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Intracerebral Hemorrhage Detection in Computed 
Tomography Scans Through Cost-Sensitive Machine 
Learning
Rushank Goyal

Betsos, Bhopal, India

ABSTRACT
Intracerebral hemorrhage is the most severe form of stroke, with 
a greater than 75% likelihood of death or severe disability, and 
half of its mortality occurs in the first 24 hours. The grave nature 
of intracerebral hemorrhage and the high cost of false negatives 
in its diagnosis are representative of many medical tasks. Cost- 
sensitive machine learning has shown promise in various stu-
dies as a method of minimizing unwanted results. In this study, 
6 machine learning models were trained on 160 computed 
tomography brain scans both with and without utility matrices 
based on penalization, an implementation of cost-sensitive 
learning. The highest-performing model was the support vector 
machine, which obtained an accuracy of 97.5%, sensitivity of 
95% and specificity of 100% without penalization, and an accu-
racy of 92.5%, sensitivity of 100% and specificity of 85% with 
penalization, on a test dataset of 40 scans. In both cases, the 
model outperforms a range of previous work using other tech-
niques despite the small size of and high heterogeneity in the 
dataset. Utility matrices demonstrate strong potential for sensi-
tive yet accurate artificial intelligence techniques in medical 
contexts and workflows where a reduction of false negatives is 
crucial.
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Introduction

Intracerebral hemorrhage (ICH) is a neurological condition occurring due to 
the rupture of blood vessels in the brain parenchyma (Badjatia and Rosand 
2005). It is the most severe form of stroke, with the chance of death or severe 
disability exceeding 75% and only 20% of survivors remaining capable of living 
independently after 1 month (Nawabi et al. 2021; Xinghua et al. 2021). It has 
an incidence of 24.6 per 100,000 person-years and accounts for 10–15% of all 
strokes (Ziai and Ricardo Carhuapoma 2018). An early diagnosis of ICH is 
crucial as half of the mortality occurs in the first 24 hours (Arbabshirani et al. 
2018). Computed tomography (CT) scans are currently the preferred non-
invasive approach for ICH detection (Hai et al. 2019). The diagnosis time for 
ICH remains very long—reaching 512 minutes in one study—which couples 
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with a high misdiagnosis rate—13.6% according to one estimate—to make it 
a prime candidate for workflow improvement through machine learning 
(Arbabshirani et al. 2018; Hai et al. 2019).

The conditions and characteristics that are specific to the medical field must 
be taken into consideration during the application of machine learning techni-
ques to problems such as ICH diagnosis. A primary concern is that false 
negatives are usually much more costly than false positives (Claude and 
Webb 2011). The frequent under-representation of the minority class coupled 
with the increased emphasis on its correct prediction makes this a challenging 
problem for artificial intelligence (Thai-Nghe, Gantner, and Schmidt-Thieme 
2010).

Taking the disproportionate costs of false negatives into account—more 
broadly called cost-sensitive learning—has resulted in positive outcomes in 
other medical tasks (Charoenphakdee et al. 2021; Freitas, Costa-Pereira, and 
Brazdil 2007; Fuqua and Razzaghi 2020; Kukar et al. 1999; Septiandri et al. 
2020; Siddiqui et al. 2020; Tianyang et al. 2020)

However, there is very little literature on the application of such techniques 
in hemorrhage diagnosis. Hence, the aim of this research was to test the results 
of the implementation of cost-sensitive learning—specifically a utility matrix- 
based approach—on ICH classification.

Materials and Methods

The data used for the study were obtained under a CC0: Public Domain license 
(Kitamura 2017). The dataset consisted of 200 anonymized, publicly-available 
images of non-contrast computed tomography (CT) scans (brain window), 
100 of which contained instances of intraparenchymal hemorrhage with or 
without intraventricular extension, and 100 of which did not. A sample of 4 
images from the data is shown in Figure 1. Figure 1a,b show scans without 
intracerebral hemorrhage, at the level of the lateral ventricles and third 
ventricle, respectively. Figure 1c displays a large intracerebral hemorrhage 
with intraventricular extension. Figure 1d contains a small intracerebral 
hemorrhage without intraventricular extension.

A trained radiologist confirmed the veracity of these images, and was unable 
to find any mislabeled images. Thus none of the images was discarded. To 
obtain the most accurate representation of model performance in real-life 
clinical scenarios, the images were not augmented in any way. Two datasets 
were subsequently created: a training dataset with 160 images and a testing 
dataset with 40 images. Both had equal numbers of hemorrhagic and non- 
hemorrhagic CT scans. It should be noted that the dataset consisted of images 
taken from searches on the World Wide Web, hence introducing a high level 
of heterogeneity due to variations in source machines, patient conditions, scan 
time, radiation dose, etc. This problem is compounded by the small dataset 
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size, thus the results obtained here are likely to only be conservative estimates 
of the real potential of the techniques employed (Lacroix and Critchlow 2003; 
Lim et al. 2019).

6 machine learning models were chosen for the study. The specific 
parameter configurations for these models are provided in Table 1, and 
are important for reproducibility. A random seed of 0 was used in each 
case. The models were trained using Wolfram Mathematica Desktop 
Version 12.3.0, making use of the CLASSIFY[] function (Wolfram 
Research 2021).

Figure 1. Sample dataset images.
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Decision Tree

A decision tree is a machine learning model that consists of nodes and branches, 
and is built using a combination of splitting, stopping and pruning (Song and 
Ying 2015). Combining all of these techniques, while not guaranteed to result in 
the theoretically-optimal decision tree – as that would require an exceedingly 
long time – still results in a highly useful model (Swain and Hauska 1977).

Nodes and Branches
The root node is the first node, and it represents a decision that divides the 
entire data into two or more subsets. Internal nodes represent more choices 
that can be used to further split subsets. Eventually, they end in leaf nodes, 
representing the final result of a series of choices. Any node emanating from 
another node can be referred to as its child node. Branches are representations 
of the outcomes of decisions made by nodes and connect them to their child 
nodes (Song and Ying 2015).

Splitting
Both discrete or continuous variables can be used by decision trees to set 
criteria for different nodes, either internal or root, that are used to split the 
data into multiple internal or leaf nodes. Decision trees choose between 
different splitting possibilities using certain measures of the child nodes, 
such as entropy, Gini index, and information gain, to optimize the splitting 
choices (Song and Ying 2015).

Stopping
If allowed to split indefinitely, a decision tree model could achieve 100% 
accuracy simply by splitting over and over until each leaf node only had one 
data sample. However, such a model would be vastly overfitted and would not 
generalize well to test data. Thus there needs to be a limit (often in the form of 
maximum depth allowed or minimum size of leaf nodes) (Song and Ying 2015).

Table 1. Parameter specifications.
Name Parameters

Random Forest FeatureFraction = 1
4
ffiffiffiffi
10
p , LeafSize = 5, TreeNumber = 50, DistributionSmoothing = 0.5

Decision Tree DistributionSmoothing = 1, FeatureFraction = 1
Gradient Boosted 

Trees
BoostingMethod = Gradient, MaxTrainingRounds = 50, LeavesNumber = 13, LearningRate = 

0.1, MaxDepth = 6, LeafSize = 15, L1Regularization = 0, L2Regularization = 0
Nearest Neighbors NeighborsNumber = 5, DistributionSmoothing = 0.5, NearestMethod = Scan
Support Vector 

Machine
KernelType = RadialBasisFunction, GammaScalingParameter = 0.00113124, 

PolynomialDegree = 3, SoftMarginParameter = 1, BiasParameter = 1, MulticlassStrategy = 
OneVersusOne

Logistic Regression L1Regularization = 0, L2Regularization = 100, OptimizationMethod = LBFGS
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Pruning
There are two types of pruning. Pre-pruning uses multiple-comparison tests to 
stop the creation of branches that are not statistically significant, whereas post- 
pruning removes branches from a fully-generated decision tree in a way that 
increases accuracy on the validation set, which is a special subset of the 
training data not shown to the model while training (Song and Ying 2015).

Random Forest

A random forest, as the name suggests, is a collection of randomized decision 
trees that is suitable for situations where a simple decision tree could not 
capture the complexity of the task at hand (Breiman 2001). The random forest 
model performs a “bootstrap” by choosing n times from n decision trees with 
replacement (Biau and Scornet 2016). The averaging of these predictions is 
called bagging (short for bootstrap-aggregating) and is a simple way to 
improve the performance of weak models, which many decision trees are 
when the task is complex (Breiman 1996).

Gradient Boosted Trees

Gradient tree boosting constructs an additive model, using decision trees as 
weak learners to aggregate, similar to the concept of random forests, but it 
does so sequentially; gradient descent is then used to minimize a given loss 
function and optimize the construction of the model as more trees are added 
(Friedman 2001; Jerry et al. 2009).

Nearest Neighbors

The nearest neighbors model is based on the concept that the closest patterns 
of the data sample in question offer useful information about its classification. 
Thus the model works by assigning each data point the label of its k closest 
neighbors, where k is specified manually (Kramer 2013).

Support Vector Machine

Support vector machines, linear and nonlinear, are a family of modular 
machine learning algorithms for binary classification problems by using prin-
ciples from convex optimization and statistical learning theory (Mammone, 
Turchi, and Cristianini 2009).

Separating Hyperplane
For n-dimensional data, a hyperplane (straight line in a higher-dimensional 
space) of n-1 dimensions is used to separate the data into two different groups 
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such that the distance from the clusters is maximized and the hyperplane is “in 
the middle,” so to speak. This hyperplane also dictates which labels will be 
assigned to the samples from the test set (Noble 2006).

Soft Margin
Most datasets, of course, do not have clean boundaries separating different 
clusters of samples. There will also be outliers, and an optimal model would 
allow for a certain number of outliers to avoid overfitting while also limiting 
misclassifications. The soft margin roughly controls the number of examples 
allowed on the wrong side of the hyperplane as well as their distance from the 
hyperplane (Noble 2006).

Kernel Function
A kernel function refers to one or more mathematical operations that project 
low-dimensional data to a higher-dimensional space called a feature space, 
with the goal being the easier separation of the example data (Suthaharan 
2016).

Logistic Regression

Logistic regression is a mathematical model that describes the relationship of 
a number of features (X1;X2; . . . ;Xk) to a dichotomous result. It makes use of 
the logistic function to assign probabilities to samples of belonging to either 
class, and the sample is then classified to the class where it has the higher 
probability of belonging (Kleinbaum and Klein 2010).

Utility Matrices

For the second part of the study, the concept of utility functions was used. 
A utility function is a mathematical function through which preferences for 
various outcomes can be quantified (Russell and Norvig 2002). In the case of 
a utility matrix for classification problems, Uij provides the utility where i is the 
ground truth and j is the model prediction reference (Wolfram Research 
2014). It is also referred to as a cost matrix (Elkan 2001).

The utility matrix created for this study is shown in Table 2. The sole 
difference from the default utility matrix is that false negatives (Row 1, 
Column 2) now have a utility of -x instead of 0. Subsequent experimentation 
with different values of x was done and the results were recorded.

Table 2. Utility matrix used for this study.
Hemorrhage No Hemorrhage

Hemorrhage 1 -x
No Hemorrhage 0 1
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Essentially, the models trained using this matrix will have an aversion to 
false negatives, thus decreasing the number of false negatives at the expense of 
potentially increasing the number of false positives. The strength of this 
aversion and subsequent change is quantified by x. A certain amount of trial 
and error is needed since, for most medical problems, the cost is not certain 
and needs to be estimated (Wang, Kou, and Peng 2021). The cost is context- 
specific; depending on the workflow where the algorithm is being implemen-
ted, the goals for sensitivity and specificity will vary and the cost must be 
determined accordingly.

In Round 2, the models were re-trained with the same parameters as the 
previous set, with the only difference being that the value for the 
“UtilityFunction” parameter was set to the utility matrix provided in Table 2.

Table 3. Round 1 results.
Accuracy Sensitivity Specificity

Decision Tree 0.600 0.800 0.400
Random Forest 0.700 0.750 0.650
Gradient Boosted Trees 0.900 0.900 0.900
Nearest Neighbors 0.825 0.700 0.950
Support Vector Machine 0.975 0.950 1.00
Logistic Regression 0.925 0.900 0.950

Figure 2. Probability histograms.
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Results

The final results for all of the models trained are given in Table 3. The prob-
ability histograms for the 3 most accurate models are given in Figure 2. These 
histograms show the actual-class probability of the 40 test samples. Table 4 lists 
the results for each of the models after setting their utility function to the matrix 
given in Table 2, for three values of � x. Finally, Figure 3 shows, for the top 

Table 4. Round 2 results.
Penalty of −1 Penalty of −2 Penalty of −3

Acc Sens Spec Acc Sens Spec Acc Sens Spec

Decision Tree 0.500 1.00 0 0.500 1.00 0 0.500 1.00 0
Random Forest 0.650 0.900 0.400 0.650 0.900 0.400 0.700 1.00 0.400
Gradient Boosted Trees 0.900 1.00 0.800 0.900 1.00 0.800 0.850 1.00 0.700
Nearest Neighbors 0.800 0.900 0.700 0.800 0.900 0.700 0.625 0.950 0.300
Support Vector Machine 0.925 1.00 0.850 0.925 1.00 0.850 0.900 1.00 0.800
Logistic Regression 0.925 0.950 0.900 0.900 0.950 0.850 0.850 1.00 0.700

Figure 3. Trends for sensitivities and specificities by penalty.
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three models, how their sensitivities and specificities change as the penalty is 
increased, with 0 being the default penalty that corresponds to Table 3.

According to the data in Table 3, the support vector machine model is the 
most accurate as well as the most sensitive and specific. Logistic regression and 
gradient boosted trees score second and third respectively in overall accuracy, 
though the nearest neighbors model has a higher specificity than gradient 
boosted trees, coming in second and tied with logistic regression.

Interestingly, while Table 3 shows that the support vector machine is more 
accurate overall, logistic regression actually appears to be more certain in its 
predictions, as demonstrated by the difference in the number of samples in the 
0.4–0.6 bin. Overall, though, all three of the best-performing models seem 
highly certain in the correct predictions that they are making, as the vast 
majority of samples fall in the 0.8–1.0 bin.

In Table 4, for a penalty of −1, three models give a 100% sensitivity, 
although for the decision tree that comes at the cost of having a 0% specificity. 
The support vector machine performs the best, matching the 100% sensitivity 
of gradient boosted trees. Its specificity of 85% is less than that achieved by 
logistic regression, though its sensitivity is greater.

The results for a −2 penalty are almost exactly the same, with the only 
difference being a slightly reduced accuracy for logistic regression.

When the penalty is increased to −3, model performances decrease along 
the board, except for random forest, which performs better). While the 
sensitivities for almost all the models are now 100%, they come at the expense 
of drastically reduced specificities.

Further values of � x were not tested as most model performances had 
started rapidly deteriorating at a −3 penalty. The random forest, however, 
might perform better at more negative penalties, based on the observed trends.

As expected, Figure 3 shows that greater penalties yield reductions in 
specificity and growth in sensitivity. Though in cases like Figures 3a,c, where 
the sensitivity maxes out early, additional penalties only decrease the specifi-
city. While tweaking the penalties, some changes, such as the one 0.85 to 0.70 
in the specificity in Figure 3b, can be quite drastic, making it all the more 
important to conduct detailed experimentation while determining the penalty.

Discussion

The Round 1 results compare favorably to prior studies conducted for ICH 
identification, especially taking into the account the small training set and 
heterogeneity in the training data. For instance, work done by Majumdar 
et al. (Majumdar et al. 2018) shows a sensitivity of 81% and specificity of 
98%. In one study, the model accuracy of 82%, recall of 89% and precision 
of 81% remarkably still resulted in a better recall than 2 of the 3 senior 
radiologists used for benchmarking (Grewal et al. 2018). More recent 
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research by Dawud et al. (Dawud, Yurtkan, and Oztoprak 2019) resulted in 
the development of three models, with accuracies of 90%, 92% and 93%. 
Jnawali et al. (2018) performed a study with dataset heterogeneity compar-
able to ours, although with a considerably larger dataset size of 1.5 million 
images, and achieved an AUC score of 0.87. A study using 37,000 training 
samples, also with pronounced heterogeneity in the dataset, obtained an 
accuracy of 84%, a sensitivity of 70%, and a specificity of 87% 
(Arbabshirani et al. 2018). A retrospectively-collected dataset of 3605 
scans was used to evaluate a commercial artificial intelligence decision 
support system (AIDSS) and showed a sensitivity of 92.3% and 
a specificity of 97.7% (Voter et al. 2021). There were also two studies 
that achieved better accuracies of 99% and one study with an AUC of 
0.991 (Bobby and Annapoorani 2021; Tog˘açar et al. 2019; Weicheng et al. 
2019).

Recently, a new type of neural network was developed; 90 versions were 
trained and tested on ICH detection ability, with the best model attaining 
an accuracy of 83.3% (J. Y. Lee et al. 2020). The important similarity 
between the work of Lee et al. is the comparable dataset size of 250 images, 
split into 166 scans for training and 84 for testing. Thus, given the data 
available, the model presented in this paper surpasses prior performance. 
In another paper, a nature-inspired gray wolf optimizer (GWO) algorithm 
called GWOTLT was trained and tested, using 10-fold cross-validation, on 
the same dataset as the one used in this study. The baseline VGG-16 had 
a precision and recall of 88.6% and 86.0% respectively, while the improved 
GWOTLT achieved a precision of 90.9% and a recall of 93.0%, thus 
demonstrating that the performance here compares favorably to research 
utilizing the same data (Vrbančič, Zorman, and Podgorelec 2019).

As for cost-sensitive machine learning, only one example could be found for 
the application of such a technique on intracerebral hemorrhage in prior 
literature, where the authors ended up achieving an overall sensitivity of 
96% and specificity of 95% on a training dataset of 904 cases; the cost in this 
case was introduced through a modified loss function instead of a utility 
matrix (used in this study) (H. Lee et al. 2019). A smaller training dataset of 
160 images combined with greater heterogeneity likely reduced model perfor-
mances in this study compared to Lee et al.’s work (Lacroix and Critchlow 
2003; Lee et al. 2019; Lim et al. 2019).

The accuracy of the cost-sensitive support vector machine exceeds 
a number of prior studies’ performances. Comparing the accuracy against 
the array of research mentioned previously, it manages an accuracy greater 
than the models constructed by Dawud et al., Grewal et al., Arbabshirani 
et al. and Jnawali et al., while still maintaining a 100% sensitivity 
(Arbabshirani et al. 2018; Dawud, Yurtkan, and Oztoprak 2019; Grewal 
et al. 2018; Jnawali et al. 2018). As Rane and Warhade pointed out in their 
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literature review, a cost-sensitive algorithm shows great potential as 
a strategy for more effective diagnosis, and the results confirm this, with 
the cost-sensitive models demonstrated here outperforming a number of 
other techniques (Rane and Warhade 2021).

Applications

Considering the details of utility matrix application and the results it produces, 
such a type of optimization is suited for a workflow where the artificial 
intelligence is not working in isolation. Since penalization for false negatives 
can end up reducing specificities, a further test might become necessary, 
whether it is a separate algorithm, human clinician(s), or something else. Cost- 
sensitive learning is ideal in situations where misdiagnosing a positive case 
could have serious negative impacts, but at the same time the misdiagnosis of 
a negative case would not cause much inconvenience.

Limitations and Future Research

Two limitations of this study were, as mentioned, the small sample size 
and high heterogeneity within the dataset. Due to the nature of the dataset, 
distinctions based on sex, ethnicity or age weren’t possible Future research 
that applies cost-sensitive techniques to larger, more standardized datasets, 
as well as utilizing datasets with details about sex, age, ethnicity, etc., could 
offer greater insights into the advantages and drawbacks of cost-sensitive 
AI algorithms, however this study is quite beneficial as a starting point for 
the novel application of utility matrices in pertinent medical scenarios.

Conclusion

Clearly, utility matrices have potential as a tool for minimizing unwanted false 
negatives while still providing accurate overall results. There is a trade-off 
between sensitivity and specificity, and a suitable value must be chosen after 
multiple trial and error estimates, but once the ideal penalty has been deter-
mined, a cost-sensitive model achieves the given goal better than a more 
general technique. More work should be done on a variety of use cases, but 
the initial results are promising.
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