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ABSTRACT 

 
Monitoring vegetation response through enhanced change detection by remote sensing and 
geographical information systems has tremendously improved real time information on surface 
features. Over the last few decades biomass monitoring at large scale has been made possible 
from information and metrics derived from satellite sensors. Maasai Mara National Reserve has 
been utilized in many decades as Kenyan natural grassland for wildlife grazing without periodic 
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assessment of biomass production as affected by impact of climate variability yet it’s a tourism hub 
and one Kenyan economic contributor. This research evaluates the use of high spatial resolution 
satellite imagery such as the Moderate Resolution Imaging Spectro-radiometer or the Project for 
On-Board Autonomy–Vegetation and latest SENTINEL-2 for deriving the Normalized Difference 
Vegetation Index values in relations to in-situ measurements of biomass production between 2009 
and 2019 in Mara, Kenya. Area frame sampling of biomass per unit area in Kgha

-1
clipped from 

50cm by 50cm quadrats were used in destructive sampling. The reserve grassland area coverage 
was estimated to be 717.203km

2
 (46.75%) where the in-situ total above ground grass biomass 

projected in dry season was 35.094 tonha
-1

. This was approximated as 2,516,952.208 tonnes per 
the season reserve cover while in wet season, 42.123 tonha

-1
 was approximated as 3,021,074.197 

tonnes. The error matrices developed to assess the accuracies of the ecosystem classification 
indicated values that ranged between 80-100% and 87.5-100% for producer’s and user’s accuracy 
respectively. 3 out of 7 satellite imagery maps (2017, 2018, and 2019) were assessed for accuracy 
using reference data collected during fieldwork in 2018 and 2019 in ecosystem. The overall 
accuracy was 95.22% with Kappa index of 0.94 for 14 land cover classes shown in table 7. From 
the findings, potential factors influencing vegetation growth in different climatic regions are varied 
and complex. It can be noted that climate variability influence vegetation response in spatial scale 
to supply sustainable quality vegetation/pasture for wildlife feeds and ecosystem development. 
Vegetation mapping and monitoring of ecosystem behavior help stakeholders with information of 
vegetation characteristics Decision policy formulation and wildlife planning. 
 

 
Keywords: Remote sensing; geographical information systems; NDVI; monitoring; rangeland 

ecosystem. 
 

1. INTRODUCTION 
 
Vegetation mapping and monitoring in semi-arid 
rangelands is extremely important as it gives the 
characteristics of variable supply of 
pasture/fodder for wildlife/livestock [1] which is 
largely attributed to low and erratic precipitation. 
In Kenya, some ecosystems have undergone 
irreversible changes because of grazing; some 
systems have degraded to the point where they 
can no longer support grazers [2]. Greater 
percent of Maasai Mara National Reserve 
(MMNR) grassland cover pose a threat of climate 
variability mainly during bi-seasonal periods (wet 
and dry) in that during normal wet seasons, most 
of these lands support large volumes of forage, 
which is also of relatively high quality [3]. The dry 
seasons, on the other hand, are characterized by 
scanty amounts of forage, which is mostly of 
poor quality [4]. This study however has used 
high temporal and spatial resolution satellite 
sensors and GIS data to compare the 
conventionally collected in-situ above ground 
grass biomass. The application of remote 
sensing (RS) and geographical information 
systems (GIS) data are currently the most 
common techniques used for analyzing surface 
features characteristic that aid in classification, 
enabling spatial planning, decision making and 
policy formulation works. The synthesis of 
MODIS imagery into high-quality, standard 
products available every 7, 8, or 16 days has 

greatly facilitated the use of satellite imagery for 
monitoring changes in rangeland landscapes 
among and within years [5]. The authors [6] 
predicted aboveground green biomass from 
MODIS net photosynthesis estimates throughout 
the growing season and characterized inter-
annual variability in grassland vegetation. 
Climate variability leads to increased climatic 
uncertainty with variation in the weather pattern, 
mainly between seasons and years. In Europe 
permanent grasslands cover 33% and temporary 
grasslands cover 6%, respectively, of the total 
agricultural areas in Europe and land use land 
cover (LULC) vary between countries. Among 
terrestrial rangeland ecosystems, some are able 
to sustain populations of grazing animals while 
maintaining a stable-state of vegetation [7, 8, and 
9]. In Kenya, the MMNR is globally unique and 
famous for the great wildebeest migration the 
largest and most species-diverse large mammal 
migration in the world, including 1.3 million 
wildebeest, 200,000 zebra and hundreds of 
thousands of Thomson′s gazelle. According to 
[10], MMNR is one of the richest assemblages of 
wildlife in the world and supports about 237 
herbivores per km

2
, making it one of the most 

productive natural terrestrial ecosystems. This 
paper presents the statement of the problem, 
short literature review, materials and methods, 
results, discussion and finally, conclusion and 
future works of the study. 
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2. MATERIALS AND METHODS 
 

2.1 Description of Studied Area 
 
The Maasai Mara rangeland and ecosystem (Fig. 
1) lies in southwest of Kenya and is 
approximately 1,510 square kilometers, of which 
less than 10% represents MMNR, while the rest 
is the unprotected land inhabited by the agro-
pastoral community and conservancies. The area 
lies at an altitude of about 1,600 m above sea 
level, the Maasai Mara ecosystem is an area of 
undulating savanna/woodland intersected by 
numerous drainage lines and bisected by the 
Mara River [11]. The temperature range is 12 to 
28

0
C and annual rainfall normally lies within the 

range of 800-1,200 mm, with a northwest to 
southeast declining gradient. Rainfall is bimodal, 
with a main dry period from mid-June to mid-
October and a shorter dry season during January 
and February. 
 

2.2 Detecting and Quantifying Land Use 
and Land Cover Change 

 
Land use is a description of how people utilize 
the land [12]. Land use establishes a direct link 
between land cover and the actions of people in 
their environment. Usually a rectangular 

quadrate frame is used to define the sampling 
area, although a quadrate can also be a 
permanently established area within a site. The 
most common quantitative sampling methods are 
the segment or quadrate method and the 
transect method. The quadrate method was 
adopted to allow the user to define a fixed area 
within which land use and cover could be 
measured. Area frame sampling usually attempts 
to define cover characteristics for an area much 
larger than the actual area sampled. For this 
reason, care must be taken to obtain samples 
that represent the entire habitat and that 
eliminate bias. Area frame sampling consists in 
“dividing the total area to be surveyed into N 
small blocks (Segments) without any overlap or 
omission, furthermore select a random sample of 
n small blocks and get the desired data for 
reporting units of the population that is in the 
sample blocks” [13]. Usually this means 
employing an experimental design that ensures 
random placement of the frame or permanent 
quadrat. Although small quadrates are much 
quicker to survey, they are likely to yield 
somewhat less reliable data than large ones. 
However, the larger quadrats require more time 
and effort to examine properly. A balance is 
therefore necessary between what is ideal and 
what is practical. 

 

 
 

Fig. 1. Spatial distribution of biomass sampling campaign points in Maasai Mara National 
Reserve 
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2.2.1 Field clipping campaign of 
aboveground grass biomass 

 
Aboveground grass biomass (AGGB) were 
harvested destructively at every end of the 
growing season (wet and dry) using hand-held 
shear to ground level via metallic square frame of 
dimensions 50cm x 50cm quadrat. Randomized 
complete block design was applied to collect 
AGGB from ten (10) spatially distributed 
sampling stations with six (6) replications for 
each site across the MMNR rangeland 
ecosystem. The “in situ” AGGB values were 
measured to provide data for calibration and 
validation of the satellite data. The coordinate 
reference points for individual quadrats of 
aboveground grass biomass clipped area were 
taken and recorded via Garmin geographical 
positioning system (GGPS). The clipped wet 
grass biomass from each quadrat was weighed 
using a digital balance, recorded, and stored in 
carrier bags. The samples were then taken to the 
laboratory where the moisture content was 
removed through oven drying. The dry matter of 
grass biomass was determined, hereafter 
referred to as derived aboveground grass 
biomass. Spatio-temporal and in-situ total 
aboveground biomasses for dry and wet season 
were annually computed for the entire rangeland 
ecosystem within the three consecutive years 
(2017 to 2019). The observed aboveground 
grass biomasses were averaged and values 
converted to tons per hectare. 
 
The inside station treatments within the fenced 
Automatic weather station were used as the 
reference/control and those outside the station 
were used as the actual trial plots though 
accessible by wildlife feeding and interference. 
The clipped grass material (litter and standing 
parts) were manually separated immediately 
after harvest; wet weighed using a two (2) 
decimal digital balance, recorded and left spread 
to dry for a period of 7 days on sunlight and was 
alternatively oven dried for 72 hours at 60

o
C to 

constant weight. This was done to avoid further 
metabolism of the plant materials and to help 
determine its dry matter. The total aboveground 
grass biomass was considered the sum of dry 
litter and standing parts. The biomass 
performance of the dominant grassland per 
quadrat were observed twice for 2.5 years (30 
months) period commencing from (May to 
December 2017) and from January to December 
(2018 - 2019). The standing AGGB were clipped 
and freshly weighed every onset and end of 

every wet and dry growth cycle each year using 
a methodology described by [14]. 
 
2.2.2 Direct expansion for area estimation 
 
In MMNR rangeland ecosystems, Land Use Land 
Cover estimates were performed for several land 
covers, these were classified as grassland, 
sparsely distributed shrub-lands, cropland rain-
fed, cropland irrigated and forest covers of 
various types such as closed and open 
evergreen and deciduous broadleaved cover. In 
the estimation of area with different land cover 
and use, stratified random sample formula 
developed by [15] was computed using equation 
(2.1) as follows: 
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here, h , is number of land use strata, 


T , 

estimated total of land cover study zone, 


)(iT

estimated total of study zone area for 
thi  

stratum, )(iN , number of elementary area 

frame units in the 
thi stratum, )(in , number of 

segments sampled in the 
thi stratum, )(iD

,surface of the 
thi stratum, 



)(iy . The average 

proportion of land cover area per segment in 
thi

stratum, ),( jiy , proportion of cover area in the 

thj  sample in the 
thi  stratum as deduced from 

digitization, )(
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

)(iy . It was paramount to note that in the direct 

expansion method, only the information deduced 
from the digitization of the segments are used.  
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2.2.3 Regression area estimation 
 
The regression estimator consists of the 

corrections to estimated average variable Y  as 
a function of the results obtained from an 

auxiliary variable X . In this study, for a given 
vegetation cover and each segment in the 

sample, Y is the proportion occupied by the 
crop/vegetation as deduced from digitization of 

the ground survey and X was the proportion of 
pixels of the satellite image classified as being of 
the given crop/vegetation cover. A linear 
regression was fitted in each stratum between 
the two variables. The linear model and the 
entire satellite image classification were used for 
regression estimation. The formulas found in [16] 

was used to estimate the total T  using the 
following estimator, 
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thi stratum, 
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If the coefficient of determination is large for most 
strata, it lowers the estimated variance for the 
regression estimator. 
 

2.2.4 Relative efficiency 
 

The success associated with the regression 
estimator was determined and its relative 
efficiency was calculated [16]. The RE of the 
regression estimator compared to the direct 
expansion estimator was defined as the ratio of 
the variances respective. 
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An 2RE  means that the same precision would 
have been obtained if the ground data sample 
size had been doubled and the satellite image 
had not been used. 
 

2.3 Satellite Imagery Data 
 
2.3.1 Project for on-board autonomy – 

vegetation 
 
The PROBA-V is a VEGETATION instrument 
has a Field Of View of 102

0
, resulting in a swath 

width of 2295 km. This swath width ensures a 
daily near-global coverage (90%), whereas the 
full global coverage is achieved every 2 days. 
The central camera observes at 100 m nominal 
resolution, which covers a swath of about 517 km 
that ensures global coverage every 5 days. The 
author [17], indicated that PROBA-V observes in 
four spectral bands: BLUE (centered at 0.463 
μm), RED (0.655 μm), NIR (0.837 μm), and 

SWIR (1.603 μm). Observations are taken at 
resolutions between 100 and 180 m at nadir and 
up to 350 m and 660 m at the swath extremes for 
the VNIR and SWIR channels, respectively. Final 
PROBA-V products are disseminated at 100 m, 
300 m and, 1 km resolution. 
 
The images for the years 2009 to 2019 were 
derived in GeoTiff format which were already 
corrected for radiometric and geometric 
distortions errors. The preprocessing steps in the 
workflow used Erdas imagine software 2014 and 
ArcGIS 10.1 software packages. These 
processes involved; layer stacking, Mosaicking, 
reprojection, sub-setting/clipping, classification, 
accuracy assessment done (using confusion 
matrix and ground truth data) and area change 
detection. Here, the radiometric processing 
converts the digital number count at a certain 
spectral band (DN) into physical TOA reflectance 
values. First, the DN number is corrected for 
detector non-linearities, dark currents, and inter-
pixel non-uniformities. Secondly, these numbers 
are converted to sensor radiance L (Wm

-2
sr

-1
μm

-

1
), using the band-specific calibration coefficients 

derived from the radiometric ICP file. Finally, the 
TOA radiance L at a given spectral band is 
converted into TOA band reflectance using: 
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With RTOA the obtained TOA reflectance value 
(-), d the Earth – Sun distance (AU), Eo the mean 
exo-atmospheric irradiance at the specific 
spectral band (Wm
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), with values from [18], 

and )(cos s the solar zenith angle (o). The 
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outputs of the radiometric processing are the 
Level 1C data.  
 
2.3.1.1 Level 2 algorithm and data  
 
The Level 1C data are used as input for further 
processing in the Level 2 processor, which 
consists of the following steps and the 
compositing procedure for the 300m and 1km 
products, differs in certain steps from level 2. 
 
i). Mapping and SWIR mosaicking  
ii). Snow/ice detection  
iii). Cloud and cloud shadow detection  
iv). Atmospheric correction  
 
2.3.1.2 Cloud and cloud shadow detection 
 
Clouds obstruct land surface parameter retrieval 
in satellite observations. Therefore, a proper 
cloud screening is pivotal in the pre-processing 
for the various value-added products. Many 
studies, as well as user feedback identified 
several issues with the Collection 0 PROBA-V 
cloud detection algorithm. The Collection 0 
algorithm is based on the use of static thresholds 

applied to the BLUE and SWIR spectral bands. 
False cloud detection over bright surfaces, such 
as deserts and salt lakes, and flagging of thick 
ice clouds as ‘snow/ice’ were among the key 
problems of the operational cloud screening 
method. To overcome these limitations,                             
a new algorithm was developed and 
implemented for the PROBA-V reprocessing 
(Collection 1).  
 
2.3.1.3 Collection 1 cloud detection algorithm  
 
The improved and currently operational cloud 
detection algorithm addresses the main 
limitations of the Collection 0 cloud detection 
algorithm by using a more extensive and 
sophisticated set of cloud tests. A supervised 
training of a classification scheme that was 
designed to replace the operational Collection 0 
algorithm. 
 

i). High-resolution surface albedo data are 
used as background reference maps.  

ii). The decision to assign a pixel to ‘cloud’ or 
‘clear’ is made via an extended set of 
threshold tests and similarity checks.  

 
Table 1. PROBA-V spectral, radiometric, and geometric characteristics, Lref refers to the Top-
Of-Atmosphere (TOA) irradiance at the respective spectral band, Geometric mean accuracy 

values obtained over the period 16 December 2016-15 December 2017. FWHM = Full Width at 
Half Maximum, SNR = Signal to Noise Ratio 

 
Band name Centre wavelength (µm) Spectral range @ 

FWHM (µm) 
SNR@ Lref (Wm

-2
 sr

-1
 µm

-1
) at 

300m resolution 

BLUE 0.464 0.440 - 0.487 177@111 
RED 0.655 0.614 - 0.696 598@110 
NIR 0.837 0.772 – 0.902 574@106 
SWIR 1.603 1.570 - 1.635 720@20 

 

 
 

Fig. 2. Flowchart of the collection 1 cloud detection algorithm 
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Fig. 3. PROBA-V product processing chain flowchart 
 
2.3.1.4 Atmospheric correction 
 
The Level 2A TOA reflectance observations are 
the resultant of surface reflectance and 
scattering, absorption, and multiple reflections 
within the atmospheric column below the satellite 
(clouds, gases, aerosols). In order to obtain the 
directional TOC reflectance values (Level 2B 
data), version 4.2 of the Simplified Model for 
Atmospheric Correction (SMAC), [19] is used. 
This model converts the observed TOA 
reflectance into TOC reflectance using auxiliary 
water vapour, ozone, and surface pressure data. 
Water vapour content is taken from the European 
Center for Mid-Range Weather Forecasts 
(ECMWF). Numerical Weather Prediction (NWP) 
model delivered by MeteoServices 
(http://www.meteoservices.be), which is bi-
linearly interpolated in space and linearly in time. 
For ozone, a climatology based on 11 years of 
Total Ozone Mapping Spectrometer (TOMS) 
observations prepared by the Centre 
d’ÉtudesSpatialesde la Biosphère (CESBIO) is 
used. Surface pressure is derived from the 
Global Land Surface Digital Elevation Model 

(GLSDEM), using a height to pressure 
conversion formula proposed by [20]. The 
aerosol optical thickness (AOT) is retrieved using 
an empirical relation between TOA NDVI and the 
SWIR / BLUE TOC reflectance ratio. This aerosol 
retrieval can only be applied for pixels with 
sufficient vegetation (NDVI > 0.2 and TOC SWIR 
< 0.4), for pixels, not fulfilling these criteria a 
simple AOT as function of the latitude is used 
[21].  
 
2.3.2 Moderate resolution imaging spectro-

radiometer  
 
These MODIS instruments are designed to take 
measurements in spectral regions that have 
been used in previous satellite sensors. MODIS 
is adding to existing knowledge by extending 
datasets collected by heritage sensors such as 
the NOAA and AVHRR. The authors [22] used a 
combination of SPOT- Vegetation, Landsat long-
term data record, and MODIS NDVI products to 
assess degradation and vegetation biomass 
changes in the Sahel region of Africa from 1982 
to 2010. By extending these data sets, MODIS 



 
 
 
 

Kapkwang et al.; JERR, 21(5): 1-27, 2021; Article no.JERR.75161 
 
 

 
9 
 

promotes the continuity of data collection 
essential for understanding both long and short-
term change in the global environment. MODIS 
provides data for land cover maps that tell 
scientists not only whether an area is vegetated, 
but also what kind of vegetation is growing there, 
separating coniferous forests from deciduous 
forests, or cropland from grassland. In addition to 
categories of vegetation, the maps recognize 
various non-vegetated surfaces, including bare 
soil, water, and urban areas land cover types in 
all MODIS’s high quality. Daily measurements 
also allow scientists to track changes in land 
cover types and land use, to determine where 
forested land is becoming deforested, where 
grassland is becoming cropland, or where 
burned land is returning to natural vegetation. 
MODIS products were selected in a peer review 
process in 1992, based on scientific priorities 
established in the late 1980s. This was at a time 
when Mission to Planet Earth was a major 
science theme of NASA [23, 24]. The full 
resolution products from MODIS at 250, 500, and 
1000 m are well suited to regional studies and 
when combined with Landsat data provide the 
basis for monitoring and modeling of land cover, 
land use change, and providing carbon 
observations [25] [26]. 
 
2.3.3 Sentinel 2A 
 
Satellite images with a high temporal frequency 
(daily) but low spatial resolution (>250m) are 
frequently used for agricultural monitoring and 
applications when a high temporal resolution is 
needed. Sentinel-2A/MSI captures images of the 
earth’s surface in 13 spectral bands at 10 m, 20 
m and 60 m spatial resolution [27]. The 
improvement of peak NDVI estimation, GDD-
based approach developed by [28], GDD 
application is used as proxy to predict an NDVI 
peak using historical relationship between NDVI 
and GDD. GDD is calculated as the average 

daily maximum ( maxT ) and minimum 

temperatures ( minT ) minus a base temperature. 

Remotely sensed satellite data for crop area and 
yield estimation was used extensively in the 
United States and the EU, although significant 
applications have also been implemented in 
several developing countries [29] [30]. 
 

2.4 Normalized Difference Vegetation 
Index  

 

The Normalized Difference Vegetation Index 
(NDVI) is a standardized index that allows the 

generation of an image displaying greenness 
(relative biomass). NDVI can also be particularly 
useful for predicting seasonal variability of ET 
and soil moisture status [31]. Seasonal and inter-
annual global vegetation variability, reflected by 
normalized difference vegetation index (NDVI), 
assumes that NDVI contains clues about the 
vegetation response to climate change [32] [33]. 
This index takes advantage of the contrast of the 
characteristics of two bands from a multispectral 
raster dataset - the chlorophyll pigment 
absorptions in the red band and the high 
reflectivity of plant materials in the near-infrared 
(NIR) band. It is calculated from the measured 
intensities obtained in the red (R) and near 
infrared (NIR) spectral regimes. It is calculated 
as follows. 
 

 
 rednir

rednirNDVI









                          

(2.9) 

 

where, nir  is near–infrared band reflectance, 

red  is red band reflectance, red = 

Intensity/brightness of reflected light in the red 
filter (ca. 0.6–0.7 µm), nir = intensity/brightness 

of reflected light in the near infrared filter (ca. 
0.8–0.9 µm).The NDVI - values are derived using 
MODIS and PROBA-V with their spectral 
reflectance in Band 3 (red band) reflectance and 
Band 4 (near-infrared reflectance). They are 
provided by the bands 4 and 8 of the Sentinel-2A 
MSI camera.  
 

2.4.1 Accuracy assessment of classification 
 

During the process of MODIS imagery 
classification, matrix errors mostly occur from the 
selection of training data. It was therefore needful 
to conduct an accuracy assessment on the 
derived land cover maps. This indicates the 
validity of the produced land cover maps 
because the classified maps and the ground truth 
are accounted for simultaneously. The author 
[34] has shown that accuracy assessment of a 
given region, future efforts of information were 
directed towards quantifying the dynamics of 
land cover. According to [35], the most common 
technique used is accuracy assessment of land 
cover classification for remotely sensed images 
in inter-rater reliability of error matrix (called 
confusion matrix, contingency tables, covariance 
matrix, or correlation matrix). The design of error 
matrix entails the comparison of classified data 
from land cover maps and the reference data 
(ground truth). The derived MODIS imagery 
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provided two options of comparison between the 
generated reference data using points generated 
randomly and the use of ground truth data that 
was taken from the field. The choice of MODIS 
image of 2000 was used to test the classification 
accuracy because the other options of EMT+ 
2000 was far too old for comparison of the 
current reference data obtained. The table 
indicates the statistical techniques used to 
calculate the accuracy assessment of error 
matrix classes or components. The output of the 
classified images without any error or bias is the 
accurate thematic map. There are a number of 
equations that can show the level of error 
statistically such as producer accuracy, user 
accuracy, overall accuracy, and Kappa, which 
can be calculated using the error matrix [36]. An 
accuracy assessment was performed using 
collected ground-truth data for the two types of 
classification (rangeland and cropland) using a 
standard error matrix. Kappa statistics and 
overall accuracy were used to determine the 
performance of the selected methods of 
heterogeneous region (Table 2). 
 

In reference to the description of [35], of error 
matrix components the accuracy assessments of 
the land cover classification were explained as 
follows; 
 

i) Rows – These are the corresponding thematic 
classes in the ground truth map (training set) 
ii) Columns – These are the thematic classes of 
the classified images. 
iii) Diagonal Values – These represent the 
number of correctly classified pixels of each 
class (number of ground truth pixels with a 
certain class name that actually obtained similar 
to class name during classification. 
iv) Off - diagonal values – corresponds to the 
misclassified pixels or the classification errors or 
the number of ground truth pixels that ended up 
in different class during classification. Following 
[37] approach, the applied statistical accuracy 
assessment in the study was described below; 
v) Producer’s accuracy - This corresponds to the 
fraction of correctly classified pixels with regard 
to all pixels of that ground truth class. Here, each 
class of the ground truth pixels (row), the 
calculated accuracy was done by dividing the 
number of correctly classified pixels by the total 
number of ground truth or test pixels of that 
class. 
 

%100
1

1,1


N

N
ACC

                            

(2.10) 

where, ACC is the producer’s accuracy, N1,1 is 
the total number of the correctly classified pixels 
in that class and N1+ is the total number of 
ground truth pixels of that class (summation of 
the pixels in that row. 
 
vi) User’s accuracy (inter-rater reliability) - This 
corresponded to the fraction of correctly 
classified pixels with regard to all pixels classified 
as the classified image. In each classified image 
(column), to estimate its reliability calculations 
were done by dividing the number of correctly 
classified pixels by the total number of pixels that 
were classified in that class. 
 

%100Re
1

1,1


N

N
l

                             

(2.11) 

 
where Rel is user’s accuracy(reliability), N1,1 is 
the total number of the pixels classified in that 
category and N+1 is the total number of pixels 
that were classified as this category or class 
(summation of the pixels in that column). 
 
vii)  Overall accuracy – It is the summarized total 
agreement/disagreement between the classified 
and the training set data. It incorporates the 
major diagonal elements and excludes the 
commission and omission errors. The following 
expression was used. 
 

 

%100
N

D
OA

                                 

(2.12) 

 
Where, OA is the overall accuracy, D is the total 
number of correctly classified pixels (diagonals 
values i.e. N1,1+N2,2 + N3,3 +..…+Nn,n and NOA is 
the total number of the set (reference) pixels. 
 
ix) Overall kappa statistic – This is the measure 
of agreement or accuracy based on KAPPA 
analysis. It is mainly used in comparing the 
classified data with the reference data (ground 
truth data) in determination of their significance 
difference. It can be expressed as follows; 
 

 

 

 





 


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(2.13) 

where 
^

K is the overall Kappa statistic coefficient, 

n  is the number of rows in the error matrix, iiN ,
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represents the total number of correct pixels in a 

class (value in row i  and column i ), iN is the 

total number of rows i , iN is columns total i and 

OAN  is the total number of the pixels in error 

matrix. The values greater than 0.7 indicates that 
the inter-rater reliability of classified and ground 
data were satisfactory. On the other hand, values 
less than 0.4 means fair agreement while 0.6 to 
0.8 indicates substantial agreement. 
 

3. RESULTS AND DISCUSSION 
 

3.1  Measured Aboveground Standing 
Grass Biomass at Maasai Mara 
Rangeland Ecosystem 

 

From Table 3, it can be seen that during the dry 
season in 2017, the observed aboveground 
grass biomass (AGGB) measured an average 
dry biomass weight of 0.328 kg/m

2
 or 3.28 

tons/ha obtained from Randomized Complete 
Block Design (RCBD) with six replicated (0.5m 
by 0.5m) quadrats each had slight biomass 
variations. The aboveground biomass from a 
similar site on a wet season in 2017 also varied 
slightly with an average weight on dry matter 
basis as 1.634 kg/m

2
 or 10.208 tons clipped from 

2.5m by 2.5m quadrat. The standard deviation 
was 0.0508 kg/m

2
 while the standard error of the 

mean was ±0.0376.  
 

From seasonal quantitative analysis of 
vegetation coverage in both seasons shown in 
Tables 3 and 4, there was 79.92 % high 
vegetation coverage class in the year 2018 wet 
season. In the year 2018, there was heavy 
rainfall, which fell almost throughout the year, 
and the above ground biomass harvested were 
dried and measured from each quadrat and the 
results were high as compared to 2017.Yearly 
wet seasons were characterized with high 
vegetation cover classes from highest to lowest 
2018 (79.92%) and 2017 (20.07%) 
consecutively. During the dry season, low 

vegetation coverage class was in 2017 
experienced because of low and short rainy 
seasons. Land generally occupied by MMNR 
rangeland ecosystem covers 1,534km

2 
and the 

area covered as grassland were estimated to be 
717.203km

2
 (46.75%) where the total AGGB 

during the dry season was 35.094 tonha
-1

 that 
translate to seasonal quantify of 2,516,952.208 
tonnes while during the wet seasonal AGGB was 
42.123 tonha

-1
 corresponding to 3,021,074.197 

tonnes biomass. These conversions were based 
on MMNR land cover during the bi-seasonal 
period when vegetation density was at its low 
and maximum productivity; however the quantity 
may not be precise because of continuous 
wildlife feeding with adverse effect of migratory 
largest wilderbeest population during sampling. 
Similar observations were made by [38], where 
household density, distance to road, grass 
biomass, livestock and wildlife density had a 
normal distribution centered around the mean 
and standard deviation of each variable in 
Amboseli and Mara ecosystems. Further 
observation from these models, indicates a low 
wildlife density trend in neighboring private land 
tenure as compared to communal and 
government land that depict higher wildlife 
density in wet years relative to dry years. 
 
Fig. 4 indicates that during the wet periods, 
green grass biomass was high as compared to 
dry season. There was better biomass coverage 
on the upper catchment area such as Mara main 
station, Olimisiogioi, Upstream and Helicopter 
and most of them were homogeneously 
distributed with green biomass cover across the 
rangeland with scarce scenery of mixed shrubs 
and tall trees along the river channels and 
streams passing across the rangeland. On 
lowlands toward Mara Bridge with low altitude 
(1520m), there was less vegetation/grass 
coverage in the western and southern periphery 
of the catchment while, better grass vegetation 
coverage were observed in the northern part of 
MMNR ecosystem. 

 

Table 2. Design of Confusion/Error Matrix applied in accuracy assessment of land cover 
classification 

 
  Reference data    

C
la

s
s

if
ie

d
 D

a
ta

  Class A B C …… n Row Total 

A N1,1 N1,2 N1,3  …… N1,n N1+ 

B N2,1 N2,2 N2,3 …… N2,n N2+ 

C N3,1 N3,2 N3,3 …… N3,n N3+ 

….. ……. …… …… …… …… ….. 
n Nn,1 Nn,2 Nn,3 …… Nn, n Nn+ 

Column Total N+1 N+2 N+3 ….... N+n NOA 
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Table 3. Above ground standing biomass measured from spatially distributed Maasai Mara catchment sites during dry season (2017) 
 

Location Coordinates 
Latitudes Longitudes 

Quadrat 
Area in 
m

2
 

Average Wet 
wgt (Kg) 

Average 
Dry wgt 
(Kg) 

Average Projected 
biomass in 
tons/hac 

Average 
Biomass in 
Kg/m

2
 

Standard 
Deviation 

Standard 
Error 

Mara Main -1.49332 35.14918 0.25 2.663 2.053 3.284 0.328 0.0508 ± 0.038 
Kissinger  -1.55889 35.23664 0.25 0.190 0.092 3.660 0.366 0.0290 ± 0.012 
Ashnil -1.45291 35.07215 0.25 0.198 0.093 3.710 0.371 0.0273 ± 0.011 
Helicopter -1.53042 35.17422 0.25  0.172 0.097 3.890 0.389 0.0211 ± 0.008 
Talek -1.46117 35.18276 0.25 0.148 0.089 3.570 0.357 0.0346 ± 0.014 
NiceBridge -1.49519 35.19034 0.25  0.185 0.092 3.600 0.360 0.0123 ± 0.050 
V-section -1.46249 35.10616 0.25 0.182 0.089 3.550 0.355 0.0246 ± 0.010 
Upstream -1.52919 35.23824 0.25  0.148 0.089 3.540 0.354 0.0316 ± 0.013 
Olimisiogioi -1.50384 35.12008 0.25  0.148 0.090 3.650 0.365 0.0178 ± 0.007 
Mara Bridge -1.53833 35.03615 0.25 0.143 0.066 2.640 0.264 0.0312 ± 0.013 
Total AGB     35.094 0.351    
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Table 4. Above ground standing biomass measured from spatially distributed Maasai Mara catchment sites during wet season (2018) 
 

Location Coordinates 

Latitudes Longitudes 

Quadrat 
Area in m

2
 

Average Wet 
wgt (Kg) 

Average 
Dry wgt 
(Kg) 

Average Projected 
biomass in 
tons/hac 

Average 
Biomass in 
Kg/m

2
 

Standard 
Deviation 

Standard 
Error 

Mara Main -1.49332 35.14918 0.25 1.784 0.255 6.540 0.654 0.1714 ± 0.0700 

Kissinger -1.55889 35.23664 0.25 0.353 0.147 5.890 0.589 0.1304 ± 0.0532 

Ashnil -1.45291 35.07215 0.25 0.400 0.109 4.370 0.437 0.2550 ± 0.1041 

Helicopter -1.53042 35.17422 0.25 1.768 0.103 4.133 0.413 0.0149 ± 0.0061 

Talek -1.46117 35.18276 0.25 1.732 0.103 4.120 0.412 0.0136 ± 0.0056 

Nice Bridge -1.49519 35.19034 0.25 1.801 0.104 4.140 0.414 0.0100 ± 0.0041 

V-section -1.46249 35.10616 0.25 1.865 0.103 4.110 0.411 0.0121 ± 0.0049 

Upstream -1.52919 35.23824 0.25 1.932 0.106 4.230 0.423 0.0225 ± 0.0092 

Olimisiogioi -1.50384 35.12008 0.25 1.565 0.099 3.970 0.397 0.0165 ± 0.0067 

Mara Bridge -1.53833 35.03615 0.25 0.346 0.077 3.080 0.308 0.0460 ± 0.0188 

Total AGB     42.123 0.421    
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Fig. 4. Box plot of selected trend of Mara main aboveground biomass per quadrat during dry 
and wet season 

 

3.2 Normalized Difference Vegetation 
Index (NDVI) 

 
Spatial monthly values of NDVI were derived 
from MODIS, PROBA-V and SENTINEL-2 
imagery for the entire rangeland within the period 
of study (2017- 2019). The images displayed in 
Figs. 5 and 7 are the sequential bi-seasonal 
images of (a) wet and (b) dry periods when site’s 
aboveground biomass measurements were 
clipped and sampled for oven drying to 
determine dry matter content (biomass). 
Measured AGGB indicates similar corresponding 
range of NDVI values with transition in which 
vegetation greenness occurs for the period of 
2017, 2018 and 2019 wet seasons. High NDVI 
value shows that there is high surface spectral 
reflectance due to greenness and high-density 
vegetation cover while low NDVI value indicates 
low or sparsely distributed vegetation cover with 
low density in greenness. The observed images 
shown that during the dry season, low vegetation 
greenness was realized and high vegetation 
greenness in wet season. 
 
The Fig. 5 indicates greenness within the spatial 
segments in the month of May wet season with 
spectral reflectance ranged of between 0.263 
and 0.841. During the dry season the greenness 
of vegetation particularly grass aboveground 
biomass spectral value ranged between 0.247 
and 0.831 which shown that during the dry period 
the vegetation greenness was lower than during 
the wet season. This indicates that the bloomy 

vegetation cover was well dense during the wet 
season because of sufficient soil moisture 
useable by plants growth and development. As 
observed from Fig. 7, May and December NDVI 
greenness on the upper left catchment of the 
rangeland ecosystem, the greenest vegetation is 
relatively high on May as compared to the 
December period. 
 
From Figs. 6 and 7, it can be observed that the 
spectral reflectance for greenness indicates high 
blossom vegetation occurrence between 0.663

m  and 0.828 m  during the wet season in 

2019 while dry seasons ranged between 0.775

m  and 0.886 m  in December of the same 

year. The trend of NDVI derived from MODIS 
imagery satellite data displayed surface features 
and reflects information of wet (May) and dry 
season (Dec) acquired on consecutive years in 
(May and Dec, 2017, 2018 and 2019). 
Observation made shows that during dense 
greenness period, there was high rainfall, which 
corresponded to high soil moisture content 
availability. This shows that the available soil 
moisture was utilized for vegetation growth and 
development where the net resultant effect was 
high biomass density. The NDVI ranged between 
0.117 to 0.0668 in May and Dec 2019 
respectively. The authors [39] used related time 
series of MODIS NDVI to observe changes in 
overall plant biomass across years and to 
changes in plant functional group responses 
within years. 
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(a)                                              (b) 

 
Fig. 5. Vegetation NDVI trend from MODIS satellite imagery data for Maasai Mara Rangeland 

wet and dry season acquired on (May and Dec 2017) 
 

 
 (a)                                           (b) 

 
Fig. 6. Vegetation NDVI trend from MODIS satellite imagery data for Maasai Mara Rangeland 

wet and dry season acquired on (May and Dec 2018) 
 
3.2.1 Time series analysis of minimum and 

maximum NDVI 
 
Based on the study, the three years period of 
2017, 2018, and 2019 indicated in Figs 5, 6 and 
7, maximum and minimum vegetation cover 
indicates homogeneity trend though low 
minimum and maximum vegetation cover in the 
dry season between the months of December, 

January, and February cutting across the 
consecutive years. The maximum vegetation 
cover was observed in the month of March 
running through July, September, October, and 
November in 2018. The vegetation cover 
variation relied mainly on the seasonal rainfall 
that fell due to the effect of East Africa 
intertropical convergence zone (ITCZ). During 
the rainy season, most of the rainfall events in 



 
 
 
 

Kapkwang et al.; JERR, 21(5): 1-27, 2021; Article no.JERR.75161 
 
 

 
16 

 

2017, 2018, and 2019 indicated that the 
maximum NDVI values were below 0.5 within the 
initial two months before the onset of the wet 
season. This was followed by increased NDVI 
values caused by greenness of vegetation cover 
between the range of 0.753 and 0.999 while 
there was a reduction in maximum NDVI values 
in the dry period ranged between 0 and 0.200 
caused by decrease in rainfall followed by 
subsequent decline in vegetation greenness 
across the entire rangeland ecosystem. 
 
3.2.2 Linear correlation between mean 

monthly ndvi and mean maximum 
monthly rainfall 

 
The relationship between seasonal precipitation 
and NDVI was very strong and predictable when 
observed at the appropriate spatial and temporal 
scale. The phenology of vegetation in all 
formations closely reflects the seasonal cycle of 
rainfall. Within the period 2017-2019, there was 
considerable monthly, seasonal, or year-to-year 
variation in precipitation and NDVI throughout the 
region of MMNR rangeland ecosystem. The 
yearly correlation coefficients between NDVI and 
precipitation are very high, while the correlation 
between NDVI and temperature are low. The 
total growing season analyses show that the 
general temporal or spatial distribution of NDVI in 
the whole study area corresponds directly with 
the spatial pattern of average monthly or annual 
precipitation. Annual rainfall in 2018 was 
relatively high as compared to 2017 and 2019, 
this was depicted by aboveground biomass 
harvested in wet season in 2018 as compared to 
biomass harvested during wet, and dry season in 
2017. During the dry season NDVI coefficient of 
variation analyses showed high instability or 
variability in 2017 erratic precipitation episodes. 
 
3.2.3 Time series analyses of mean monthly 

rainfall for 2017-2019 period in maasai 
mara rangeland ecosystem 

 
Rainfall variability in this region through time was 
erratic almost throughout the whole period of 
study in seasons of wet and dry spells (Fig. 8). 
Statistical time series of the mean monthly 
precipitation analyzed for the wet season (June, 
July, August, and September) indicates that 
there was increased precipitation of about 60mm 
per month more in 2018. However, this made the 
soil moisture storage and retention potentially 
good for grass/vegetation or plant growth almost 
in the whole year except in the subsequent year 

of 2019. Precipitation is one major limiting factor 
in MMNR particularly over and during the dry 
grazing period and whenever there is wildebeest 
migration from time to time. The rainfall pattern 
governs the biomass production and determines 
the growth of vegetation cover in the area. The 
spatial pattern of mean annual seasonal 
precipitation increases in the western or 
southwestern part of region similar to vegetation 
growth other than the spatial and temporal 
variability of rainfall. The wet season rainfall in 
MMNR is generally considered variable in 
quantity and distribution across the rangeland. 
However, several part of the regions receive 
good amount of rainfall while, the rest of the 
downstream receives low amount of rainfall. 
 
3.2.4 Time series analyses of maximum mean 

monthly temperature for 2017-2019 
period 

 
During the period of 2017 to 2019, beside rainfall 
and vegetation variation, the analysis of mean 
monthly maximum temperature indicated that 
there was an increase in maximum temperature 
greater than 26

o
C in almost completely dry 

season. In the months of January to March, 
however there was also a decrease from April to 
July, followed by gradual increase of temperature 
in the wet season particularly in July through 
October (Fig. 9). The immediate decrease of 
maximum temperature particularly in March or 
May end of dry season indicated the start of the 
main rainy season in almost the whole year. 
Although the variability of maximum temperature 
noticeable in both seasons, it is more visible in 
the extremely dry spell period than the normal 
season. 
 
3.2.5 Time series analyses of mean monthly 

ndvi for the 2017- 2019 period 
 
As observed from rainfall events, the erratic rainy 
season in dry season supported the soil store 
moisture that was utilized by vegetation such as 
shrubs, trees and grass growth in MMNR 
rangeland and the mean monthly NDVI time 
series results indicates an increase of NDVI 
value after dry season (Fig. 7). The spatial and 
temporal result of NDVI in the regime depicted 
an increase of vegetation grass cover in Mara 
Main particularly in August, whereas there was a 
minimum vegetation cover in Mara Bridge                          
in the month of November, December,               
January, and February in almost the whole three 
years. 
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(a)                            (b) 

 
Fig. 7. Vegetation NDVI trend from MODIS imagery satellite data for Maasai Mara Rangeland 

wet (a) and dry (b) season acquired on (May and Dec 2019) 
 

 
 

Fig. 8. Annual temperature and precipitation during the seasons 
 

3.2.6 Statistical analysis of total 
aboveground standing biomass 
quantities 

 

The sites grass biomass in MMNR indicates that 
maximum NDVI reflects the presence of 
maximum green biomass, while minimum reflects 
minimum green biomass. The different between 
maximum and minimum NDVI shows that 
biomass production varies depending on whether 
the season is dry or wet. As observed from most 
quadrat sites collection, generally, there was high 

vegetation cover in the wet season (March, April, 
May and July) than dry (January, February, short 
rains of August, September, October, November 
and December) from the period 2017 to 2019 as 
a result of good amount of rainfall in wet season 
for vegetation and grass growth. From the 
seasonal quantitative biomass of dry matter 
production harvested in dry and wet season, it 
can be noted that there is a significant 
differences that exist in production between bi-
seasons clipped aboveground biomass as 
statistically shown in Tables 3 and 4. 
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3.3 Land Use Land Cover Change in 
Maasai Mara National Reserve 
Rangeland Ecosystems 

 

In this study, maps were visualized based on 
each spatial coverage class of land use and land 
cover via MODIS derived images between 2009 
and 2019. Generally, the major land use/covers 
in MMNR includes grassland, shrub-lands, rain-
fed cropland, irrigated cropland, urban built-up 
bare land, water bodies, shrub-lands/natural 
grassland, forest cover (CEB), forest cover 
(CDB), forest cover (C - unknown), forest cover 
(OEB), forest cover (ODB) and forest cover (O-
unknown) in the lower part of Maasai Mara 
catchment. Grasslands and shrub lands are 
mainly used for grazing of wildlife or as game 
reserves and encroachment of Maasai livestock 
herds. From these derived maps, it clearly 
appears that MMNR is predominantly occupied 
by large percentage of grassland with 46.8% 
(717km

2
) in 2009, about 23.8% (365.4km

2
),          

15.8% (273km
2
) of land being under closed 

forest with deciduous broadleaved respectively 
and natural grassland, as savannah, grasslands, 
or shrub lands, mostly used for grazing livestock 
and/or wildlife reserves. However, between 2009 
and 2019, these rangelands have reduced by 
3.379% (51.84km

2
) due to encroached 

transformation of rain-fed cropland to irrigated 
cropland, whose area has increased from 0.82% 
(12.58km

2
) to 4.20% (64.44km

2
). Similarly, 

except for the grassland, shrub-land, forest cover, 
and water body, all the other land use/covers 
have undergone gradual change within the last 
decade under study. Similar observations were 
made by [40], they found that there are two 
systematic transitions (i.e., from closed forest to 
open forest and from open forest to small-scale 
agriculture) also reveal a trend (pathway) of 
deforestation from closed forest to small-scale 
agriculture, with open forest as a transitional land 
cover. This trend implies that closed forests are 
first opened up (probably for timber and charcoal) 
and then the opened patches are cultivated. 
Eventually, remaining trees are removed (logged) 
as cultivation expands into the open forest. The 
authors further observed that MMNR rangeland 
was intensively losing to mechanized agriculture 
between 1985 and 2003 attributed to a change of 
land tenure (from communal to private) 
especially in the rangeland.  
 
Fig. 10 shows the LULC maps and respective 
proportion of cover occupied by each class 
between the year 2009 and 2011 of MMNR and 

rangeland ecosystem. The figure indicates that 
grassland occupies the largest proportion of the 
entire rangeland with 46.75%, which has 
remained constantly unchanged during the three-
year period. Shrub-land with 23.82% has also 
remained unaltered in the same period and 
similarly the rest of the classes such as opened 
unknown forest cover (15.843%), rain-fed 
cropland (12.318%), forest cover closed 
unknown (0.819%) and irrigated cropland 
(0.064%) have been maintained in the entire 
ecosystem. The rain-fed and irrigated croplands 
are practiced in conservancies and some 
sections of Mara triangle where riparian Maasai 
community has encroached into the ecosystem 
for livelihood. This observation corroborated with 
a study conducted by [40], their results showed 
that livestock grazing as the predominant land 
use that changes with precipitation and land 
tenure leading to varying livelihood strategies. 
For example, agriculture is the most common 
livelihood in wet years and conservation levels 
increase with increasing support of wildlife 
conservation initiatives. 
 
Fig. 9 shows a constant land use land cover 
class for grassland, shrubland, rainfed cropland 
and open unknown forest cover which had 
existed for the past three years since 2009 to 
2012, however a decrease in land cover 
occurred between 2013 to 2015 for rainfed 
cropland from 12.32%, 11.79% to 10.33% and an 
increase of irrigated cropland from 0.588% in 
2012 to 2.056% in 2015. This indicates the 
transformation of rainfed to irrigated cropland 
which signifies that some upcoming irrigation 
systems were being created in the area 
prompted by scarcity of rainfall. The authors [41] 
used MODIS time series data from 2000 to 2008 
to develop expected annual greenness profiles 
for rangelands in southern Idaho to detect 
significant departures due to management 
changes or disturbance. Between 2003 and 2014, 
expansion of mechanized agriculture avoided 
gaining from rangelands systematically from 
small-scale agriculture. This implied that small 
plots are being used for smallholder agriculture in 
the rangeland are coalescing to larger plots for 
mechanized cultivation. The natural vegetation 
has been declining due to opening of natural 
rangelands to agricultural practices that 
expanded from rain-fed to irrigated croplands 
including inadequate conservation policies and 
implementation. LULC maps (Figures 9 to12) 
displays the base layer products for MMNR 
ecosystem. 
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Fig. 9. Land use/cover classification maps using MODIS imagery data of Maasai Mara National 

Reserve from January 2009 through December 2011 
 
Table 5. Maasai Mara National Reserve Land Use Land Cover classification between 2017- 2019 

according to FAO land cover classes 
 
OID Class Name Class Code Count Area cover (%) Area cover (km

2
) 

0 Shrubland 20 30162 23.818436 365.4163 

1 Grassland  30 59199 46.748478 717.2031 

2 Cropland, rain-fed 41 10364 12.31824 188.9833 
3 Cropland, irrigated 42 5316 0.063964 0.981319 
4 Urban/built up area 112 254 0.20058 3.077247 
5 Bare/sparse vegetation 114 153 0.120822 1.85362 
6 Water bodies 116 1037 0.818902 12.56338 
7 Shrubs/herbaceous cover 122 1 0.00079 0.01212 
8 Forest (closed, evergreen broadleaved) 124 84 0.066333 1.017664 
9 Forest (closed, deciduous broadleaved) 126 20063 15.84342 243.0657 

The total area of MMNR is 1534.174313km
2 

 

Fig. 11 shows the land use land cover classes of 
MMNR rangeland and ecosystem for three year 
period between 2017 and 2018, the maps and 
charts indicates that grassland has continued to 
remain untransformed with 46.75% similar to 

shrubland with 23.82%. This also applies to other 
land cover classes and open unknown forest 
cover, closed unknown forest cover with rainfed 
and irrigated croplands occupying the same area 
for the last decade. 
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Fig. 10. Land use/cover classification maps of Maasai Mara National Reserve from 2013 
through 2015 using MODIS imagery data 
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Fig. 11. Land use/cover classification maps of Maasai Mara National Reserve in 2017 through 
2018 from MODIS imagery data 

 

 
 

Fig. 12. Land use Land cover classification representation in percent for Maasai Mara 
rangeland ecosystem in 2019 

 
Fig. 12 shows the LULC classes for the period 
2019 and it can be observed that the grassland 
occupies the largest proportion of land cover 
followed with shrubs that takes 46.75% and 
23.82% respectively. Land use Land cover has 
remained unchanged of some classes for the 
last decade except in the rain-fed cropland, 
which decreased in 2013 to 2015 from 12.32% 
to 10.33% because of transformed water 
managed or irrigated cropland. Due to short 
rains that were received in 2014, moving to 
irrigated cropland was probably the potential 
farming practices that were done in 
conservancies surrounding the MMNR 
ecosystem for food production. Most of the 
small-scale farmers alternatively shifted into 

cultivation relying on rainfall and opted into 
venturing irrigation farming using water from 
excavated pans for storage of rainwater. The 
forest cover decreased from about 20% to about 
7% of the study area between 1976 and 2014, 
which can be attributed to deforestation 
particularly in the Mau Forest the source of Mara 
River. The most notable change is the steady 
increase in small-scale agriculture and a decline 
in forest cover. During the same period, small-
scale agriculture increased from approximately 
6.5% to 21% of the landscape. 
 

Table 5 shows the LULC classes for MMNR in 
area cover and its apparent that grassland 
dominates and occupies the greatest area of 
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717.203 km
2 

(46.75%) of the total 1534.17km
2
 

followed by shrub-lands which are sparsely 
distributed within the entire rangeland catchment. 
Shrub-land occupies 365.4165km

2
 (23.82%) with 

shrubs of herbaceous original with least area 
cover of 0.01212 km

2 
(0.0008%). Closed 

deciduous broadleaved forest covers a 
substantive amount of cover, which was 243.07 
(15.84%).  
 
Table 6 shows direct expansion area estimation 
and it can be observed that coefficient of 
variation in the relationship between the ground 
truth and satellite images ranged between 3.004 
and 6.483 and its relative efficiency was 4.657. 
Transformation of rain-fed cropping in cropland 
occupies 188.983km

2
 (12.32%) which may have 

declined due to increased irrigated cropland with 
0.981km

2 
(0.064%) and built-up area occupying 

3.08km
2
 (0.2%) in the entire area. 

 
3.3.1 Estimation of land cover and land use 

change 
 
The estimation of land cover and land use was 
done at level I and level II where categories that 
were spatially and temporally similar were 
grouped under one class. The diversity of land 
use in the catchment was related to the diversity 
of agro climatic zones, landform, water 
resources, topography, and human activities. 
The dominant land use categories concentrated 
specifically on the agricultural application, which 
was considered the most important human 
economic activity in the area. Table 5 shows the 
major land cover classes identified based on 
[42]. 
 
3.3.2 Area estimation through direct 

expansion 
 
This section presents the land cover generated 
maps resulting from the classification of satellite 
images, accuracy assessment of maps, 
magnitude determination including rates, nature 
and geographic distribution of land cover 
changes. The derived thematic maps of land 
cover types in MMNR were extracted from 
MODIS and Proba-V satellite images for the 
period of 2017, 2018, and 2019. Remote sensing 
techniques can be applied to perform crop area 
estimation by integrating area frame sampling 

and classification of satellite images. The 
technique has been applied successfully by the 
national statistics service of US, department of 
agriculture during the 1980-1987 periods with 
satisfactory results [16]. The classification of 
rangeland ecosystem was divided into two major 
sub-classes, which appeared different as 
grassland and shrub-land because of their 
dissimilar spectral nature during classification 
process. The results obtained by direct 
expansion and regression estimation are shown 
in (Table 6). 
 
3.3.3 Land classification accuracy 

assessment 
 
In the study, accuracy assessment of ground 
truth was carried out for all land cover types 
using field surveys to ascertain how accurate the 
generated maps were in order to use the data 
more effectively and correctly. Satellite images 
from open access Copernicus hub was used to 
develop reference data products for comparison 
to land cover datasets, however field verification 
was performed by earlier conducting site visits 
enabling actual land cover comparison with land 
cover classifications dataset. Field verification 
data was compared to the classified land cover 
data, where the producer‘s accuracy, user‘s 
accuracy, and the overall accuracy were 
assessed in order to relate to each land cover 
categories. Accuracy was checked using the 
Kappa index of agreement, which is a measure 
for quantifying the level of agreement between 
two maps with equal number of classes. These 
accuracy measures are described in an error 
matrix (Table 7), where the land cover assessed 
in the field corresponds to the dataset 
classifications. The error matrices developed to 
assess the accuracies of the classifications 
indicated values between 80-100% for the 
producer’s accuracy while user’s accuracy 
ranged between 87.50-100% for MMNR. 3 out of 
7 MODIS imagery maps (2017, 2018, and 2019) 
were assessed for accuracy using reference in-
situ biomass data collected during fieldwork 
conducted in 2017, 2018 and 2019 in the 
ecosystem. The authors [43] secondly used 9 
years of MODIS NDVI data to construct 
estimates of expected production for a southern 
Idaho study area and detect departures from this 
expectation. 
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Table 6. Maasai Mara National Reserve Land Cover and Land Use Statistics for 2017-2019 
 

Land cover and Land use within 
segments 

Total Surface Area (ha) Variance SE CV RE 

Shrubland Direct Expansion 6,173,224,354 561,202,214 7491.343 6.483  
 Regression Estimation 1,325,579,518 120,507,229 3471.415 3.004 4.657 
Grassland Direct Expansion 7,900,112,700 446,334,051 6680.824 2.946  
 Regression Estimation 8,238,406,919 481,778,182 6941.024 3.060 0.926 
Cropland, rainfed Direct Expansion 174,363,929 34,189,005.8 1849.027 3.094  
 Regression estimation 153,308,604 26,896,246 1640.008 2.744 1.271 
Cropland, irrigated Direct Expansion 700.354 962.987 9.81319 3.162  
 Regression estimation 310.299 620.592 7.877764 2.538 1.552 
Urban/builtup Area Direct Expansion 11,337.035 7,085.647 26.61888 2.735  
 Regression estimation 13,257.229 9,469.449 30.77247 3.162 0.748 
Bare/sparse vegetation Direct Expansion 10,994.903 3,435.9071 18.5362 3.162  
 Regression estimation 10,222.385 3,006.584 17.3395 2.958 1.143 
Water bodies Direct Expansion 631,354.068 157,838.517 125.6338 3.162  
 Regression estimation 596,111.817 141,931.39 119.135 2.999 1.112 
Shrubs/herbaceous cover Direct Expansion 0.170 0.284 125.6338 3.162  
 Regression estimation 0.0294 0.1469 0.1212 3.162 1.932 
Forest(closed, evergreen 
broadleaved) 

Direct Expansion 2,058.727 935.785 9.673598 3.060  

 Regression estimation 2,058.726 935.785 9.673598 3.006 1.000 
Forest(closed, deciduous 
broadleaved) 

Direct Expansion 57.299 6.6633 0.816258 0.979  

 Regression estimation 475.975 54.709 2.339012 3.043 0.122 
V- Variance, SE – Standard Error, CV- Coefficient of Variation and RE – Relative Efficiency 
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Table 7. Maasai Mara National Reserve Rangeland Accuracy Assessment Report for Classification of MODIS image 2017, 2018, and 2019 
 
 Class Producer’s 

Users S Gl Cr Ci Bt Bsv Wb Shc FCEBl FCDBl Reference Totals 

S 105 3 0 0 0 0 0 0 0 2 110 
GI 4 166 1 0 0 0 0 0 0 0 171 
Cr 1 5 50 0 0 0 0 1 0 0 57 
Ci 0 0 0 4 0 0 0 1 0 0 5 
Bt 0 0 0 0 14 0 0 0 0 0 14 
Bl 0 0 0 0 1 32 0 0 1 0 34 
Wb 0 0 0 0 0 0 40 2 0 0 42 
Sng 0 0 0 0 0 0 0 2 0 0 2 
FCEBl 0 0 0 0 1 0 0 0 21 0 22 
FCDBl 0 3 0 0 0 0 0 0 0 84 87 
Classified Totals 110 177 51 4 16 32 40 6 22 86 518 

Accuracy Assessment 

Producer’s 95.45 93.79 98.04 100.00 87.50 100.00 100.00 100.00 95.45 97.67 
User’s 95.45 97.08 87.72 80.00 100.00 94.12 95.24 100.00 95.45 96.55 
Kappa Class 
Overall Accuracy 95.22         
Kappa Index  0.94          
Confusion Matrix based on Test and Training Area (TTA) mask, S - Shrubland, G - Grassland, Cr – Cropland rain-fed, Ci – Cropland irrigated, Bt – Urban/built up, Bsv – Bare/sparse vegetation, Wb 

– Water bodies, Shc–Shrubland/herbaceous cover, FCEBl- Forest Cover (Closed, evergreen broadleaved), FCDBl – Forest cover (Closed Deciduous Broadleaved) 
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4. CONCLUSIONS 
 
The sites grass biomass in MMNR indicates that 
maximum NDVI reflects the presence of 
maximum green biomass, while minimum reflects 
minimum green biomass. The different between 
maximum and minimum NDVI shows that 
biomass production varies depending on whether 
the season is dry or wet. As observed from most 
quadrat sites collection, generally, there was high 
vegetation cover in the wet season (March, April, 
May and July) than dry (January, February, short 
rains of August, September, October, November 
and December) from the period 2017 to 2019 as 
a result of good amount of rainfall in wet season 
for vegetation and grass growth. From the 
seasonal quantitative biomass of dry matter 
production harvested in dry and wet season, it 
can be noted that there is a significant 
differences that exist in production between bi-
seasons clipped aboveground biomass. Rainfall 
behaviour influences the distribution of seasonal 
NDVI and the trend of carrying capacity of wildlife 
and livestock movement within the MMNR 
rangeland. Periods of fluctuating rainfall coupled 
with expansion of settlements, that is, 
mechanized cultivation for commercial wheat 
production like in the northern loita plains, 
encroachment of Maasai farmers and herders 
migrating from highly wheat potential areas of 
Naivasha cropland and Mau Narok in search of 
pasture, water, and charcoal burners etc. This 
may result in decline of biomass net primary 
productivity, which probably may cause drastic 
decline in wildlife population in the rangeland 
ecosystem with subsequent decline in tourism as 
a revenue generators for both National and 
county governments. In a study conducted by 
[44], they observed that wildlife populations will 
fall by at least 40% and that certain species of 
wildlife attractive to tourism such as rhinos, 
carnivores, and eland may disappear/extinct 
entirely from the Maasai Mara rangelands. The 
large-scale use of satellite-based NDVI products 
as an input for studies associated with biomass 
productivity and anomalies should consider the 
anisotropy effects of this vegetation index. The 
thematic maps results showed that MODIS and 
Proba-V images could be used to produce land 
use/cover maps and statistics for maximum 
likelihood classification (MLC). These values 
were used as the measure of actual agreement 
and the expected output in the sense that values 
within these ranges usually gives an indicator to 
good representations of the actual land use and 
land cover. The study recommends that in-situ 
quantification of AGGB may not be the actual 

biomass as with the corresponding NDVI values 
obtained through satellite images, future work 
requires research based on spatio-temporal 
quantification of biomass which may provide 
realistic assessment of biomass trend in wet and 
dry season and to validate real-time vegetation 
phenology in rangeland ecosystem. 
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