b) is to 
understand the evolutionary patterns of extracted features in benign samples 
and malware and then leverage the findings to build a sustainable malware 
detector. (Cai 2020) studied the five-year evolution trajectory of a new beha-
vior profile described by run-time behaviors and proposed a detection system 
based on observations of consistent differences between benign and malicious 
software over years. It showed better sustainability performance than 
MamaDroid (Onwuzurike et al. 2016) for the ability to maintain high 
accuracy.

(3) Build Self-evolving Detector. For this method, the detection model 
will be updated if identified as aging in the detection stage. (Xu et al. 2019) 
proposed a self-evolving Android malware detection system that maintains 
a different set of detection models and automatically self-updates through 
online learning techniques to improve sustainability and reduce 
deterioration.

In a conclusion, as the research trends paid more attention to the deteriora-
tion problem of machine learning classification models in Android malware 
detection, it should not be ignored in future experiments. The researchers can 
demonstrate the resilience of the proposed classification model by testing it on 
the datasets over years without frequent retraining.
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Android Datasets and Dissemble Tools

Datasets

As a literature survey, it is essential to propose a separate survey dimension 
of the datasets and disassemble tools generally used in Android malware 
detection. Taking experiments on well-known and updated datasets that are 
sufficient for a longitudinal comparative experiment is of concern in the 
research. Recent typically used public Android datasets are discussed as 
follows.

(1) Drebin (Arp et al. 2014). As the most-used android malware dataset in 
previous studies serving as a benchmark, Drebin contains 5,560 files from 
179 different malware families. The applications were captured from 
August 2010 to October 2012 but have been never updated since then.

(2) RmvDroid (Wang et al. 2019). RmvDroid is a malware dataset contain-
ing 9,133 samples collected from 2014 to 2018 that belong to 56 malware 
families based on Google Play’s app maintenance results over several years and 
analyzed by VirusTotal.

(3) Androzoo (Allix et al. 2016). AndroZoo is a well-known collection of 
Android Applications mainly captured from Google Play, AnZhi, and 
AppChina, with samples analyzed by tens of different AntiVirus products. It 
is still being updated and contains 16,941,455 different benign and malware 
samples at present.

(4) AndroZooOpen (Liu et al. 2020b). As a supplement dataset for 
AndroZoo that is made up of close-sourced android apps, AndroZooOpen 
presents a growing collection of open-source Android apps collected from 
several sources including Github and Google Play, having over 45,000 app 
repositories currently.

(5) AndroCT (Li, Fu and Cai 2021). AndroCT is a large-scale dataset on the 
run-time traces of function calls in 35,974 benign and malicious Android apps 
from 2010 to 2019. Each app was exercised both on an emulator and a real 
device, and the traces were separately curated by running each sample app 
against automatically generated test inputs.

(6) AMD (Wei et al. 2017). AMD contains 24,553 samples, categorized in 
135 varieties among 71 malware families ranging from 2010 to 2016. The 
dataset includes detailed descriptions of each malware variety’s behaviors 
generated based on the manual analysis result.

It is notable from the above datasets that some data have not been main-
tained in the last three years, such as Drebin (Arp et al. 2014) and Android 
Malware Genome (Zhou and Jiang 2012), so using the latest Android reverse 
engineering tools to disassemble the outdated samples can be problematic. 
More significantly, these datasets no longer represent the present Android 
malware landscape. It is recommended to carry out experiments on well 
labeled, advised studied datasets released or updated after 2019 (e.g., 
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Androzoo, AndroZooOpen). Most of the existing datasets are static, including 
no information about the runtime behavior of apps. For dynamic analysis, 
AndroCT is recommended for its extracted run-time trace features.

Dissemble Tools

Disassembly is the reverse process of compilation, turning executable 
Android machine source code into higher-level code. The disassembly of 
the object code can be divided into static disassembly and dynamic 
disassembly. Static disassembly is to get the assembly code directly by 
parsing the binary instructions of the object code without executing the 
program. Dynamic disassembly, on the other hand, tracks instructions as 
the program executes, so dynamic disassembly can only handle instruc-
tions that the object code executes.

At present, a lot of professional disassembly tools have been produced in 
domestic and foreign researches in recent years. The mainstream disassembly 
software in the current professional field are introduced as follows.

(1) Smali & Baksmali (Gruver 2021). It is a powerful APK file editing tool 
for the Dalvik Virtual Machine to decompile and back-compile classes.dex. 
The syntax is a loose Jasmin in smali and– dedexer syntax in Baksmali, and it 
implements all the features of the.dex format.

(2) Androguard (Halder et al. 2020). As the reverse engineering of Android 
applications, it functions include: support for multiple platforms (such as 
Linux, Windows, OSX, etc.); mainly used for static analysis; written primarily 
in Python; implement visualization.

(3) APKTool (Wiśniewski and Tumbleson 2021). The main functions of 
APKTool include dissembling resource files to the original format (including 
Resources.arsc, classes.dex, png, XML, etc.), rebuilding decoded resources back 
to binary APK/JAR, and processing APKs that depend on framework resources.

(4) AndroPyTool (Melbshark 2019). Capable to extract static and dynamic 
features from the Android APK, it combines various well-known Android app 
analysis tools such as Droidbox, FlowDroid, Strace, Androguard, and 
Virustotal. A source directory is needed for AndroPyTool to implement 
analysis and generate json and CSV format properties files.

(5) FlowDroid (Arzt et al. 2014). FlowDroid is an Android static taint 
analysis tool oriented on context, flow, fields, object sensitivity, and 
lifecycle awareness, which has higher accuracy and recall rates than 
other static analysis approaches. Based on IFSP framework, it can ana-
lyze all possible paths of information flow to generate CFG (Control 
Flow Graph) and label the taint leak path of sensitive information flow 
from source to sink.
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Conclusion

Relying on reviewing the captured work, this paper provides a systematic 
overview of the Android OS environment, feature selection, and classification 
technology. Also, the limitations of machine learning and the commonly 
applied datasets and disassemble tools are included. The main objective of 
this paper is to depict a full portrait in the field of Android malware detection, 
especially machine learning based.

Compared with other reviews, this paper not only gives a brief introduction 
to Android system mechanism and malware classification algorithms but also 
summarizes the data preprocessing approach and valid feature subsets selec-
tion models systematically, including the limitations and challenges in 
Android malware detection, which gives a more comprehensive look in the 
techs of feature selection and malware detection in recent years. This article 
can provide readers with a fundamental overview of Android malware detec-
tion and inspire them to pursue new research avenues.

However, after a comprehensive research of Android malware detection, there 
are still some challenges in future research, for example, the vulnerability of 
Android detectors to adversarial sample attacks, the aging classification models 
due to the emergence of new malware, the difficulty to build Android feature 
selection models resilient to the evolution of the Android system, etc. In addition, 
while there are a variety of machine learning methods used to classify Android 
malware, little research on these methods has focused on feature selection that 
has a fundamental impact on detection efficiency. Although the ensemble learn-
ing models that combine multiple learners are widely utilized, many models used 
traditional machine learning as base classifiers, instead of presenting the combi-
nation of state-of-the-art machine learning algorithms such as deep learning 
models. Moreover, the way to automatically select and remove the base classifiers 
can be exploited to solve the problem of computational expense and to find the 
optimal combinations of base classifiers. Therefore, future research can make full 
use of reinforcement learning in Android detection for ensemble learning.

Finally, little research utilizes the feedback from the accuracy of the classifier 
in Android malware detection, consequently the valuable relevance information 
obtained from the classifier between different features is ignored. However, to 
make a breakthrough in the efficiency of the wrapper-based feature selection 
procedure, the problem of inexhaustible feature combination in selected valid 
subsets in the previous wrapper-based method should be tackled.
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