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ABSTRACT 
 

A number of authors have studied various aspects of fixed point theory in the setting of 2-
metric and 2-Banach spaces. In this paper we prove a fixed point theorem for mappings in 
quasi-2-Banach space via an implicit relation. The results of this paper extend a host of 
previously known results for metric space in a quasi-2-Banach space. 
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1. INTRODUCTION 
 
Gahler [1] initiated the concepts of 2-metric and 2-Banach space and Iseki in [2,3], obtained 
basic results on fixed points in such spaces. These new spaces have subsequently been 
studied by several mathematicians (for example [4,5,6,7,8]). Recently [8], also proved some 
results in 2-Banach spaces. In 2006, Park [9] introduces the concepts of quasi-2-normed 
space and quasi-(2; p)-normed space. In this paper we prove a fixed point theorem for 
mappings in quasi-2-Banach space via an implicit relation.  
 
We start with some definitions before presenting main theorem.  
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Definition 1.1 [1] Let X be a real linear space of dimension greater than 1 and let ,⋅ ⋅  be a 

real valued function on X X×   satisfying the following four conditions: 
 

(2 1N ) , 0x y =  if and only if x and y are linearly dependent in X, 

(2 2N ) , ,x y y x=  for all x, y ∈ X, 

(2 3N ) , ,x y x yα α= ⋅  for every real number α;  

(2 4N ) , , ,x y z x y x z+ ≤ +  for all x, y, z ∈ X. 

 

The function ,⋅ ⋅ is called a 2-norm on X and the pair ( , , )X ⋅ ⋅ is called a linear 2-normed 

space. So a 2- norm ,x y always satisfies , ,x y x x yα+ = , for all x, y ∈ X and all scalars α. 

We cite some examples of 2-Banach spaces from the current literature (see [10], [11]). 
 

Example 1.2 Let 3
X R=  and consider the following 2-norm on X as  

 

1/ 2
2 2 2

, det ( ) ( ) ( )

i j k

x y a b c bf ce cd af ae db

d e f

 = = − + − + −
 

, 

 

where x ai bj ck= + + and y di ej fk= + + . Then  ( , , )X ⋅ ⋅  is a 2-Banach space. 

 

Example 1.3 Let X is 3
Q , where Q  is the field of rational number and consider the following 

2-norm on X as: 
 

, det

i j k

x y a b c

d e f

=� � , 

 

where x ai bj ck= + +
 
and y di ej fk= + + . Then ( , , )X ⋅ ⋅  is not a 2-Banach space. 

 
Definition 1.4 [9] Let X be a linear space. A quasi-2-normed is a real valued function on 

X X×  satisfying three conditions of Definition 2: (2 1N ), (2 2N ), (2 3N ) and the condition  

(2 4N
• ): There is a constant 1k ≥  such that , , ,x y z k x z k y z+ ≤ +  for all , ,x y z X∈ .  

 

The pair ( , , )X ⋅ ⋅  is called a quasi-2-normed space if ,⋅ ⋅  is a quasi-2-norm on X. The 

smallest possible k is called the modulus of concavity of ,⋅ ⋅ . 

 

A quasi-2-norm ,⋅ ⋅  is called a quasi-(2; p)-norm ( 0 1p< ≤ ) if , , ,
p p p

x y z x z y z+ ≤ +  for 

all , ,x y z X∈ . 
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Definition 1.5 A sequence { }nx in a quasi-2-norm space ( , , )X ⋅ ⋅  is said to be a Cauchy 

sequence if
,
lim , 0m n

m n
x x u

→∞
− = for all u in X. (Symbolically we denote ( , ) ,m n m nd x x x x u= − ) 

Definition 1.6 A sequence { }nx in a quasi-2-norm space ( , , )X ⋅ ⋅  is said to be convergent if 

there is a point x in X such that lim , 0n
n

x x y
→∞

− =  for all y in X. If { }nx  converges to X, we 

write { }nx x as n→ → ∞ . 

 

Definition 1.7 A linear quasi-2-norm space ( , , )X ⋅ ⋅  is said to be complete if every Cauchy 

sequence is convergent to an element of X.  
 
Definition 1.8 A complete quasi-2-norm space is called a quasi-2-Banach space. 
 
Definition 1.9 Let X be a quasi-2-Banach space and T be a self-mapping of X. T is said to 

be continuous at X if for every sequence { }nx  in X, { }nx x→  as n → ∞  implies 

( ) ( ){ }nT x T x→  as n → ∞ . 

 

We also need the following notion from [12]. 
 

Definition 1.10 The set of all upper semi-continuous functions with 5 variables 
5

:f R R
+

→

satisfying the properties: 
   

(a). f  is non decreasing with respect to each variable,  

(b). ( , , , , ) ,f t t t t t t t R+≤ ∈ , 

 

will be noted 
5

F  and every such function will be called a 
5

F -function. 

 

Some examples of 
5

F -function are as follows: 

 

      1.  
1 2 3 4 5 1 2 3 4 5

( , , , , ) = max{ , , , , }f t t t t t t t t t t , 

2.  
1

2

1 2 3 4 5 1 2 2 3 3 4 4 5 5 1
( , , , , ) = [max{ , , , , }]f t t t t t t t t t t t t t t t ,   

3.  
1

1 2 3 4 5 1 2 3 4 5
( , , , , ) = [max{ , , , , }] , 0pp p p p p

f t t t t t t t t t t p > , 

4.  
1

1 2 3 4 5 1 1 2 2 3 3 4 4 5 5
( , , , , ) = ( ) pp p p p p

f t t t t t a t a t a t a t a t+ + + + ,  

         where 0p >  and 

5

1

0 , 1
i i

i

a a
=

≤ ≤∑ , 

      5.  1 2 3

1 2 3 4 5
( , , , , ) =

3

t t t
f t t t t t

+ +
 or 1 2

1 2 3 4 5
( , , , , )

2

t t
f t t t t t

+
=  etc. 

 

2. MATERIALS AND METHODS  
 
We state the following lemma which we will use for the proof of the main theorem.  
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Lemma 2.1 Let ( , , )X ⋅ ⋅  be a quasi-2-normed space with the coefficients 1k ≥  and { }nx  is 

a sequence in X. If 1
1

( , ) , 0 1, 0,
n

n n k
d x x c l c l+ ≤ ≤ < ≤ ≥  n N∀ ∈ , then { }nx  is a Cauchy 

sequence.  
 
Proof:  
 

1 1

2 2
1 1 2 2

2 3
1 1 2 2 3

2 1
3 2 2 1

1
1

2 1 3 2

, , , )

, , , ...

, , , ...

, ,

,

n n m n n n n m

n n n n n n m

n n n n n n

m m
n m n m n m n m

m
n m n m

n n n

x x u k x x u k x x u

k x x u k x x u k x x u

k x x u k x x u k x x u

k x x u k x x u

k x x u

kc l k c l k c l

+ + + +

+ + + + +

+ + + + +

− −
+ − + − + − + −

−
+ − +

+ +

− ≤ − + −

≤ − + − + − ≤

≤ − + − + − +

+ − + − +

+ −

≤ + +
1 2 1

1 ( ) 1 ( )

1 1 1

...

.
m m n

m n m m n m

kc kc kc ln n

kc kc kc

k c l k c l

kc l kc l

− + − + −

− −

− − −

+ + +

≤ ≤ <

 

 

And so lim , 0n n m
n

x x u+
→∞

− = . It implies that { }nx  is a Cauchy sequence in X. This completes 

the proof of the lemma.  
 

Theorem 2.2 Let X be a quasi-2-Banach space with the coefficients 1k ≥  and 
5f ∈ F . Let 

:T X X→ satisfying  

 

  
2

( ) ( ), ( , , , , , , , , , )T x T y u cf x y u x Tx u y Ty u y T x u y Tx u− ≤ − − − − − ,  (1) 

 

for each , ,x y u X∈ and 10 1
k

c≤ < ≤ . Then T has a unique fixed point z in X such that 

0x X∈  gives 0lim ( )
n

n
T x z

→∞
= . 

 

Proof. Let 
0

x  be an arbitrary point in X. Define the sequences{ }nx  as follows:  

 

1 0
=

n

n n
x Tx T x− = , 1, 2,...n = . 

 

Take u ∈ X. Denote  
 

1
( ) , , = 0,1,2,...n n nd u x x u n+= − . 

 
By the inequality (1) we get: 
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1
1 0 0

1 1 1
0 0 0 0 0 0

1
0 0 0 0

1 1

( ) , ,

( , , , , , ,

, , , )

[ ( ), ( ), ( ), ( ),0].

n n
n n n

n n n n n n

n n n n

n n n n

d u x x u T x T x u

cf T x T x u T x T x u T x T x u

T x T x u T x T x u

cf d u d u d u d u

+
+

− − +

+

− −

= − = −

≤ − − −

− −

=

 

 
By this inequality and the properties of f, it follows 
 

1( ) ( )n nd u cd u−≤  

 
 In general, we have 
 

  
0

( ) ( ) , ,
n n

n
d u c d u c l n N≤ = ∈  (2) 

 

where 
0 0 1
( ) ,l d u x x u= = − , and so  

 

  
1

lim ( ) lim , 0n n n
n n

d u x x u+
→∞ →∞

= − = . (3)  

 

Then, from (2) and Lemma 2.1 is derived that { }nx  is a Cauchy sequence in X and hence is 

convergent in X. Let lim lim
n

n n
n n

x T x Xα
→∞ →∞

= = ∈ . The limit α  is unique. Assume that 

α α′ ≠  and lim n
n

xα
→∞

′ = . Then by condition (2 4N
• ) of Definition 1.5, we obtain 

 

', , ',n nu k x u k x uα α α α− ≤ − + − . 

 

Letting n tend to infinity we get ', 0uα α− =  for all u X∈  and so 'α α= . 

 

Let us prove now that α  is a fixed point of T . Assume that Tα α≠ . Then, by Definition 

1.3, we obtain , , ,n nT u k x u k x T uα α α α− ≤ − + − . Then, if n → ∞ , we get  

 

  
___

, lim ,
n

n
T u k x T uα α α

→∞
− ≤ −  . (4)  

From (1), we get 
 

1

2
1 1 1 1 1

1 1 1

, ,

( , , , , , , , , , )

( , , , , , , , , , )

n n

n n n n n

n n n n n

x T u Tx T u

cf x u x Tx u T u T x u Tx u

cf x u x x u T u x u x u

α α

α α α α α

α α α α α

−

− − − − −

− − +

− = −

≤ − − − − −

= − − − − −
.

 

 
Letting n tend to infinity we have 
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___

lim , (0,0, , ,0,0) ,
n

n
x T u cf T u c T uα α α α α

→∞
− ≤ − ≤ − . (5) 

 
From (4) and (5), we have 
 

___

, lim , ,
n

n
T u k x T u k c T uα α α α α

→∞
− ≤ − ≤ − . 

 

Since 10 1
k

c< < <  we have , 0T uα α− =  for all u X∈ . So α  is a fixed point of T.  

 

Let we prove now the uniqueness. Assume that α α′ ≠  is also a fixed point of T . 

 

By (1) for =x α  and = 'y α  we get:  

 

2

', ( ) ( '),

( ', , , , ' ', , ' , , ' , )

( ', ,0,0, ' , , ' , ) ', .

u T T u

cf u T u T u T u T u

cf u u u c u

− = −

≤ − − − − −

= − − − ≤ −

α α α α

α α α α α α α α α α

α α α α α α α α

. 

 
And so, we have  
 

  
', ',u c uα α α α− ≤ −

. (6) 
 

By (6) we get: ',uα α− =0. Thus, we have again =α α ′ . This completes the proof of the 

theorem. 
 

3. RESULTS AND DISCUSSION 
 
For different expressions of f in Theorem 2.2 we get different theorems. In case 

1 2 3 4 5 1
( , , , , ) =f t t t t t t  we have an extension of Banach’s contraction principle for metric space 

in a quasi-2-Banach space:  
 

Corollary 3.1 Let ( , , )X ⋅ ⋅  be a quasi-2-Banach space with coefficient  1k ≥  and 

:T X X→ be a mapping such that  

 

, ,Tx Ty u c x y u− ≤ −   

 

for all ,x y X∈ , where 
1

0 c
k

≤ < . Then T has a unique fixed point α  in X such that 

0x X∈  gives 0lim ( )
n

n
T x α

→∞
= .       
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In case 2 3

1 2 3 4 5
( , , , , )

2

t t
f t t t t t

+
=  we have an extension of Kannan’s contraction principle 

for metric space [13] in a quasi-2-Banach space:  
 

Corollary 3.2 Let ( , , )X ⋅ ⋅  be a quasi-2-Banach space with coefficient 1k ≥  and 

:T X X→ be a mapping such that  

 

, ( , , )Tx Ty u c x Tx u y Ty u− ≤ − + −  

 

for all ,x y X∈ , where 
1

0
2

c
k

≤ < . Then T has a unique fixed point α in X such that 

0x X∈  gives 0lim ( )
n

n
T x α

→∞
= . 

 

Corollary 3.3 For { }1 2 3 4 5 2 3
( , , , , ) max ,f t t t t t t t=  we have an extension of Bianchini’s 

contraction principle for metric space [14] in a quasi-2-Banach space. 
 

Corollary 3.4 For 
1 2 3

1 2 3 4 5
( , , , , )

at bt ct
f t t t t t

a b c

+ +
=

+ +
 where a, b, c are nonnegative numbers 

such that 1a b c+ + < , we have an extension of Reich’s contraction principle for metric 

space [9] in a quasi-2-Banach space.  
 
Remark 1: For different f, we can obtain many other similar results of Rhoades classification 
[15,16]. 
 

Remark 2: For 1k =  we take our main theorem and its corollaries for 2-Banach spaces. 

 

4. CONCLUSION 
 
In this paper we proved fixed point theorems for mappings in quasi-2-Banach space via an 
implicit relation. The results of this paper extend the previously known results for metric 
space in a quasi-2-Banach space.  
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