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On the performance analysis of solving the Rubik’s cube 
using swarm intelligence algorithms
Jishnu Jeevan and Madhu S. Nair

Artificial Intelligence & Computer Vision Lab, Department of Computer Science, Cochin University of 
Science and Technology, Kochi, India

ABSTRACT
Swarm intelligence algorithms are nature-inspired algorithms 
that mimic natural phenomena to solve optimization problems. 
These natural phenomena are intelligent animal behavior used by 
animals for survival from hunting prey, migration, escaping pre
dators, and reproduction. Some examples are ant colonies, flock
ing of birds, tracking patterns of hawks, herding behaviour of 
animals, bacterial growth, fish schooling, and intelligent microbial 
organisms. The Rubik’s cube is a 3D combinatorial puzzle with six 
faces covered by nine stickers of colors: white, red, blue, orange, 
green, and yellow. The objective is to turn the scrambled cube, 
where each side will have more than one colour, into a solved 
cube having only one colour on each side. This study uses the 
following algorithms – particle swarm optimization, ant colony 
optimization, discrete krill herd optimization, and a greedy tree 
search algorithm – to investigate which of the four can solve the 
Rubik’s cube in the shortest time using the shortest possible 
move sequence and show that swarm intelligence algorithms 
are capable of solving the Rubik’s cube.
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Introduction

Swarm Intelligence Algorithms

Swarm intelligent systems consist of a population of agents that follow simple 
rules to interact with each other and their environment. These interactions can 
sometimes seem random when we observe the behavior of each agent indivi
dually. This varying local behaviour leads to intelligent global behaviour, 
unknown to the individual agents. Some examples are ant colonies, flocking 
of birds, hunting patterns of hawks, herding behaviour of animals, bacterial 
growth, fish schooling, and intelligent microbial organisms. Swarm intelli
gence algorithms are popular for solving many problems because they are 
cheap, robust, and easy to implement.

This study aims to see whether swarm intelligence algorithms are capable of 
solving the Rubik’s cube. The algorithms used for the survey are particle 
swarm optimization (PSO), ant colony optimization (ACO), and discrete 
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krill herd optimization (DKHO). Slight changes are made to these algorithms 
for them to solve the cube. This study implements a greedy search algorithm to 
solve the Rubik’s cube and compare its performance with the swarm 
algorithms.

There are a large number of swarm intelligence algorithms available in the 
literature, and since there are no definite criteria regarding what type of swarm 
algorithms are suitable for solving the Rubik’s cube, the algorithms in this 
study are selected based on the following conditions:

(1) Directly applying the algorithm to solve the Rubik’s cube isn’t possible 
since all the existing swarm algorithms are not for solving the Rubik’s cube. 
The algorithm must be simple enough to make changes to it for it to be able to 
solve the Rubik’s cube.

(2) PSO is used for this work since it is the most popular swarm intelligence 
algorithm applied for solving problems across various domains. The under
lying idea behind PSO, how far it should move in the search space based on the 
current fitness, the personal best fitness, and the global best fitness, was easy to 
implement to make the particles find the solved state.

(3) Only slight modifications were needed to be made to the ACO for it to solve 
the Rubik’s cube since ACO is commonly used in solving graph-based problems.

(4) KHO is used in this study to test whether it would have a fast conver
gence rate for solving the Rubik’s cube since it is proven in many studies to 
have a fast convergence rate. Making changes to the KHO for it to solve the 
cube proved to be difficult. Therefore the discrete KHO is used since it is used 
for solving graph-based problems and could be easily modified to solve the 
Rubik’s cube. The modifications to the discrete KHO were similar to the ones 
made for ACO.

Rubik’s Cube

The Rubik’s cube was invented in 1974 by Hungarian sculptor and professor of 
architecture Ernő Rubik. It has six faces covered by nine stickers of colors: 
white, red, blue, orange, green, and yellow. The objective is to turn the 
scrambled cube, where each side will have more than one colour, into 
a solved cube having only one colour on each side.

The Rubik’s cube is one of the most popular and best-selling toys, with over 
350 million cubes sold worldwide. This worldwide popularity of the cube has 
led to the emergence of various speed-solving competitions where the objec
tive is to solve the Rubik’s cube and other variations of the puzzle as fast as 
possible. World Cube Association (WCA) is the official body that organizes 
these competitions (WCA 2003).

The moves applied to the cube are denoted using Singmaster notation 
(Singmaster 1981). F (Front): the side currently facing the solver, B (Back): 
the side opposite the front, U (Up): the side above or on top of the front side, 
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D (Down): the side opposite the top, underneath the Cube, L (Left): the side 
directly to the left of the front, R (Right): the side to the right of the front side.

A letter by itself, for example, F, B, U, D, L, and R, indicates to rotate that 
side 90° clockwise. A letter followed by a prime symbol (‘), for example, F,’ B,’ 
U,’ D,’ L,’ and R,’ indicates to rotate that side 90° anticlockwise. A letter 
followed by the number 2, for example, F2, B2, U2, D2, L2, and R2, indicates 
to rotate that side 180°.

There are two ways to measure the length of the solution. First is using the 
quarter-turn metric (QTM), where 180° turns are counted as two moves, while 
in the half-turn metric (HTM), they are considered as one move. The half-turn 
metric is also called the face turn metric (FTM) or outer block turn metric 
(OBTM). This study uses the half-turn metric.

A Rubik’s cube has 43,252,003,274,489,856,000 � 43 quintillion number of 
states. For 30 years, mathematicians and computer scientists have been trying 
to find God’s number, which is the minimum number of moves required to 
solve all configurations of the cube (Grol 2010). In 2010, God’s number proved 
to be 20 moves, in half-turn metric (Rokicki et al. 2014).

This was done by breaking down 43,252,003,274,489,856,000 positions into 
2,217,093,120 sets, each containing 19,508,428,800 different positions. The 
symmetry property of the cube reduces these 2,217,093,120 sets to 
55,882,296 sets. If you take a scrambled Rubik’s cube and turn it upside 
down, it can be solved by finding the solution for the given scrambled cube 
and turning its solution upside down. There are 24 ways to orient the cube in 
space and by another factor of two using a mirror for a total reduction by 
a factor of 48 (Hoey 1994). This way, 2,217,093,120 sets are reduced to 
55,882,296 sets and solved using large supercomputers at Google in a few 
weeks (Rokicki et al. 2010).

Fitness Function

Swarm intelligence algorithms are suitable for solving optimization problems 
where the goal is to minimize (or maximize) the given function. They use 
a fitness (objective) function to evaluate the fitness of an agent. In 
a minimization (or maximization) problem, an agent is fit if it is close to the 
minimum (or maximum) value. In most cases, the function that needs to be 
optimized will act as the fitness function. Fitness functions guide the agents in 
finding the minimum (or maximum) value.

For optimizing continuous functions, the continuous function is the fitness 
function. Finding a solution to the Rubik’s cube is a discrete search domain 
problem, almost similar to a tree search problem.

In this study, the distance between the current state of the cube and the 
solved state is the heuristic distance (fitness value for the cube). The cube is 
solved using an algorithm, and the number of moves taken by the algorithm to 
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solve the cube is the heuristic distance. The algorithm used in this study for 
calculating the heuristic distance is Kociemba’s algorithm (Kociemba 2014b; 
Scherphuis 2015a).

Several techniques are available for calculating the fitness value of the 
Rubik’s cube. Colin G. Johnson has published papers on solving the Rubik’s 
cube using a learned guidance function, a function learned by supervised 
machine learning that predicts how far a particular state is from the goal 
state (Johnson 2018, 2019, 2021). Pattern database (Korf 1997) can also be 
used for computing fitness, where a look-up table stores the fitness values of 
certain cube configurations. It could even be something as simple as counting 
the number of pieces that are in the correct location (Saeidi 2018).

Here, the Kociemba’s algorithm is used to calculate the heuristic distance 
since it gives the minimum distance from the current state of the cube to the 
solved state. The distance measure is accurate since it is obtained from actually 
solving the cube.

Kociemba’s Algorithm

Kociemba’s algorithm1 2 3 is the optimal cube solving algorithm that can solve 
any configuration of the cube in 20 moves or less in half-turn metric 
(Kociemba 2014a). For this reason, the solution returned by Kociemba’s 
algorithm is the heuristic distance.

The states of the Rubik’s cube are grouped according to different properties. 
In Kociemba there are three groups G0, G1 and G2. Group G0 contains all the 
possible states of the cube that are reachable by applying only the moves hU, D, 
R, L, F, Bi from the solved state. Group G1 contains all states reachable by 
applying only the moves hU, D, R2, L2, F2, B2i from the solved state. Group G2 
contains only a single state which is the solved state.

Kociemba algorithm works in two phases. In phase one, the scrambled cube 
which belongs to set G0 is taken from G0 to the states in G1. An algorithm 
similar to the IDA* algorithm (Korf 1985) is used for the process. Once it finds 
the minimum number of moves required to take the cube from the scrambled 
state to a state in G1, it continues until it has a large number of possible 
solutions ranging from the lowest number of moves to a much larger number 
to take it from G0 to G1. This produces phase one solutions that take the cube 
from the scrambled state in group G0 to the states in the group G1.

In phase two, an estimate is made on the number of moves required to take 
the cube from state G1 to the state in G2, which is the solved state. The 
algorithm continues to find shorter solutions by using some non-optimal 
phase one values to produce more optimal phase two values. For example, 
an 8 move phase one solution followed by a 15 move phase two solution is less 
optimal than a 10 move phase one solution followed by a 5 move phase 2 
solution. As the phase one solution value increases the phase two solution 
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value decreases. Eventually, a solution is found where the value of the phase 
two solution is 0, which is the optimal solution.4 5 6

Using Kociemba’s Algorithm for Finding the Fitness

If SðtÞ is the state of the Rubik’s cube at time t, then the fitness of the state SðtÞ, 
or the distance from the state SðtÞ to the solved state, is the number of moves 
used by Kociemba’s algorithm to solve the state SðtÞ. This is given in 
Equation 1 as FðSðtÞÞ: 

FðSðtÞÞ ¼ KociembaðSðtÞÞ (1) 

Kociemba’s algorithm returns more than one solution for certain cube 
states. Therefore some cube states can have more than one fitness value. It is 
due to the design of Kociemba’s algorithm. The algorithm picks out the near- 
optimum solution rather than the best possible solution. If the cube is solvable 
in 13 moves and 8 moves, and if the algorithm obtained the 13 move solution 
first, it returns the 13 move solution, as long as the obtained solution is less 
than 20 moves.

This study uses Equation 2 instead of Equation 1 to compute the fitness, 
where Kociemba’s algorithm solves the same cube state n time to obtain n 
heuristic distances. The average of the obtained heuristic distances is the 
fitness value for the cube state SðtÞ. The average value is rounded to the nearest 
integer to make the implementation of the swarm algorithms easier. 

FðSðtÞÞ ¼
1
n

Xn

i¼1
KociembaðSðtÞiÞ (2) 

If n is too large, the execution time of the mentioned algorithms increases, 
affecting their performance. For this study, the value of n is 3.

Related Work

Metaheuristic approaches such as simulated annealing and genetic algorithm 
have been used to solve the Rubik’s cube (Saeidi 2018). The fitness function 
used in this work is the total number of colored pieces of all the faces which are 
not in their correct position. The result of this work shows that the simulated 
annealing approach solves the cube faster than the genetic algorithm. 
Simulated annealing takes less iteration and has rapid convergence. 
However, the genetic algorithm approach solves the cube using fewer moves. 
The simulated annealing approach can solve the cube with 157 moves in 18.12  
seconds in the best case and with 358 moves in 68.47 seconds in the worst case 
and with 219 moves in 36.31 seconds in the average case. The genetic algo
rithm can solve the cube with 22 moves in 3135.12 seconds in the best case and 
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with 50 moves in 68.25 seconds in the worst case. Out of the 200 cubes given to 
the algorithm, simulated annealing successfully solved the cube for all test 
cases, while the genetic algorithm was successful in only 43% of the attempts.

Evolutionary strategies incorporating an exact method is another approach 
used to solve the Rubik’s cube (El-Sourani, Hauke, and Borschbach 2010). 
This work solves the Rubik’s cube using Thistlethwaite ES, which is an 
evolutionary strategy based on Thistlethwaite’s algorithm Thistlethwaite 
(1981); Scherphuis (2015b). In Thistlethwaite’s algorithm, the problem of 
solving the Rubik’s cube is divided into four independent subproblems by 
using four nested groups: G0 ¼ hF;R;U;B; L;Di, G1 ¼ hF;U;B;D;R2; L2i, 
G2 ¼ hU;D;R2; L2; F2;B2i, G3 ¼ hF2;R2;U2;B2; L2;D2i, G4 ¼ I. 
Thistlethwaite’s algorithm is similar to Kociemba’s algorithm, which uses 
only three subgroups and two phases to solve the cube. This work translates 
Thistlethwaite’s algorithm into four appropriate sub-functions for each phase. 
Using Thistlethwaite ES, the Rubik’s cube is solved on average with 35–40 
moves.

In the paper Design and Comparison of two Evolutionary Approaches for 
Solving the Rubik’s Cube (El-Sourani and Borschbach 2010) compares the 
Thistlethwaite ES, mentioned above, with an extension of an evolutionary 
approach for solving the Rubik’s cube proposed by Michael Herdy (Herdy and 
Patone 1994). In this paper, the fitness function for Herdy’s evolutionary 
approach is calculated using three qualities q1, q2, and q3. q1 is increased by 
1 for each facelet (2-dimensional square on a face) whose color differs from the 
center facelet on the same face. q2 is increased by 4 for each wrong-positioned 
edge, orientation is not considered. q3 is increased by 6 for each wrong- 
positioned corner, orientation is not considered. Each of those qualities can 
reach a maximum of 48, leading to max{q1 þ q2 þ q3} = 144. The cube is in 
a solved state when the sum’s value reaches 0. From experimental analysis, 
Herdy ES solved 96% of the scrambled cube in 180–280 moves while 
Thistlethwaite ES solved the cube with an average of 50 moves which is slightly 
lower than the upper bound of 52 for the classic Thistlethwaite’s algorithm.

Korf designed a learning-based method for solving the Rubik’s cube without 
doing any search (Korf 1982). It explored the idea of learning efficient strate
gies for solving problems by searching for macro operators, which are 
a sequence of operators or moves called macros, which achieve the subgoal 
of a problem without disturbing any of the previously achieved subgoals.

In recent years, several deep learning methods have been applied for solving 
the Rubik’s cube, like boosted neural nets (Irpan 2016), deep reinforcement 
learning and search (Agostinelli et al. 2019), step-wise deep learning (Johnson 
2021), entropy modeling with deep learning (Amrutha and Srinath 2022), and 
even combining quantum mechanics with deep learning (Corli et al. 2021). 
These methods have their unique approaches for solving the Rubik’s cube. 
Using deep reinforcement learning and search (Agostinelli et al. 2019), the 
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cube is solved 100% of the time and the shortest possible solution is found 60% 
of the time.

The swarm intelligence algorithms mentioned in this paper do not perform 
as well as the deep learning methods in finding the shortest solution. The aim 
of this study was never to develop a swarm intelligence algorithm that can 
outperform the deep learning methods but to show that they can solve the 
Rubik’s cube. Possible improvements are discussed in Section 9.

Particle Swarm Optimization

In particle swarm optimization (PSO) (Kennedy and Eberhart 1995) there is 
a population of candidate solutions called particles. These particles move 
around the search space of the given problem iteratively, trying to find the 
optimum solution. The movement of these particles is determined using 
mathematical formulas describing their position in the search space and 
velocity, how far the particle should move in the search space. They are as 
follows: 

xiðt þ 1Þ ¼ xiðtÞ þ Viðt þ 1Þ (3) 

Viðt þ 1Þ ¼WViðtÞ þ r1C1ðPiðtÞ � xiðtÞÞ þ r2C2ðGðtÞ � xiðtÞÞ (4) 

In Equation 3, xiðtÞ is the position of particle i in the search space at time t, 
xiðt þ 1Þ is the next position of the particle i in the search space at time ðt þ 1Þ, 
ViðtÞ is the velocity of the particle i at time t and Viðt þ 1Þ is the velocity of 
particle i at time ðt þ 1Þ, which is calculated using Equation 4 where r1 and r2 
are random numbers between 0 and 1, WViðtÞ is the inertia component and W 
is the inertia coefficient which is a constant, r1C1ðPiðtÞ � xiðtÞÞ is the cognitive 
component and r2C2ðGðtÞ � xiðtÞÞ is the social component where C1 is the 
personal acceleration coefficient which is a constant and C2 is the global 
acceleration coefficient which is also a constant. PiðtÞ is the personal best 
solution for the particle i till time t and GðtÞ is the global best solution till 
time t.

Particle Swarm Optimization for Solving the Rubik’s Cube

A few optimizations are made to the PSO algorithm for solving the Rubik’s 
cube since solving the Rubik’s cube is a discrete search domain problem.

Let HTM be the set of all moves that can be applied to the cube in half-turn 
metric, HTM ¼ {R, R,’ R2, L, L,’ L2, F, F,’ F2, B, B,’ B2, U, U,’ U2, D, D,’ D2}.

Let ¼ fS1; S2 . . . Sng; n � 4� 1019 be the set of possible states that the cube 
can take. Let SiðtÞ be the state reached by the particle i at time t. Let Siðt þ 1Þ be 
the state reached by the particle i at time ðt þ 1Þ. Let V be a sequence of 
random moves that are applied to the state SiðtÞ to reach the state Siðt þ 1Þ. Let 
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SPi be the state which gives the personal best fitness score for the particle i. Let 
SG be the state which gives the global best fitness score.

Compute the personal acceleration PA using Equation 5 and then the global 
acceleration GA using Equation 6. 

PA ¼ FðSPiÞ � FðSiðtÞÞ (5) 

GA ¼ FðSGÞ � FðSiðtÞÞ (6) 

where FðSiðtÞÞ is the fitness value of the state S reached by the particle i at time 
t which is calculated using Equation 2 in Section 1.5.

The new state Siðt þ 1Þ is found using Equation 7 as follows: 

Si t þ 1ð Þ ¼

SG þ V; if PA � 0andGA < 0ð Þ;where1 � Vj j � GAj j

Si tð Þ þ V; if PA > 0andGA � 0ð Þ;where1 � Vj j � PA
Si tð Þ þ V; if PA > 0andGA � 0ð Þ;where

1 � Vj j � PA; ifGA ¼ 0
1 � Vj j � GA; ifGA�0

Si tð Þ þ V; if PA ¼ 0andGA ¼ 0ð Þ;where Vj j ¼ 1

8
>>>>>><

>>>>>>:

(7) 

where SG þ V means to go to the state that gives the global best fitness score 
and apply a sequence of random moves V, where jVj denotes that the number 
of moves applied to the cube is between 1 and the absolute value of GA. SiðtÞ þ
V means from the current state SiðtÞ apply a sequence of random moves V 
where the numbers of moves applied to the cube are determined using any of 
the last three conditions in Equation 7.

After each iteration, if the current state of the particle i gives a fitness value 
that is better (less) than the personal best SPi or the global best SG, then the 
personal best or the global best are updated accordingly.

In Equation 7 the sequence of random moves applied to the cube, V, is kept as 
minimum as possible, especially in the last case where only a single random move 
is applied to the cube. The reason is that the moves applied to the cube are selected 
randomly. If a large number of random moves are applied to the cube, especially 
when the particle is near to the solved state, then there is a chance that the particle 
might miss the solution due to the random nature of selecting the moves.

Number of Function Evaluations

The number of function evaluations is the number of times the evaluation 
function gets called. In general, the PSO algorithm runs for N iterations, and 
the fitness of each particle P is computed for each iteration.

Equation 2 is used to find the fitness value of the cube state, where 
Kociemba’s algorithm solves the cube state n times, and the average of these 
n values is the fitness of the cube state. During N iterations, Kociemba’s 
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algorithm is called n times for each particle P. From this, the number of 
function evaluations for PSO is n� N � P ¼ nNP.

Observations

Table 1 shows the observations obtained for PSO. The algorithm ran for 
10,000 iterations with 50 particles.

The table consists of nine columns. Length shows the number of moves used 
to scramble the cube. % shows the success rate of finding the solution out of 
five attempts. An attempt is successful if one particle has found the solution. 
Actual shows the solution length estimated by Kociemba’s algorithm. 
Obtained shows the solution length found by the PSO algorithm. It’s the 
average of all the solution lengths obtained by all the particles. First shows 
the first iteration at which the first particle found the solution. Last shows the 
iteration at which the last particle found the solution. Average shows the 
average number of iterations it took between each particle to find the solution. 
NFE shows the total calls of the evaluation function (Kociemba’s algorithm). 
Total shows out of the fifty particles how many were able to reach the solved 
state.

Table 1. Observations for particle swarm optimization algorithm.
Length % Actual Obtained First Last Average NFE Total

5 5/5 10 14.04 21 516 9.9 77550 50
10 12.1 19 1290 25.42 193650 50
5 15.28 42 879 16.74 132000 50

12 25.22 56 731 13.5 109800 50
8 18.2 220 1029 16.18 154500 50

10 5/5 10 24.1 42 663 12.42 99600 50
16 35.24 85 625 10.8 93900 50
16 52.12 92 935 16.86 140400 50
10 36.24 100 590 9.8 88650 50
10 34.4 92 717 12.5 107700 50

15 5/5 20 64.22 124 1007 17.66 151200 50
18 59.14 75 609 10.68 91500 50
18 50.48 79 576 9.94 86550 50
20 58.22 143 468 6.5 70350 50
19 52.3 226 989 15.26 148500 50

20 5/5 20 54.16 146 902 15.12 135450 50
20 60.26 130 909 15.58 136500 50
20 58.38 105 1147 20.84 172200 50
20 63.16 150 510 7.2 76650 50
19 58.22 159 869 14.2 130500 50

25 5/5 20 60.24 109 860 15.02 129150 50
19 59.22 232 818 11.72 122850 50
18 54.34 93 718 12.5 107850 50
20 59.28 379 1276 17.94 191550 50
19 56.18 93 562 9.38 84450 50

30 5/5 20 46.1 280 696 8.32 104550 50
20 63.28 112 732 12.4 109950 50
20 65.16 114 1077 19.26 161700 50
20 59.24 122 750 12.56 112650 50
18 57.2 142 638 9.92 95850 50
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From this table, by taking the average of the obtained solution length, the 
number of iterations, and the number of function evaluations for each scram
ble length, the PSO solves the Rubik’s cube with an average of 16 to 58 moves. 
The average number of iterations is around 700 to 889, and the evaluation 
function is called on average 106,000 to 133,000 times.

Figures 1 shows the Iteration vs Fitness graph obtained for PSO. The Y-axis 
shows the fitness score and the X-axis shows the number of iterations, which is on 
a semi-log scale. Figure 1a is for the best case where the average iteration it takes 
for the next particle to find the solved state is minimum (6.5). If the average 
iteration between the particles to find the solved state is minimum, then the PSO 
algorithm finishes its execution much faster. Figure 1b is for the worst case where 
the average iteration it takes for the next particle to find the solved state is 
maximum (25.42). If the average iteration between the particles to find the solved 
state is large, then the PSO algorithm will take a longer time to finish its execution.

Greedy Algorithm

A greedy algorithm is an algorithm that tries to solve an optimization 
problem by selecting the local optimum solution at each stage of the 
problem. These algorithms will sometimes find the global optimum solu
tions to the problem, but sometimes they can come up with solutions near 
the global optimum or worse than the global optimum. This is because 
selecting a local optimum solution at each stage may not guarantee that 
they lead to the global best solution. An example of a greedy algorithm is 
Dijkstra’s algorithm, which is used for finding the shortest path between 
nodes in a graph (Dijkstra 1959).

Figure 1. Iteration vs Fitness graph of PSO.
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Greedy Tree Search Algorithm for Solving the Rubik’s Cube

The greedy tree search algorithm applies moves that reduce the fitness at 
each depth. From any state of the Rubik’s cube, eighteen moves can be 
applied to it. These eighteen moves can take the cube from the current 
state to eighteen new states. If any of these states have a fitness value less 
than the previous state, then the move that gives the minimum fitness is 
applied to the cube. This move selection method decreases the fitness value 
at each depth.

If the next eighteen moves do not lead to a state with a fitness value less than 
the previous state, then the last applied move is undone and a move that gives 
the next minimum fitness value is applied to the cube. This stage is called 
backtracking.

Cycles occur when a previously reached state is encountered again and the 
move to be applied from this state is the same move that was applied when this 
state was previously encountered. Since a greedy approach is used when 
selecting the next move to be applied to the cube, the algorithm can apply 
the same move that it previously applied when it first encountered that state, 
causing the algorithm to go through a cyclic loop and never reach the solved 
state. Cycles can be prevented by checking if the next move to be applied to the 
cube will make it reach a state that has been encountered before. If this state 
has been encountered before, then this move will not be applied to the cube 
and the next move is applied.

Number of Function Evaluations

The greedy algorithm runs for N iteration. During each iteration, the algo
rithm applies each of the 18 possible moves to the cube, and the cube will reach 
18 different states from the current state. The algorithm checks the fitness of 
these 18 states using Equation 2 and selects the move that takes the cube to 
a state whose fitness value is less than or equal to the current state. The 
Kociemba’s algorithm is called n times for the 18 different states that are 
reachable from the current state. Therefore, the total number of function 
evaluations is n� 18� N ¼ 18nN.

Kociemba’s algorithm is not called during the detection of a cycle since the 
algorithm only checks if the move that gives the minimum fitness value takes 
the cube to a state that has already been visited.

The algorithm does not evaluate the fitness of the cube states during 
backtracking. In the backtracking stage, the algorithm goes back to the 
previous depth and undo the last move applied to the cube. Then it applies 
the move which gives the next minimum fitness value. The move that gives 
the next minimum fitness value has already been found during the previous 
iterations.
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Observations

Table 2 shows the observations obtained for the greedy tree search. The 
algorithm ran for 10,000 iterations. Length shows the length of the scramble 
that was applied to the cube. % out of five attempts how many attempts were 
successful. Actual shows the length of the solution predicted by Kociemba’s 
algorithm. Obtained shows the length of the solution given by the greedy tree 
search. MinFit shows the minimum fitness value found by the program. If the 
cube is solved then the minimum fitness is zero. MaxDeep tells us the max
imum depth that the algorithm went to find the solution. Iterations shows the 
total iterations it took to solve the cube. NFE shows the total number of times 
the evaluation function was called.

In the column Obtained a value is of the form NA(18). This means that the 
solution was not found and when the program stopped its execution after 
10,000 iterations it gave a solution of length 18 which would not completely 
solve the cube. In the column MinFit for the scramble length of 15 in its third 
row, the cube is not solved and the minimum fitness is 12. This means that the 
cube is 12 moves away from the solved state when the program is terminated.

From this table, by taking the average of the obtained solution length, the 
number of iterations, and the number of function evaluations for each 

Table 2. Observations for greedy tree search algorithm.
Length % Actual Obtained MinFit MaxDeep Iterations NFE

5 5/5 9 5 0 5 5 270
8 5 0 5 5 270
5 5 0 5 5 270
5 5 0 5 5 270

13 11 0 11 13 702
10 5/5 19 15 0 15 201 10854

19 12 0 15 26 1404
18 18 0 18 18 972
14 10 0 10 10 540
14 10 0 10 10 540

15 4/5 20 22 0 22 22 1188
20 25 0 25 25 1350
18 NA(18) 12 23 10000 540000
15 27 0 27 1633 88182
20 15 0 15 15 810

20 3/5 19 NA(23) 11 31 10000 540000
20 NA(12) 10 26 10000 540000
20 20 0 20 20 1080
19 22 0 22 22 1188
20 27 0 27 184 9936

25 5/5 20 24 0 24 65 3510
19 22 0 22 22 1188
20 31 0 32 815 44010
20 20 0 20 20 1080
20 19 0 19 19 1026

30 4/5 20 21 0 21 35 1890
20 29 0 29 634 34236
21 NA(40) 12 46 10000 540000
20 20 0 20 38 2052
20 19 0 19 19 1026
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scramble length, the greedy tree search algorithm solves the Rubik’s cube with 
an average of 6 to 23 moves. The average number of iterations is around 6 to 
4050, and the evaluation function is called on average 356 to 218,440 times.

Figures 2 shows how the fitness value of the cube changes with every 
iteration and also the change in the global minimum value with every iteration. 
Figure 2a is for the best case where the global minimum value decreases with 
each iteration along with the current fitness. Figure 2b, is for the average case. 
In the average case, the solution to the cube is found, but the algorithm did 
a few backtracking along the way. This is indicated by the spikes in the red plot 
which indicates the current fitness during each iteration. Figure 2c, is for the 
worst cases where the solution to the cube could not be found and the 
minimum fitness reached is greater than 0.

Ant Colony Optimization

Ant colony optimization (ACO) algorithm is a metaheuristic optimization 
algorithm which is a probabilistic technique used for solving problems that are 

Figure 2. Iteration vs Fitness graph of greedy tree search.
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reducible to finding good paths through graphs (Dorigo 1991; Dorigo, 
Birattari, and Stutzle 2006). The algorithm takes inspiration from the behavior 
of biological ants. To find the food source, the ants leave behind a pheromone 
trail from the starting location to the food source. The pheromone trail helps 
the ants to determine how far or near the food source is. If the food source is 
near, the ants will leave behind more pheromones, or else the amount of 
pheromones deposited is less.

The pheromone deposited by an ant k, on an edge ði; jÞ is calculated using 
Equation 8. 

Δτk
i;j ¼

1
Lk
;wherekth ant traversed edge ði; jÞ

0; otherwise

�

(8) 

This means that if an ant k travels from node i to node j of a graph then it will 
deposit some amount of pheromone represented by Δτk

i;j, which is equal to 1
Lk 

where Lk is the length of the path, distance from node i to node j, found by the 
ant k. If the path length is more, then the pheromone level deposited will be 
less.

The total amount of pheromones deposited is the sum total of the pher
omones deposited by all the ants that traversed the edge ði; jÞ, is calculated 
using Equation 9, 

τi;j ¼ �m
k¼1Δτk

i;j (9) 

where m represents the total number of ants that traversed the edge ði; jÞ. To 
decrease the amount of pheromone deposited after each iteration an evapora
tion constant p is introduced and Equation 9 changes to Equation 10. 

τi;j ¼ ð1 � pÞτi;j þ �m
k¼1Δτk

i;j (10) 

The probability of selecting an edge is calculated using Equation 11, 

Pi;j ¼
ðτi;jÞ

α
ðηi;jÞ

β

�all edgesðτi;jÞ
α
ðηi;jÞ

β (11) 

where α is a parameter that is used to control the relative weight of the total 
amount pheromones deposited on an edge ði; jÞ represented by τi;j and β is 
a parameter that is used to control the relative weight of the heuristic value ηi;j, 
which is computed using Equation 12. 

ηi;j ¼
1
Lk

(12) 

For example if an ant wants to select an edge from one of the three edges a, 
b, and c then using the above equations (Equations 8 - 11) the probability of 
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selecting the three edges are calculated and found to be as follows, 
P ¼ ½0:76; 0:19; 0:05�. Now the cumulative sum is calculated as 
Cumulative Sum ¼ ½0:76þ 0:19þ 0:05; 0:19þ 0:05; 0:05� ¼ ½1; 0:24; 0:05�. 
A random number r is generated and is between the range ½0; 1�. If 0:24 � r �
1:00 node a is selected, if 0:05 � r � 0:24 node b is selected and if 0:00 � r �
0:05 node c is selected. This method of selecting the edge is called as roulette 
wheel selection Lipowski and Lipowska (2012).

Ant Colony Optimization for Solving the Rubik’s Cube

ACO is suitable for solving the Rubik’s cube since it is used for solving graph- 
based problems. For the ACO to completely solve the cube, a few optimiza
tions are made to it.

The pheromone deposited by an ant k, on an edge ði; jÞ is given by 
Equation 8. This means that if an ant k travels from node i to node j then it 
will deposit some amount of pheromone represented by Δτk

i;j which is equal to 
1
Lk

, where Lk is the length of the path between node i and node j found by the 
ant k. In the context of a Rubik’s cube, the length of the path is the distance 
from the current state of the cube to the solved state. If an ant k applies a move 
R to the cube from state S then it will go to the state Sþ R. The state Sþ R will 
have a fitness value, which is the number of moves needed to solve the cube 
from the state Sþ R given by Kociemba’s algorithm which is calculated using 
Equation 2.

For the Rubik’s Cube, i represents the current state of the cube S and j 
represents the next state of the cube which can be reached by applying any of 
the possible moves in M HTM ¼ {R, R,’ R2, L, L,’ L2, F, F,’ F2, B, B,’ B2, U, U,’ 
U2, D, D,’ D2} to the cube from the state S. Let M be a singleton set with only 
a single element and this element can be any one of the possible eighteen 
moves that can be applied to the cube. Equation 13 calculates the pheromone 
deposited by the ant k that traversed the edge between the state S and ðSþ M Þ

of the cube. 

Δτk
S; SþMð Þ ¼

1
F SþMð Þ

;wherekthanttraversedtheedge S; Sþ Mð Þ

0 ; otherwise

�

(13) 

Now the total amount of pheromones deposited is the sum total of the 
pheromones deposited by all the ants that traversed the edge between the state 
S and Sþ Mð Þ calculated using Equation 14, 

τS;ðSþM Þ ¼ �m
k¼1Δτk

S;ðSþM Þ (14) 

where m is the total number of ants that traversed the edge between state S and 
state Sþ Mð Þ. The probability of selecting an edge is given by Equation 15, 
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PS;ðSþM Þ ¼
ðτS;ðSþM ÞÞ

α
ðηS;ðSþM ÞÞ

β

�all edgesðτS;ðSþM ÞÞ
α
ðηS;ðSþM ÞÞ

β (15) 

where ηS; SþMð Þ is calculated using Equation 16 as follows: 

ηS;ðSþM Þ ¼
1

FðSþ M Þ
(16) 

The roulette wheel technique is used for selecting the edge after the prob
ability of each edge is computed. In the original ACO algorithm proposed by 
Dorigo Dorigo (1991), the value of α and β are set to 1 and 5, respectively. 
Through experimental analysis, it was found that the values of α and β of 1 and 
5 did not affect the performance of the ACO algorithm when it comes to 
solving the Rubik’s cube. Since the values of α and β do not affect the 
performance, they are set to 1.

Assumptions
Some assumptions are made before the algorithm begins its execution. If there 
are n ants that need to search the Rubik’s cube search tree, then each ant will 
start traversing the depth of the tree one after the other. The ants follow the 
pheromone trail left by the previous ants. The ants select an edge based on the 
probability which is determined by the pheromone values left by the ants that 
traversed the tree before the current ant. For the first ant that is about to 
traverse the tree, no ant has traversed the tree before it and the pheromone 
trail is 0.

The probability becomes undefined when inserting 0 in Equation 15. To 
prevent this, an assumption is made that an ant has traversed the entire tree of 
possibilities for the Rubik’s cube and has deposited a pheromone value of 
0.000001 at every branch of the tree. This value is small but not 0. It ensures 
that the probability value does not become undefined. This is done for the 
proper implementation of the algorithm.

Equation 13 is used to determine the amount of pheromones to be depos
ited on an edge between the state S and Sþ Mð Þ traversed by an ant k. If the 
state Sþ Mð Þ is solved, then the fitness value of the solved state is 0. If the 
fitness value of the state Sþ Mð Þ is 0, then from Equation 13, the amount of 
pheromones to be deposited becomes undefined.

To prevent this, when the cube is solved the amount of pheromones to be 
deposited is set to a value of 9,999,999. This is done for proper implementation 
of the algorithm and to avoid division by zero errors.

Pheromone Dictionary
In ACO, a pheromone matrix, similar to the adjacency matrix of a graph, is 
used to represent the amount of pheromone between the nodes of the graph. 
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For solving the Rubik’s cube a pheromone dictionary is used instead of 
a pheromone matrix. The pheromone values for an edge will be stored in 
the pheromone dictionary. The keys represent the state of the Rubik’s cube, 
and the value will be a list of key-value pairs that show the pheromone value at 
each edge from the current state.

Depth Traversed and Regrouping
Since the ants will try to find the solution to the Rubik’s cube by searching each 
depth of the tree, there should be some way to ensure that they do not get 
scattered in the search space. A regrouping strategy regroups the ants to 
a common node if the following conditions are satisfied.

(1) An ant has found a state whose fitness is less than the global minimum. 
Then all the ants will regroup in this new state.

(2) All ants have searched till a certain depth, which is equal to the global 
minimum value, and if no ant has found a state whose fitness is less than 
the global minimum, then they will regroup from the starting state and 
try again.

When the ants regroup back to the starting state when a new global minimum 
value could not be found, the pheromone value of all the edges of the states 
that were found after the starting state will be set back to 0.000001. All the new 
state entries in the pheromone dictionary which were found after the starting 
state will be removed. This ensures that the ants can try again and won’t get 
lost in the search space due to pheromones left behind during the previous 
iteration.

Number of Function Evaluations

In ACO, the move to be applied to the cube is determined by assigning 
a probability value to each of the eighteen moves and using the roulette 
wheel technique to select one of the eighteen moves.

The probability value of a move is determined using Equation 15, for 
which four values are needed. The first is the total amount of pheromones 
deposited on the edge, which is the sum of the pheromones deposited by the 
ants that traversed that edge. The second value is the fitness of the edge, 
which is the fitness value of the state obtained when that move is applied to 
the cube. The third value is the fitness of the adjacent edges. For example, the 
edges adjacent to the edge R, are the moves that can be applied to the cube 
after applying the move R. An edge has eighteen adjacent edges since 
eighteen moves can be applied from any cube position. The fourth value is 
the total amount of pheromones deposited by the ants that traversed those 
adjacent edges.
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The evaluation function (Kociemba’s algorithm) is first called to calculate 
the fitness value of the current edge. Then it called to calculate the fitness value 
of the eighteen adjacent edges. To calculate the probability of a single move the 
evaluation function is called a total of nineteen times.

The probability value is computed for all eighteen moves that can be applied 
from the current cube state. The Kociemba’s algorithm is called a total of 19�
18 ¼ 342 times. This is done by all P ants for each iteration N. As explained in 
Section 1.5 the Kociemba’s algorithm is called n times for a single cube state. 
Therefore ACO calls Kociemba’s algorithm 342� n� N � P ¼ 342nNP 
times.

Observations

For the experimental analysis of PSO (Section 3.3), the number of particles is 
50 and the number of iterations is 10,000. This is to ensure that the cube gets 
solved by covering a large number of states with a large number of particles 
and also to ensure that the particles have time to cover a large number of states 
with a large number of iterations. The ACO takes more time to go through one 
iteration with 50 ants compared to one iteration with 50 particles in PSO. 
Therefore, the number of ants is reduced to 25 and the number of iterations is 
reduced to 100.

If n, the number of times Kociemba’s algorithm gets called for a cube state, 
is set to a value of 3, ACO takes a very long time to find the solution. A single 
iteration with 25 ants takes at least 1 hour to complete for 5 move scrambles 
and more than 5 hours for 15 move scrambles. This is because when n has the 
value 3 Kociemba’s algorithm gets called 342� 3� N � P ¼ 1026NP times. 
Therefore, n is set to a value of 1 only for ACO to do its analysis.

The columns of Table 3 are the same as that of Table 1. For the scramble 
length of 15 moves on its 4th attempt, its row has the value TLE – Time Limit 
Exceeded. This is because ACO takes a long time to find the solution. After 12  
hours, it completed only 8 iterations and the fitness obtained was around 20. 
From this, it became clear that ACO would take days to solve the cube and the 
execution was stopped since there is no point in running the ACO algorithm 
for days to solve the cube.

Similarly, the analysis for the scrambles of lengths 20, 25, and 30 moves 
using ACO is not done. For these scrambles, the ACO algorithm took around 
15 hours to complete 25 iterations. From this, it became clear that the ACO 
algorithm would take days to complete the execution for scrambles of length 
greater than 20 moves.

From this table, the ACO algorithm solves the Rubik’s cube with an average 
of 6 to 18 moves. The average number of iterations it takes to solve the cube is 
around 7 to 18 iterations. The evaluation function is called on average 63,300 
to 154,000 times. The ACO is only suitable for solving the Rubik’s cube when 
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the scramble length is less than 15 moves, and when ACO is used for solving 
the cube, the Kociemba’s algorithm must be called only once for the cube state. 
Increasing the number of times the cube state is to be evaluated by Kociemba’s 
algorithm affects the performance of the ACO.

Figure 3a shows how one of the ants finds the next minimum fitness in the 
current iteration and all the ants will regroup to the state that gave the 
minimum fitness in the next iteration. This continues for all the iterations 
and the fitness will decrease after each iteration. Figure 3b shows how the ants 
regroup to the point where the minimum fitness was found if the new mini
mum fitness could not be found after a certain number of iterations. Here the 
ants regroup to the state that gave the global minimum fitness after 4 iterations 
and then regroup again after 4 iterations. In the worst case, the ACO would 
not be able to solve the cube within the specified number of iterations or 
within a specified time limit.

Krill Herd Optimization

Krill herd optimization (KHO) is a swarm intelligence algorithm that simulates 
the herding behavior of krill individuals to solve optimization problems 
(Gandomi and Alavi 2012). To solve the Rubik’s cube a variation of KHO called 
discrete krill herd optimization algorithm (DKHO) is used that solves problems 
in the discrete search domain (Sur and Shukla 2014). The original DKHO 
proposed is used for optimizing graph-based network routes. Optimizations 
are made to the original DKHO algorithm for it to solve the Rubik’s cube.

Krill Herd Optimization for Solving the Rubik’s Cube

The DKHO algorithm for solving the Rubik’s cube has four stages.

Figure 3. Iteration vs Fitness graph of ACO.
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Move Selection
In the move selection stage, the krills must decide which move they must apply 
to the cube, from the current state to reach the next state. The krills select the 
move based on two methods. One is the greedy move selection method and the 
other is the probability move selection method.

In the greedy move selection method, the krill will select the move that gives 
a fitness value that is less than the fitness of the current state. This move 
selection is the same as the one used by the greedy tree search algorithm 
explained in Section 4.1.

In probability move selection, each krill will assign probability values for 
each move and, the roulette wheel technique is used for selecting the move. 
This is similar to the move selection method used by the ACO algorithm 
(Section 5.1). Since there is no concept of pheromone trail like in the ACO 
algorithm, the probability is calculated using Equation 17 as follows: 

PS;ðSþM Þ ¼
ðηS;ðSþM ÞÞ

�all edgesðηS;ðSþM ÞÞ
(17) 

where ηS; SþMð Þ is calculated using Equation 16 (Section 5.1).
Selecting a move by computing its probability is done when the greedy 

method cannot find a move whose fitness value is less than the fitness value of 
the current state.

When the cube is solved, its fitness value is 0. Therefore ηS; SþMð Þ becomes 
1=0 ¼ Undefined. To prevent division by zero error, when the fitness of the 
cube is 0, ηS; SþMð Þ is set to a value of 9,999,999.

Killing of Unfit Krills
This stage occurs after all the krills have selected a move to apply to the cube. 
All the unfit krills are killed in this stage. A krill is said to be unfit if its fitness 
value is greater than a threshold value. The threshold value is calculated using 
Equation 18 as follows: 

threshold ¼ 1:5� globalMinimum (18) 

where the globalMinimum is the global minimum fitness value of the current 
iteration. The threshold value is 50% greater than the global minimum value. 
If the range of values that are said to be fit is too small then there is a chance 
that many of the krills will be killed off, and only one krill will survive. This 
can cause problems in the reproduction stage as there would not be enough 
krill to do reproduction to bring the population back to normal. If the range 
of values that are said to be fit is too high then no krill will get killed, and this 
can cause many of the krills to wander around in the search space without 
finding the solution, which can slow down the time needed to find the solved 
state.
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Reproduction
After the killing stage, the remaining krills will do reproduction till the 
population is back to normal. For the remaining krills to do reproduction, 
they need to have some sort of genetic information that they can pass onto 
their offsprings. In the context of the Rubik’s cube, the genetic information is 
the move sequence that the krill has applied to the cube. The children are 
produced by cutting the move sequence of the parents at a random point and 
swapping the tail of both the move sequences.

Mutation
Mutation happens after the reproduction stage and mutation is done to the 
offsprings that are not fit, to improve their fitness. The mutation is done by 
taking the move sequence of the unfit krill and replacing a few random moves 
in the move sequence with randomly selected moves from the set MHTM. For 
example, if an unfit krill has the move sequence L, R, D, U, F, B2, then the 
mutation is done by taking a few random moves in the sequence, for example, 
R, U, and F, and replacing them with randomly selected moves from the set 
MHTM. If the randomly selected moves from the set MHTM are F, B, and R2, 
then the new sequence becomes L, F, D, B, R2, B2.

Number of Function Evaluations

The number of times the evaluation function (Kociemba’s algorithm) gets 
called varies for DKHO, unlike PSO, greedy, and ACO. The number of times 
the Kociemba’s algorithm gets called for PSO, greedy, and ACO are nNP, 
18nN, and 342nNP, respectively. The number of times Kociemba’s algorithm 
gets called can vary according to the scramble length, and it also depends on 
whether or not the DKHO went through each of its different stages – move 
selection, killing of unfit krills, reproduction, and mutation stage.

In the move selection stage, the krills must decide which move to apply to 
the cube. This is decided by using one of the two methods – the greedy method 
and the probability-based method. In the greedy method, the krills will select 
the move that takes the cube to the state whose fitness is less than the fitness of 
the current state. If the krill cannot find such a move, then the krill will assign 
a probability value to each of the moves and use a roulette wheel to decide 
which move is to be selected. The krills always uses the greedy move selection 
first. If the greedy method cannot find a suitable move then it uses the 
probability-based move selection.

In the greedy method, the krill needs to find the fitness of the eighteen states 
that are reachable from the current state. Therefore it needs to call Kociemba’s 
algorithm eighteen times to determine the fitness of those eighteen states. 
Since Kociemba’s algorithm gets called n times for a single state, the number of 
times it gets called in greedy move selection is 18n. This is done by P krills for 
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each iteration n. Therefore, the total number of times Kociemba’s gets called 
is 18nNP.

For probability-based move selection, to calculate the probability of a move, 
the krill needs to find the fitness of the state that can be reached from the 
current state and also the fitness of the states that can be reached from the next 
state. For example, to determine the probability value of the move R, the krill 
needs to find the fitness of the state reached by applying the move R to the 
cube, which is Sþ R. It then needs to find the fitness of the eighteen states that 
can be reached from the state Sþ R. Therefore, Kociemba’s algorithm gets 
called a total of 19 times for a single move. Since eighteen moves can be 
applied to the cube, Kociemba’s algorithm gets called 19� 18 ¼ 342 times. 
Kociemba’s algorithm gets called n times for a single cube state. Therefore it is 
called a total of 342n times when probability move selection is used. This is 
done by P krills for each iteration N. Here, the total number of times 
Kociemba’s algorithm gets called is 342nNP.

In the killing stage, krills having a fitness value greater than the threshold 
value are killed since they are unfit. The fitness value of the krills is computed 
when the move is applied to the cube in the move selection stage, and it would 
not be computed again in the killing stage. The Kociemba’s algorithm do not 
get called in the killing stage.

In the reproduction stage, the remaining krills will do reproduction to bring 
the population back to normal. In the worst-case, out of the P krills, only two 
krills are left. If only one krill is left then reproduction would not happen with 
only a single krill. The two krills reproduce till the population is back to P. In 
this stage, Kociemba’s algorithm is used to evaluate the fitness of the new krills. 
When only two krills are left then they will do reproduction till they get P � 2 
offspring. So the Kociemba’s algorithm gets called at most P � 2 times in the 
reproduction stage. Kociemba’s algorithm is called n times for a cube state, 
which brings the total number of function calls to nðP � 2Þ. This is done for 
each iteration N. Therefore, the total number of times Kociemba’s algorithm 
gets called is NnðP � 2Þ.

In the mutation stage, the krills born in the reproduction stage that are 
unfit, whose fitness is less than the threshold value, are mutated to improve 
their fitness. In the worst case, all the P � 2 krills born in the reproduction 
stage are unfit. So all the P � 2 krills have to be mutated to improve their 
fitness. In this stage, Kociemba’s algorithm gets called a total of P � 2 times. 
Kociemba’s is called a total of n times for a single cube state which brings the 
total number of function evaluations to nðP � 2Þ. This is done for each 
iteration N. Therefore, the total number of times Kociemba’s algorithm gets 
called is NnðP � 2Þ.

In the best case, the krills undergo only the move selection stage and do not 
undergo killing, reproduction, and mutation stages. In the move selection 
stage, all the krills use only the greedy method for selecting the move and 
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not the probability method. When this happens, the fitness decrease after each 
iteration for all the krills. In the best-case scenario, since only the greedy 
method is used for selecting the move and since it does not undergo killing, 
reproduction, and mutation stages, the number of times the evaluation func
tion gets called is 18nNP.

In the worst-case, the krills go through all four stages and Kociemba’s 
algorithm is called during each stage. In the move selection stage, in the worst- 
case, the krills first uses the greedy method for selecting the move but do not 
find a move that gives a fitness value less than the fitness value of the current 
state. When this happens, it uses the probability method for selecting a move. 
When it uses both methods the number of times Kociemba’s algorithm gets 
called is 18nNP þ 342nNP, which is the sum of the total of the number of 
times it gets called for the greedy method and the probability method.

In the worst case, the total number of times Kociemba’s algorithm gets 
called is the sum of the total of the times it gets called during each stage of the 
algorithm. This is given by Equation 19 which can be calculated using as 
follows: 

¼ 18nNP þ 342nNPþ 0þ nNðP � 2Þ þ nNðP � 2Þ

¼ 360nNP þ nNPþ nNP � 2nN � 2nN 

¼ 362nNP � 4nN 

¼ nNð362P � 4Þ (19) 

For DKHO, the number of times Kociemba’s algorithm gets called is 18nNP 
times for the best case and nNð362P � 4Þ times for the worst case.

Observations

The DKHO algorithm for solving the Rubik’s cube takes more time to go 
through one iteration with 50 krills compared to 50 particles in PSO. 
Therefore, the number of krills is reduced to 25 and the number of iterations 
is reduced to 100.

The columns for Table 4 is the same as that of Table 1 and Table 3. For some 
scrambles, their rows have the value TLE – Time Limit Exceeded. It is because 
DKHO takes a long time to find the solution, just like the ACO. So the 
execution was stopped for those scrambles. Similarly, the analysis for scram
bles of lengths 25 and 30 moves was not done, because the algorithm took 
an hour to complete one iteration.

The performance of DKHO depends on the scramble length and the 
number of times Kociemba’s algorithm gets called to evaluate the cube state, 
which is n.
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When the scramble length is less than 10 moves, the krills use the greedy 
method to select the move. This is because there is a high chance of finding 
a move that takes the cube to a state whose fitness value is less than the fitness 
of the current state. The cube is nearer to the solved state when the scramble 
length is less than 10 moves. When the greedy method is used, the number of 
times Kociemba’s algorithm gets called is 18nNP. If the value of n is 3 then 
Kociemba’s algorithm gets called 18� 3� N � P ¼ 54NP times. Therefore, 
the DKHO can solve the cube when the scramble length is less than 10 moves 
and when n has a value of 3.

For scramble length greater than 10 moves, the krills use the probability 
method to select a move. This is because there is a low chance of finding 
a move that takes the cube to a state which has a fitness value less than the 
fitness of the current state. This is because the cube is farther away from the 

Table 3. Observations for ant colony optimization algorithm.
Length % Actual Obtained First Last Average NFE Total

5 5/5 14 6 5 6 0.04 51300 25
5 5 4 5 0.04 42750 25
5 8 7 8 0.04 68400 25
5 5 4 5 0.04 42750 25

12 5 12 13 0.04 111150 25
10 5/5 14 10 9 10 0.04 85500 25

10 10 9 10 0.04 85500 25
10 10 9 10 0.04 85500 25
10 10 9 10 0.04 85500 25
18 10 9 10 0.04 85500 25

15 4/5 19 19 18 19 0.04 162450 25
19 17 16 17 0.04 145350 25
16 16 15 16 0.04 136800 25

TLE TLE TLE TLE TLE TLE TLE
20 20 19 20 0.04 171000 25

Table 4. Observations for discrete krill herd optimization algorithm.
Length % Actual Obtained First Last Average NFE Total

5 5/5 5 5 4 4 0 6750 25
5 5 4 4 0 6750 25

10 10 9 9 0 13500 25
5 5 4 4 0 6750 25

10 6 5 5 0 8100 25
10 4/5 TLE TLE TLE TLE TLE TLE TLE

10 10 9 9 0 13500 25
11 11 10 10 0 14850 25
10 10 9 9 0 13500 25
12 12 11 11 0 16200 25

15 2/5 TLE TLE TLE TLE TLE TLE TLE
20 18 17 17 0 30468 25

TLE TLE TLE TLE TLE TLE TLE
TLE TLE TLE TLE TLE TLE TLE
19 18 17 17 0 24300 25

20 1/5 TLE TLE TLE TLE TLE TLE TLE
TLE TLE TLE TLE TLE TLE TLE
TLE TLE TLE TLE TLE TLE TLE
TLE TLE TLE TLE TLE TLE TLE
19 19 18 18 0 25650 25

e2138129-3396 J. JEEVAN AND M. S. NAIR



solved state. When the probability method is used, the number of times 
Kociemba’s algorithm gets called is 18nNPþ 342nNP. If the value of n is 3 
then Kociemba’s algorithm gets called ð18� 3� N � PÞ þ ð342� 3� N �
PÞ ¼ 1080NP times. Due to this reason, the DKHO takes a long time to find 
the solved state for scramble length greater than 10 moves. For the attempts 
when the DKHO could solve the cube when scramble length is greater than 10 
moves (for scramble length of 20 moves on its fifth attempt), the greedy 
method is used rather than the probability-based move selection.

For DKHO, the value of n should be set to 1 so that, it can solve the cube 
when the scramble length is greater than 15 moves in a reasonable amount of 
time.

From this table, the DKHO algorithm solves the Rubik’s cube with an 
average of 6 to 18 moves. The average number of iterations it takes to solve 
the cube is around 5 to 17 iterations. The evaluation function is called on 
average 8400 to 27,400 times.

In Figure 4a, each krill finds the next minimum fitness after each iteration. 
The fitness of every krill will decrease after each iteration and the cube gets 
solved after a certain number of iterations. These kinds of graphs are obtained 
for scrambles less than 10 moves long and the type of edge selection method 
used by the krill is the greedy approach. Since the greedy approach is used each 
krill will have the same fitness value.

In Figure 4b, the krills spread out to find the solved state. It happens for 
scrambles of length 10 moves and above. It happens when the greedy method 
does not work because the fitness value at the next depth will be the same or 
will be greater than the current fitness. So the krills will use the probability 
method to select a move. This can cause the krills to select different moves 
causing them to follow different paths rather than the same path. In the worst 

Figure 4. Iteration vs Fitness graph of KHO.
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case, the DKHO cannot solve the cube within the specified number of itera
tions or within a specified time limit.

Experimental Analysis

Experimental Setup

To find out which of the above-described algorithms will give the optimum 
solution in the optimum amount of time, each algorithm is given scram
bles of three difficulty levels. One is an easy scramble which is five moves 
long, the next is a medium scramble which is fifteen moves long, and the 
last one is a hard scramble which is twenty-five moves long. Each algo
rithm will be given three different scrambles for each difficulty level. The 
scrambles used are shown in Table 5. These scrambles have been generated 
randomly.7

The proposed algorithms are written in Python8 and executed using 
a Lenovo G50 laptop with an Intel(R) Core(TM) i3-5005 U CPU 2.00 GHz 
processor with 4.00 GB RAM running Microsoft Windows 10.

Table 6 has the observations for all the algorithms for the scrambles men
tioned in Table 5 and has eleven columns. Length shows the length of the 
scramble. Algorithm shows the algorithms used. % shows the attempts that 
were successful out of the three tries. Actual shows the actual solution length 
predicted by the Kociemba’s algorithm. Obtained shows the solution length 
given by the corresponding algorithm. MiniFit shows the minimum fitness 
reached by the corresponding algorithm. First Time (s), shows the amount of 
time, in seconds, it took an agent to find the first solution. Total Time (s), 
shows the amount of time it took the algorithm to complete execution. Avg. 
Time (s) shows the average time it takes between the agents to find the 
solution. NFE shows the total number of times the evaluation function was 
called. Agents shows the total number of agents that were able to reach the 
solved state.

Six algorithms were used to do the comparison study. PSO25=100, PSO with 
25 particles and 100 iterations, PSO50=10000, PSO with 50 particles and 10,000 
iterations, Greedy100, greedy algorithm with only 100 iterations, Greedy10000, 

Table 5. Scrambles used for comparative analysis of the algorithms.
Length Scramble

5 F2 L D2 B2 F
B U’ R2 B F’
R2 B2 D F R2

15 U D2 F’ U2 R’ B2 L D’ F2 U2 B2 R’ F2 U L’
D B L U B L2 U2 F’ R’ L’ D2 R2 F U2 L’
B2 L2 U B F2 D’ U’ R2 D B’ U F’ R’ B’ L

25 L2 D2 U’ L2 F’ R’ U’ F’ R2 L U2 R2 F’ U’ R2 F2 D B U’ D2 B’ L F U’ R’
F R L D B’ F’ D L R D U2 L D’ R F U’ D’ L F’ D U R D L’ F2
R U2 L’ D B’ R F L’ B2 D2 F’ L2 B’ U L2 B R D’ U’ R2 B2 D L2 F U
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Table 6. Observations obtained from the comparative analysis of PSO, greedy tree search, ACO, 
and DKHO.

Length Algorithm % Actual Obtained MinFit
First Time 

(s)
Total Time 

(s)
Avg. Time 

(s) NFE Agents

5 PSO25=100 1/ 
3

13 NA 10 NA 210.81 NA 2500 0

5 12.87 0 121.45 127.02 0.69 2500 8
10 NA 1 NA 88.52 NA 2500 0

PSO50=10000 3/ 
3

13 36.3 0 826.06 1522.99 13.93 90650 50

5 15.3 0 1417.65 1817.12 7.98 53000 50
10 19.1 0 2361.01 2914.17 11.06 153850 50

Greedy100 3/ 
3

12 5 0 13.11 13.11 0 198 1

12 5 0 4.34 4.34 0 90 1
10 5 0 1.44 1.44 0 90 1

Greedy10000 3/ 
3

13 6 0 49.69 49.69 0 612 1

5 5 0 4.47 4.47 0 90 1
10 5 0 1.41 1.41 0 90 1

ACO25=100 3/ 
3

12 5 0 2044.13 2367.53 12.93 68400 25

13 12 0 1931.86 2021.56 3.58 102600 25
10 5 0 548.99 643.58 3.78 42750 25

DKHO25=100 3/ 
3

13 15 0 125.60 125.60 0 2502 1

5 5 0 351.10 386.41 1.41 9797 25
10 6 0 47.73 57.37 0.38 2700 25

15 PSO25=100 0/ 
3

19 NA 16 NA 125.20 NA 2500 0

20 NA 11 NA 133.51 NA 2500 0
19 NA 4 NA 80.61 NA 2500 0

PSO50=10000 3/ 
3

19 51.38 0 1783.47 2232.40 8.97 51200 50

20 54.16 0 1384.66 2041.27 13.13 84300 50
19 58.16 0 9571.63 10180.29 12.17 317500 50

Greedy100 3/ 
3

19 22 0 16.84 16.84 0 486 1

20 20 0 10.57 10.57 0 360 1
19 21 0 9.53 9.53 0 378 1

Greedy10000 3/ 
3

19 22 0 20.44 20.44 0 540 1

20 20 0 9.03 9.03 0 360 1
19 21 0 9.10 9.10 0 378 1

ACO25=100 2/ 
3

- - - - - - - -

20 20 0 5757.51 5887.35 5.19 171000 25
19 31 0 18975.73 19080.48 4.19 265050 25

DKHO25=100 3/ 
3

19 21 0 8149.67 10148.73 79.96 48262 25

20 20 0 749.97 767.21 0.68 9000 25
19 20 0 3555.36 3570.41 0.60 35420 25

25 PSO25=100 0/ 
3

20 NA 5 NA 503.82 NA 2500 0

19 NA 14 NA 550.14 NA 2500 0
20 NA 16 NA 1727.86 NA 2500 0

PSO50=10000 3/ 
3

20 58.2 0 1144.28 2704.68 31.20 42450 50

19 75.14 0 17288.80 17840.39 11.03 305950 50
20 61.18 0 1079.74 2673.65 31.87 41250 50

Greedy100 2/ 
3

20 20 0 15.32 15.32 0 360 1

19 NA 16 NA 93.25 NA 1800 0
20 20 0 26.83 26.83 0 360 1

(Continued)
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greedy algorithm with 10,000 iterations, ACO25=100, ACO with 25 particles and 
100 iterations, DKHO25=100, DKHO with 25 particles and 100 iterations. The 
parameters of PSO and greedy were changed to see how they would perform 
with a fewer number of iterations and particles.

For the comparative analysis, the value of n, the number of times 
Kociemba’s algorithm gets called to evaluate a cube state, is set to 1. If n has 
the value 3, PSO and the greedy algorithm would be the only algorithms that 
could solve the cube in a reasonable amount of time. As explained in 
Section 5.3 and Section 6.3, the time taken by ACO and DKHO to solve the 
cube depends on the value of n. Therefore, to do the comparative study, the 
value of n is 1 for all algorithms.

For the column Actual different fitness values are obtained for the same 
scramble. For scramble length of 5 in the first attempt for both the PSO’s the 
actual value is 13 and for Greedy10000 and DKHO it is also 13. For Greedy100 it 
is 12, and for ACO it is 12. This is because Kociemba sometimes gives two 
different fitness values for the same cube state as explained in Section 1.5. This 
won’t matter much for the analysis.

For ACO25=100 for scramble length of 15 moves the first row is blank. This is 
because the ACO algorithm took around 14 hours to reach the 25 iteration. 
Due to a large amount of time it would take the ACO to complete its 
execution, the analysis was stopped after 25 iterations. For scramble length 
of 25 moves ACO25=100 was not included in the comparative analysis as ACO 
takes days to finish its execution when the scramble length is greater than 20 
moves.

Table 7 has ten columns. Length shows the length of the scrambles applied 
to the cube. Algorithm shows the algorithm used for each scramble length. Avg. 
Act shows the average solution length predicted by Kociemba’s algorithm for 
each algorithm. SD Act shows the standard deviation of the solution length 
predicted by Kociemba’s algorithm for each algorithm. Avg. Obt shows the 
average of the solution lengths obtained by each of the algorithms. SD Obt 
shows the standard deviation of the solution length obtained by each of the 
algorithms. Avg. Time shows the average time it takes to solve the cube. SD 

Table 6. (Continued).

Length Algorithm % Actual Obtained MinFit
First Time 

(s)
Total Time 

(s)
Avg. Time 

(s) NFE Agents

Greedy10000 3/ 
3

20 20 0 9.79 9.79 0 360 1

19 22 0 2596.84 2596.84 0 9000 1
10 20 0 46.57 46.57 0 396 1

DKHO25=100 3/ 
3

20 27 0 16591.94 16601.94 0.39 66982 25

19 29 0 10682.42 10682.42 0 80243 1
20 21 0 21088.68 23019.06 77.21 40614 25
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Time shows the standard deviation of the time it takes to solve the cube. Avg. 
NFE shows the average number of times Kociemba’s algorithm gets called. SD 
NFE shows the standard deviation of the number of function evaluations.

Observations

PSO25=100 is not successful in solving the cube for 15 and 25 move scrambles. It 
is successful only once when to comes to solving the 5 move scramble. 
PSO25=100 takes around 113 seconds to 927 seconds to complete its execution. 
Therefore PSO needs more iterations and particles to find the solution.

PSO50=10000 solves the cube in 24 to 65 moves on average and finds the 
solution within 2100 to 7740 seconds. It is successful in all its attempts.

Greedy100 solves the cube in 5 to 21 moves on average and finds the solution 
within 6 to 45 seconds. It sometimes fails when the scramble length is greater 
than 15 moves. Therefore, just like the PSO, the greedy algorithm needs more 
iterations to find the solution.

Greedy10000 solves the cube in 5 to 21 moves on average and finds the solution 
within 19 to 884 seconds. It is successful in all its attempts. The difference in the 
time taken by Greedy10000 and Greedy100, even though both are the same algo
rithms with the only difference being the number of iterations, is due to the 
ambiguity in the fitness value of the cube state which happens due to 
Kociemba’s algorithm returning different heuristic distance for the same cube 
state.

ACO25=100 solves the cube in 7 to 25 moves on average and finds the solution 
within 1677 to 12,366 seconds. The ACO algorithm, compared to other algo
rithms is suitable for solving the Rubik’s cube only when the scramble length is 
less than 10 moves.

Table 7. Mean and standard deviation of the observations obtained from the comparative analysis 
of the algorithms.

Length Algorithm Avg. Act SD Act Avg. Obt SD Obt Avg. Time SD Time Avg. NFE SD. NFE

5 PSO25=100 9.33 4.04 NA NA 142.11 62.52 2500 0
PSO50=10000 9.33 4.04 23.56 11.18 2084.76 733.19 99166.66 50961.56
Greedy100 11.33 1.15 5 0 6.29 6.07 126 62.35
Greedy10000 9.33 4.04 5.33 0.57 18.52 27.03 264 301.37
ACO25=100 11.66 1.52 7.33 4.04 1677.55 912.00 71250 30026.61
DKHO25=100 9.33 4.04 8.66 5.50 189.79 173.65 4999.66 4155.79

15 PSO25=100 19.33 0.57 NA NA 113.10 28.44 2500 0
PSO50=10000 19.33 0.57 54.56 3.40 4817.98 4644.87 151000 145139.89
Greedy100 19.33 0.57 21 1 12.31 3.95 408 68.14
Greedy10000 19.33 0.57 21 1 12.85 6.56 426 99.13
ACO25=100 19.33 0.57 25.5 7.77 12366.62 9346.69 218025 66503.39
DKHO25=100 19.33 0.57 20.33 0.57 4828.78 4815.68 30894 20018.48

25 PSO25=100 19.66 0.57 NA NA 927.27 693.71 2500 0
PSO50=10000 19.66 0.57 64.84 9.04 7739.57 8747.57 12988.33 152479.38
Greedy100 19.66 0.57 20 0 45.13 42.06 840 831.38
Greedy10000 19.66 0.57 20.66 1.15 884.4 1483.13 3252 4977.94
DKHO25=100 19.66 0.57 25.66 4.16 16767.80 6169.99 62613 20172.51
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For scrambles greater than 10 moves, ACO takes a large amount of time to 
find the solution. For the scramble length of 25 moves the ACO algorithm took 
around 16 hours to complete 25 iterations, and the fitness it attained was 
around 15 to 17. Due to this reason, the ACO is not effective when it comes 
to solving the cube when the scramble length is greater than 10 moves. When 
ACO solves the cube for small scrambles, the solution length provided by it is 
equal to or near to the one predicted by Kociemba’s algorithm. The number of 
iterations cannot be reduced to improve the solve time. The ACO searches for 
the solved state one depth per iteration, and since it takes a minimum of 20 
moves to solve the cube, the number of iterations must be greater than 20. 
Even if the iterations are kept around 20, it is not guaranteed that ACO will 
find the solution within 20 iterations. Therefore the iterations have to be 
greater than 20, which can increase the solve time. Therefore ACO is only 
suitable for easy scrambles of length 10 moves or less.

DKHO25=100 solves the cube in 8 to 25 moves on average and finds the solution 
within 190 to 16,767 seconds. As explained in Section 6.3 when DKHO is used to 
solve the cube the value of n, just like in ACO, should be set to 1. From Table 6 it is 
observed that the DKHO successfully solves the cube for the scramble length is 25 
moves since n is set to a value of 1. However, DKHO takes a very long time to solve 
the cube when the value of n is set to 3.

From both Table 6 and Table 7, it can be observed that the greedy algorithm is 
suitable for solving the Rubik’s cube in the shortest amount of time in the shortest 
possible move sequence. The next best algorithm is the discrete krill herd optimi
zation algorithm. DKHO outperforms PSO and ACO only when the value of n is 
set to 1. The next best algorithm after DKHO is particle swarm optimization. Even 
though PSO gives a solution of longer length compared to ACO, it is successful in 
solving scrambles of greater length compared to ACO. ACO is only suitable for 
solving the cube only when the scramble length is less than 10 moves. PSO also 
takes less time to find the solution compared to the ACO.

Number of Function Evaluations

Table 8 shows the total number of times the evaluation function is called by the 
algorithms. Table 8 has four columns. The first column shows the algorithms used 
in this study. The second column shows the general formula to calculate the total 
number of function evaluations for each algorithm. The third and fourth column 
shows the number of function evaluations when n ¼ 1 and when n ¼ 3 
respectively.

To understand how Kociemba’s algorithm affects the performance of these 
algorithms, assume that the total number of iterations (N) is 1 for all the 
algorithms, and the total number of particles, ants, and krills (P) is also 1.

A single particle of PSO in one iteration calls the Kociemba’s algorithm 1 
time when n ¼ 1 and 3 times when n ¼ 3.
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The greedy algorithm calls Kociemba’s algorithm 18 times when n ¼ 1 and 
54 times when n ¼ 3.

A single ant in ACO calls Kociemba’s algorithm 342 times when n ¼ 1 and 
1026 times when n ¼ 3.

If there is only a single krill, DKHO would not undergo the reproduction 
stage since two krills are needed to perform reproduction. Since mutation 
happens after reproduction to the newborn krills, this single krill would not 
undergo the mutation stage. Therefore, Equation 19 becomes 18nNP þ
342nNP since it only undergoes the edge selection stage.

A single krill in DKHO calls Kociemba’s algorithm 18 times for the best case and 
360 times in the worst case when n ¼ 1. When n ¼ 3, a single krill calls 
Kociemba’s algorithm 54 times in the best case and 1080 times in the worst case.

From this, it can be understood that the ACO and DKHO (in the worst 
case) call Kociemba’s algorithm more number times compared to PSO and the 
greedy algorithm. This is why the execution time of ACO and DKHO is 
affected since they spend more time evaluating the cube state.

Conclusion

This study shows that swarm intelligence algorithms are capable of solving the 
Rubik’s cube. The algorithms used for this survey are particle swarm optimi
zation, greedy tree search algorithm, ant colony optimization, and discrete 
krill herd optimization. The algorithms are optimized to solve the Rubik’s 
cube. An individual and a comparative analysis of these algorithms were 
conducted to see which algorithm solves the cube in the shortest amount of 
time using the shortest possible move sequence.

Each algorithm is given an easy scramble, a moderately difficult scramble, 
and a difficult scramble, and for each difficulty level, the algorithms had three 
attempts to solve the cube. The time and the number of moves taken by each 
algorithm are recorded. The number of iterations and particles for PSO and 
the greedy tree search is reduced to see how they would perform.

From the experimental analysis, it was observed that the greedy tree search 
algorithm solves the Rubik’s cube in the shortest amount of time using the shortest 
possible move sequence, followed by the discrete krill herd optimization algorithm, 
particle swarm optimization, and ant colony optimization. Even though the PSO 
gives a much longer solution than ACO, it does so in an optimum amount of time.

Table 8. Number of times the evaluation function is called by the swarm intelligence algorithms.
Algorithms NFE NFEðn¼1Þ NFEðn¼3Þ

Particle Swarm Optimization nNP NP 3NP
Greedy Tree Search Algorithm 18nN 18N 54N
Ant Colony Optimization 342nNP 342NP 1026NP
Discrete Krill Herd Optimization 18nNP or nNð362P � 4Þ 18NP or Nð362P � 4Þ 54NP or Nð1086P � 12Þ
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The assumption that KHO would have a fast convergence rate in solving the 
Rubik’s cube turned out to be correct since it performs better than ACO and 
PSO and is second to greedy.

In the study, the most basic versions of these algorithms are used since the 
basic versions of these algorithms were simple enough to make modifications 
and solve the Rubik’s cube. Although the latest versions of these algorithms 
give better results for other problems, there is no proof that they could achieve 
better performance for solving the Rubik’s cube. Now, it is proven that swarm 
algorithms can solve the Rubik’s cube, and the problem is open to the 
researchers to apply different swarm intelligence algorithms and their varia
tions and make modifications to see how they perform.

Improvements are possible in the evaluation function used. Several techniques 
for calculating the fitness value are mentioned in Section 1.3. Any of these methods 
could be applied to calculate the fitness or some other improved methods could be 
used. In this study, the number of moves used by Kociemba’s algorithm to solve the 
cube is the heuristic distance, but this affects the performance of ACO and DKHO 
as they take very long hours to find the solution.

Using a multi-objective function might improve the performance, where 
the objective is to minimize the number of moves needed to solve the cube and 
also the time. This work mainly focuses on minimizing the number of moves 
needed to solve the cube. While doing the experimental analysis, it became 
clear that the time required to solve the cube could also be improved.

(Katz and Tahir 2022) uses multi-objective functions to find the solution to the 
2 × 2x2 cube, otherwise known as the pocket cube, and they discuss the possibility 
of scaling it to solve the 3 × 3x3 cube. Here, the Pareto-optimal trade-off is between 
godliness and folksiness where godliness is the number of moves needed to solve 
the cube and folksiness is having fewer moves in the macro database, which is a rule 
table that specifies sequences of actions to perform in different states. Our sugges
tion is to find the Pareto-optimal trade-off between the number of moves and the 
execution time taken by the algorithm to solve the cube.

The ACO algorithm used for this study is similar to the Monte-Carlo tree search 
(MCTS) (Browne et al. 2012), where the ant trails are like roll-outs, and pher
omones are like value backpropagation. Though MCTS is commonly used in two- 
player games like chess, it could be applicable for single-player games like the 
Rubik’s cube. The branches of the Rubik’s cube could be expanded and the fitness 
value could be propagated to determine the optimal move to be applied to the cube.

Notes

1. Cube Explorer 5.14 can be download from http://kociemba.org/downloads/cube514.zip.
2. The source code for Cube Explorer 5.14 can be found at https://github.com/hkociemba/ 

CubeExplorer.
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3. Python code used for implementing Kociemba’s algorithm in this study https://github. 
com/hkociemba/RubiksCube-TwophaseSolver.

4. This summary on the working of Kociemba’s algorithm is taken from https://ruwix.com/ 
the-rubiks-cube/herbert-kociemba-optimal-cube-solver-cube-explorer/.

5. More detailed explanation on the working of the Kociemba’s algorithm can be found at 
http://kociemba.org/math/imptwophase.htm.

6. Pseudo code for Kociemba’s algorithm and other details can be found at http:// 
kociemba.org/math/twophase.htm.

7. Python Code for generating random Rubik’s cube scrambles is taken from: https:// 
github.com/BenGotts/Python-Rubiks-Cube-Scrambler.

8. The code for this research are available at https://github.com/JishnuJeevan/Swarm- 
Intelligence-Algorithms-For-The-Rubik-s-Cube-2.
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