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Abstract
Excited states of molecules lie in the heart of photochemistry and chemical reactions. The recent
development in quantum computational chemistry leads to inventions of a variety of algorithms
that calculate the excited states of molecules on near-term quantum computers, but they require
more computational burdens than the algorithms for calculating the ground states. In this study,
we propose a scheme of supervised quantum machine learning which predicts the excited-state
properties of molecules only from their ground state wavefunction resulting in reducing the
computational cost for calculating the excited states. Our model is comprised of a quantum
reservoir and a classical machine learning unit which processes the measurement results of
single-qubit Pauli operators with the output state from the reservoir. The quantum reservoir
effectively transforms the single-qubit operators into complicated multi-qubit ones which contain
essential information of the system, so that the classical machine learning unit may decode them
appropriately. The number of runs for quantum computers is saved by training only the classical
machine learning unit, and the whole model requires modest resources of quantum hardware that
may be implemented in current experiments. We illustrate the predictive ability of our model by
numerical simulations for small molecules with and without noise inevitable in near-term
quantum computers. The results show that our scheme reproduces well the first and second
excitation energies as well as the transition dipole moment between the ground states and excited
states only from the ground states as inputs. We expect our contribution will enhance the
applications of quantum computers in the study of quantum chemistry and quantum materials.

1. Introduction

The rapid growth of the machine learning technology in the last decade has revealed its potential to be
utilized in various engineering fields such as image recognition, natural language processing, and outlier
detection [1, 2]. Its applications to scientific fields have also attracted numerous attentions recently as well as
those to engineering. One of the most active research areas is physical science [3], especially studies of
quantummany-body systems including condensed matter physics and quantum chemistry. For example, one
can classify a phase of matter from its wavefunction [4, 5] or predict the atomization energy of
molecules [6–8] from their molecular structures with sophisticated machine learning techniques.

Most of those researches employ classicalmachine learning, with which classical data are processed by
classical algorithms and computers. On the other hand, machine learning algorithms on a quantum
processor have been developed since the invention of the Harrow-Hassidim-Lloyd (HHL) algorithm, and
they are dubbed as ‘quantum machine learning’ [9–16]. In the last few years, there has been surging interest
in quantum machine learning leveraging the variational method [17–22], in which a shallow quantum
circuit parameterized with classical parameters such as the angles of the rotational gates is optimized with a
classical optimization algorithm to find optimal parameters for performing the given objective. This is
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because a primitive type of quantum computers is about to be realized in the near future, and such machines
may have the potentials to outperform classical computers [23, 24]. Those near-term quantum computers
are called noisy intermediate-scale quantum (NISQ) devices [25] and consist of hundreds to thousands of
physical, non-fault-tolerant qubits.

So far, quantummachine learning has been mostly applied to classical computing tasks with classical data
such as pattern recognition of images [18, 19, 22]. In those studies, the classical data must be encoded in
quantum states to be processed by quantum computers, but the encoding is generally inefficient; it requires
the exponentially large number of gates to encode classical data into a quantum state unless the data have a
structure of the tensor product which is compatible with that of qubits [26–28].

Therefore, it is natural to think of performing tasks with quantum nature. In this study, we consider the
following task: predicting excited-state properties of a given molecular system from its ground state
wavefunction. Specifically, we are interested in the Hamiltonian for the electronic states of molecules. The
question we raise and want to solve leveraging quantum machine learning is whether it is possible to predict
properties of the excited states from the ground state wavefunction |ψ0⟩. According to the celebrated
Hohenberg-Kohn theorem [29], one can determine an external potential for electrons and thereby the whole
original electron Hamiltonian from its ground state electron density ρ0(r) = ⟨ψ0 |̂r|ψ0⟩ up to constant, where
r̂ is the position operator. Hence, it should be also possible to predict the excited states from the ground state
in principle.

The task we propose here has various practical and conceptual attractions from the viewpoint of
quantum machine learning and the studies of quantum many-body systems. First, practically, computing
excited states of a given Hamiltonian needs significantly larger computational cost and is more difficult than
computing the ground state [30, 31]. Since the excited-state properties are essential for thermodynamics of
the system and non-equilibrium dynamics such as chemical reactions, a large benefit to the studies of
quantum chemistry and quantum materials is expected if one may predict the excited states only from the
ground state. We note that applying classical machine learning to predict excited states of molecules from
classical data (molecular structure, coulomb matrix, etc) has been widely explored in the literature [32–36].
Second, the problem of encoding data to quantum computers mentioned above can be circumvented in this
setup; as we will see later, it is possible to input wavefunctions into quantum registers directly from outputs
of another quantum algorithm which yields a ground state wavefunction, such as the variational quantum
eigensolver (VQE), which is one of the most promising applications of the NISQ devices [37]. Third, from a
conceptual point of view, the original ‘data’ of quantum systems are wavefunctions, which are quantum in
nature, so quantum machine learning dealing with quantum data as they are will take advantage of the whole
information contained in the wavefunctions and potentially has stronger predictability than the classical
counterparts which process only classical features of quantum data in a pure classical way [38, 39].

In this study, we propose a simple quantum machine learning scheme to predict the excited-state
properties of the Hamiltonian of a given molecule from its ground state wavefunction. Our simulations
suggest the potential that one can implement our model on the real NISQ devices being robust to the
inevitable noise of outputs on such devices. In particular, we employ and generalize the quantum reservoir
computing [40] and quantum reservoir processing [41] techniques.

Both techniques feed the initial quantum information to a random quantum system called a ‘quantum
reservoir’ which evolves the initial state to another state, and the measurement results of the output state are
learned by linear regression to predict some properties associated with the initial information.

Similarly, we first process an input wavefunction that is the ground state of the target molecular
Hamiltonian with a random quantum circuit or the time evolution under another certain Hamiltonian and
then measure the expectation values of one-qubit operators afterwards.

The measurement results are post-processed by a classical machine learning unit, and we train only the
classical unit to predict the target properties of the system by supervised learning so that the overall number
of runs of quantum computers is small. In the Heisenberg picture, the quantum reservoir effectively
transforms the one-qubit operators into complicated multi-qubit ones which contain essential information
of the system, and the classical machine learning will decode them appropriately. We numerically
demonstrate the predictive power of our scheme by taking three small molecules as examples. Our model can
predict the excitation energies and the transition dipole moment between the ground state and the excited
state properly only from the ground state wavefunction.

The rest of the paper is organized as follows. In section 2, we explain our setup in detail and propose a
model for quantum machine learning of excited states, besides presenting the way to train the model. In
section 3, we show the result of numerical simulations of our scheme predicting the excited-state properties
of small molecules as examples. Section 4 is dedicated for the discussion of our result. We conclude the study
in section 5. Appendix A is a review of the VQE and its extension to find the excited states. Appendix B
introduces the Jordan-Wigner transformation, which is used to map fermionic molecular Hamiltonians into
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Figure 1. Schematic diagram of our model for quantum machine learning of the excited-state properties of a molecule from its
ground state. The input qubit state |ψ⟩, which is assumed to be the ground state, is processed with a quantum circuit Uent, and the
measurement yields a classical vector x|ψ⟩, whose elements ⟨Xi⟩,⟨Yi⟩,⟨Zi⟩ are the expectation values of the single-qubit
measurements of the Pauli operators X,Y,Z, respectively, on the ith qubit. A classical machine learning unit fW with learnable
parametersW outputs the target properties from x|ψ⟩.

Hamiltonians written in qubit operators. Appendix C is the extension of the discussion in section 4 to
demonstrate the non-linearity between the excited-state properties of the Hamiltonian and the information
one may obtain from the ground state. Appendix D provides a further analysis of the effect of the entangler.
The dependence of our scheme on the performance of the VQE is analyzed in Appendix E.

2. Method

In this section, we propose a model for quantum machine learning and explain its training process. The
schematic diagram of our model is described in figure 1.

2.1. Model description
Let us consider an N-qubit system and a wavefunction |ψ⟩ ∈ C2N on it. Our learning model proceeds as
follows. First, an input N-qubit state |ψ⟩, which is assumed to be the ground state of a given Hamiltonian
here, is prepared on a quantum computer and fed into a quantum circuit which is denoted as Uent in figure 1.
We call this circuit a quantum entangler or a quantum reservoir for its role of mixing local quantum
information of the input state |ψ⟩ and encoding it to the output state Uent|ψ⟩. Uent is chosen to create enough
entanglement in the wavefunction and fixed for each learning task (or an experiment). The details of Uent are
not so important for the quality of learning as illustrated by an exactly-solvable model in section 4, so one
can use a quantum circuit easy to be realized on real quantum devices. After applying Uent, we measure the
expectation values of local Pauli operators {X0,Y0,Z0, · · · ,XN−1,YN−1,ZN−1}, where Xi, Y i, and Zi represent
a Pauli X,Y,Z operator acting on the site i, respectively. Although the total number of operators is 3N, we can
measure the operators X0, ...,XN−1 simultaneously since they commute with each other, so can we for the
cases of Y0, ...,YN−1 and Z0, ...,ZN−1.

Hence, one can measure all operators with only three different circuits, i.e. the number of experiments to
obtain the measurement data does not scale with the number of qubit N, but only with the desired precision
ε asO(1/ϵ2) due to the statistical uncertainty.

After the measurements, we obtain a 3N-dimensional real-valued classical vector:

x|ψ⟩ = (⟨X0⟩, · · · ,⟨ZN−1⟩)T =
(
⟨ψ|U†

entX0Uent|ψ⟩, · · · ,⟨ψ|U†
entZN−1Uent|ψ⟩

)T
. (1)

Finally, the classical data x|ψ⟩ is fed into a classical machine learning unit with learnable parametersW, such
as a linear regression model or a neural network, and the prediction fW(x|ψ⟩) is obtained.

We have several comments in order. First, the process to obtain x|ψ⟩ from |ψ⟩ can be viewed as
compressing the data of 2N-dimensional complex-valued vector |ψ⟩ into 3N-dimensional real-valued data.
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Although the way of compression is quite complicated due to the entangler Uent, the classical machine
learning unit can decode the information in x|ψ⟩ and use it to predict the properties of the excited states of
the Hamiltonian. More concretely, the effect of the entangler is to make the classical vector x|ψ⟩ to contain
the expectation values of complicated (generally long-ranged, many-body) observables for the original
ground state |ψ⟩; that is, x|ψ⟩ can be viewed as the expectation values of the complicated operators

{U†
entXiUent,U

†
entYiUent, U

†
entZiUent}N−1

i=0 for the ground state |ψ⟩. When we expand U†
entXiUent as

U†
entXiUent =

∑
jλ

(Xi)
j P(Xi)

j , where λ(Xi)
j is some coefficient and P(Xi)

j is an N-qubit Pauli operator, some of

{P(Xi)
j }j are the long-ranged and many-body ones if Uent creates entanglement over the whole system. This

means that the classical vector x|ψ⟩ contains a lot of detailed information of |ψ⟩ as multi-point, long-ranged

correlation functions even though we measure only the single-qubit Pauli operators
⋃N−1

i=0 {Xi,Yi,Zi} in
reality. Although how such information is implemented in x|ψ⟩ is not explicitly known since we do not know

the actual values of coefficients λ(Xi)
j , the classical machine learning unit can be trained to utilize the

information to predict the excited states. An explicit example of this point is described in section 4 and
Appendix C. Moreover, any Uent can be written in the form of a time-evolution operator as e−iHT under a
certain Hamiltonian operatorH. In this formulation, one can naturally interpret the entangler as an operator
evolving the single-qubit Pauli operators

⋃N−1
i=0 {Xi,Yi,Zi} into a linear combination of the multi-qubit ones

in the Heisenberg picture, and the linear combination consists of more variety of the multi-qubit Paulis as
the evolution takes a longer time (see the details in Appendix D). Second, the model is identical to quantum
reservoir computing proposed in reference [40] and quantum reservoir processing proposed in
reference [41] if we choose the linear regression as the classical machine learning unit in the model. One may
also consider using general classical models such as the neural network, the Gaussian process regression, etc.
Even though the numerical simulations we carried out in this study leverage only a linear model, which
actually gives sufficiently accurate predictions at least for the molecules we consider here, non-linearity in the
classical machine learning unit may be necessary to predict the excited states for certain tasks as discussed in
section 4 using an exactly-solvable toy model for the hydrogen molecule. Third, as mentioned in the previous
section, we stress that this scheme is very suitable to be combined with the VQE. The VQE finds a quantum
circuit that produces an approximate ground state of a given Hamiltonian by using the variational principle
and has been extended to obtain the excited states recently [42–49]. Since it can handle Hamiltonians of large
systems that are intractable by classical computers, the VQE is considered as one of the best approaches to
utilize the NISQ devices for real-world problems. In our quantum machine learning model, one can use the
quantum circuit obtained by the VQE to make an input state (approximate ground state wavefunction) for
the training and the prediction of our model. There is no overhead cost at all to feed target data to the
learning model in this case (see also reference [50]). We review the VQE and one of its extensions to compute
the excited states in Appendix A.

2.2. Supervised learning of the model
Next, we explain the procedure for supervised learning of our model. First, we define the training setR
whose elements r ∈R are a set of characteristics of a molecule (e.g. name of a molecule and its atomic
configuration), and we prepare the data {|ψ0(r)⟩,y(r)}r∈R for training. In the case of predicting excited
states of a given Hamiltonian from its ground state, |ψ0(r)⟩ is the ground state of the molecular Hamiltonian
H(r) and y(r) contains the target properties of the excited states of H(r), such as excitation energies. Next, by
using the training set, the classical machine learning unit fW is trained to predict {y(r)}r∈R from the
classical vectors {x|ψ0(r)⟩}r∈R which are calculated in the way described in the previous subsection. A typical
training algorithm for the supervised learning is to minimize a cost function defined to measure the
deviations of the prediction {fW(x|ψ0(r)⟩)}r∈R from the training data {y(r)}r∈R by tuningW.

We note that our model is easier to be trained and less costly in terms of the number of runs of quantum
computers compared with the so-called ‘quantum circuit learning’ where parameters of the quantum circuit
are optimized [18–21] since once the classical representation of the quantum state {x|ψ0(r)⟩}r∈R is obtained,
there is no need to run the quantum device afterwards for training the model.

3. Numerical demonstration for small molecules

In this section, we numerically demonstrate the ability of our model to reproduce excited-state properties
from the ground state wavefunctions by taking small molecules as examples. We consider three types of
molecules: LiH molecule, H4 molecule whose hydrogen atoms are aligned linearly with equal spacing, and
H4 molecules whose hydrogen atoms are placed in a rectangle shape. We call them as LiH, H4 (line), H4

(rectangle), respectively. We evaluate our model in two situations, in one of which ideal outputs of the
quantum circuits are available (noiseless), and inevitable noise in the real NISQ devices is considered in the
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other (noisy). The electronic ground states of those molecules with various atomic geometries are prepared
by diagonalizing the Hamiltonian for the noiseless simulation and by numerically simulating the VQE for the
noisy simulation. Then, we train our model with the linear regression as its classical machine learning unit to
predict the first and second excitation energies and the transition dipole moment among them whose values
are obtained by exactly solving the Hamiltonian. Numerical results show that our model can properly
reproduce the excited states and illustrate the predictive power of our model.

3.1. Dataset
To prepare a dataset for the simulations, we consider the electronic Hamiltonians of the following
configurations. For LiH molecule and H4 (line), the atomic distances are in the range of [0.5 Å,3.3 Å]. For H4

(rectangle), we choose the two spacing of atoms (lengths of two edges) in [0.5 Å,2.0 Å]× [0.5 Å,2.0 Å]. We
perform the standard Hartree–Fock calculation by employing the STO-3G minimal basis and construct the
fermionic second-quantized Hamiltonian for all of the molecules and configurations [51, 52] with
open-source libraries PySCF [53] and OpenFermion [54]. Two Hartree–Fock orbitals with the highest and
the second-highest energies among six orbitals of LiH molecule are removed by assuming they are vacant
because they are composed almost completely from 2px and 2py atomic orbitals of LiH and do not
significantly contribute to the binding energy of LiH. Then the Hamiltonian is mapped to the sum of the
Pauli operators by the Jordan-Wigner transformation [55] which we denote H(r) (a review of the
Jordan-Wigner transformation is given in Appendix B). Then, the electric Hamiltonians for all of the
molecules turn into 8-qubit Hamiltonians.

The training and test datasets for the simulations are prepared for each Hamiltonian H(r) in the
following way. First, in the case of the noiseless simulation, the ground state of H(r) is prepared by the exact
diagonalization. In the case of the noisy simulation, the VQE algorithm is applied to H(r), and the
approximate ground state is obtained as |ψ̃0(r)⟩= U(θ⃗)|0⟩. Here U(θ⃗) is a variational quantum circuit
(ansatz) with classical parameters θ⃗ and |0⟩ is a reference Hartree-Fock state. We adapt the unitary
coupled-cluster singles and doubles ansatz [37, 56] as U(θ⃗). Next, we compute the quantities of the
excited-state properties to be predicted,

y(r) = (∆E1(r),∆E2(r),∥µeg(r)∥)T, (2)

where∆E1(2)(r) = E1(2)(r)− E0(r) is the first (second) excitation energy of H(r) in the sector of neutral
charge, where E0,1,2(r) are three lowest eigenenergies of H(r) in the same sector ignoring degeneracy. For our
choice of the molecules and configurations, E0(r) is the energy of the spin-singlet ground state S0, and E1(r)
is the energy of the spin-triplet excited state T1. E2(r) is the energy of the spin-singlet excited state S1 or the
spin-triplet excited state T2 depending on the configurations of the molecule. The transition dipole moment
between the ground state and the excited state µeg(r) is defined as

µeg(r) = ⟨ψ0(r)|µ|ψex(r)⟩, (3)

where |ψ0(r)⟩ is the exact ground state of H(r) (the singlet state S0), |ψex(r)⟩ is the exact excited state of H(r)
which has the lowest energy among those having a non-zero transition dipole moment from the ground state
(typically S1 state), and µ=−e(x̂, ŷ, ẑ)T is the dipole moment operator with electronic charge e. In this
study, we use its L2-norm ∥µeg(r)∥ for the learning tasks. The calculation of each value of y(r) is performed
by the exact diagonalization of H(r) for both of the noiseless and noisy simulations. To stabilize the learning

process, we scale those calculated values to fit them into the [−1, 1] range, so that the maximum value y(k)max

and the minimum value y(k)min in the training dataset are scaled as y(k)max =maxr∈R y(k)(r)→ 1 and

y(k)min =minr∈R y(k)(r)→−1 where y(r)(k) denotes the k-th element of y(r) for each k= 1, 2, 3, and other

values, including those in the test dataset, are mapped as y(r)(k) → 2 y(r)(k)−y(k)max

y(r)(k)max−y(r)(k)min

− 1.

For the numerical experiments, we randomly split those obtained data {|ψ̃0(r)⟩,y(r)}r into the training
set and the test set for the evaluation of the model. We used 30 training data points and 50 test points,
respectively, for the tasks of the LiH and H4 (linear) molecules, and 250 training data points and 1250 test
data points for the H4 (rectangle) molecules.

3.2. Model for the simulations
The entangler Uent in the model is chosen to be the time-evolution operator e−iHTFIMT under the random
transverse-field Ising model (TFIM),

HTFIM =
N−1∑
i,j=0

JijZiZj +
N−1∑
i=0

hiXi, (4)
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where Xi and Zj are Pauli operators acting on the site i, j-th qubit, coefficients hi and J ij are sampled from the
Gaussian distributions N(1, 0.1) and N(0.75, 0.1), respectively, and we set T= 10. These coefficients are fixed
during each of the numerical simulations. This type of the entangler can be implemented on various types of
the NISQ devices; for example, in the case of superconducting qubits, it can be realized by a sequence of the
cross resonance gates [57, 58] or simply tuning the resonance frequency of the qubits [18]. We note that a
similar kind of the quantum reservoir has recently been implemented on a real NISQ device [59].

In our numerical simulations, this time evolution is exactly simulated as the unitary operation e−iHTFIMT

acting on the input state.
For the classical machine learning unit for the numerical demonstration, we employ the linear regression

(LR) [60]. Although the LR does not have non-linearity which is in principle necessary to compute the
excited-state properties (see section 4), it performs well enough for the molecular Hamiltonians we consider
for the simulations as shown in section 3.4, so it serves as a nice demonstrative model to evaluate the concept
of our model.

The output function of the LR is

f(k)(x|ψ⟩) = w
(k)
out · x|ψ⟩, (5)

where w(k)
out is a 3N-dimensional vector, or parameters of the model, to be optimized, and k= 0, 1, 2

corresponds to the component of the prediction for y= (y(0),y(1),y(2))T. The model is trained to minimize
the mean squared error (MSE) cost function

LLR({w(k)
out}) =

1

|R|
∑
r∈R

∣∣∣w(k)
out · x|ψ0(r)⟩ − y(r)(k)

∣∣∣2 , (6)

whereR represents the training dataset, respectively, for each target property. The exact optimum of the cost
function can be obtained as

w(k)∗
out =

(
VTV

)−1
VTY(k), (7)

where V is a |R|× 3N dimensional matrix whose ith row is x|ψ0(ri)⟩
T, and Y(k) is a |R| dimensional column

vector whose ith component is y(ri)(k), where ri is the ith element ofR. The whole classical process requires
the computational complexity ofO(N3 +N2|R|).

3.3. Simulation of quantum circuits
To check the practical advantage of our model with the NISQ devices, we numerically simulate quantum
circuits of the model considering the noiseless and noisy situations (including preparation of the ground
state wavefunctions by the VQE for the noisy case). The latter reflects a more realistic situation of
experiments on a real NISQ device, but we stress that the former still serves as a reference point to judge
whether the model has the capability of performing the learning task or not.

In the noiseless simulation, the expectation value of the Pauli operator ⟨ψ|Pi|ψ⟩, where the |ψ⟩ is a
quantum state and Pi is the Pauli operator acting on ith qubit, is estimated exactly by calculating the inner
product. In the noisy simulation, we consider two error sources which make estimations of those expectation
values deviate from the exact ones. One of them is a sequence of the depolarizing noise channels [61] that
transform the quantum state ρ= Uent|ψ⟩⟨ψ|U†

ent from the reservoir into ρ ′ = EN−1 ◦ . . . ◦ E0(ρ), where Ei is
the depolarizing channel that acts on ith qubit as Ei(σ) = (1− p)σ+ p

3 (XiσXi +YiσYi +ZiσZi). We take
p= 0.01 in the simulations. The other source is the so-called shot noise that stems from the finite number of
shots for the projective measurements of the Pauli operator Pi. Each measurement returns± 1 according to
the probability distribution determined by the exact values of Tr(ρ ′Pi). We sample 104 shots of
measurements to compute the ground state with the VQE, and 106 shots for each Pauli operator to construct
the vector in equation (1). These are feasible numbers in experiments [57].

3.4. Results
The model described in the previous subsections is trained by the training dataset and evaluated by the test
set. The evaluation is performed based on the mean absolute error (MAE) for the test set T ,

CT =
1

3|T |
∑
r∈T

2∑
k=0

∣∣fW(x|ψ0(r)⟩)− y(r)
(k)
∣∣, (8)

where fW(x) is the output of the model considered as a vector. We train and evaluate the model for each
molecule separately.
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Table 1. The individual MAEs estimating the properties∆E1 and∆E2 in the units of Hartree, compared with the chemical accuracy
1.6mHa for both of the noisy and the noiseless cases.

LiH H4 (line) H4 (rectangle) Chemical Accuracy

MAE (noiseless) (mHa) ∆E1 0.1 1.4 21.3 1.6
∆E2 0.1 3.2 28.0

MAE (noisy) (mHa) ∆E1 15.8 39.2 109.1
∆E2 15.4 50.3 103.8

Table 2. The MAEs evaluated with the test set for the trained models in the noiseless situation with and without the entangler. The mean
values are taken over all the three properties to be estimated. The output values and the excited-state properties are in the same
standardized scale as explained in section 3.1. The MAEs for the random guess are also presented as a reference.

LiH H4 (line) H4 (rectangle)

Test MAE with entangler Uent 0.018 1 0.020 3 0.083 6
Test MAE without entangler Uent 0.172 0.324 0.300
Random Guess 0.673 0.544 0.444

3.4.1. Noiseless simulation
The prediction results by the trained model in the noiseless numerical simulation are shown in figures 2
and 3. In these figures, the excited-state properties y(r) are scaled back to the original scale. Our model
obviously reproduces the exact values of the excited-state properties y(r) for all of the three molecule types.

To quantify it, in the upper rows of table 1, we summarize the MAEs of∆E1 and∆E2 for the test data,
equation (8), between the predictions and the exact values scaled back to the original scale. For the LiH and
H4 (linear) molecules, the MAEs are below or in the comparable scale to the chemical accuracy
1.6× 10−3Ha. The error is larger than the chemical accuracy for H4 (rectangle), and it is probably because
the degrees of freedom of the molecular structure of H4 (rectangle) are larger, and the LR model may not
have a sufficient expressive space. Utilizing other machine learning methods (e.g. neural networks) is one
possible way to achieve more accurate results.

Also, we investigate the necessity of the entangler Uent by comparing the values of the MAE
(equation (8)) for the test set after the training. The evaluations of the learners with and without the
entangler are summarized in table 2, indicating that the entangler significantly enhances the predictive power
of the model. To treat all the excited-state properties on an equal footing, here we use the scaled values of
y(r). In section 4 and Appendix C, another supporting result for the necessity of the entangler is presented by
using an exactly solvable model for the hydrogen molecule.

These results from the noiseless simulations illustrate the predictive power of our model for the difficult
task to predict the excited-state properties only from the ground state.

3.4.2. Noisy simulation
In order to evaluate our scheme in a realistic situation with a quantum device, we add two noise sources to
the simulation as described in section 3.3. In this case, to enhance the noise robustness, we make two
modifications to the noiseless case as follows. First, after obtaining the classical vectors {x|ψ0(r)⟩}r∈R by
processing the training dataset with the noisy quantum circuit, we make 100 copies of every vector x|ψ0(r)⟩ on
a classical computer, and add a gaussian noise N(0, 2× 10−3) to each component of it. We stack these
vectors, and now we have a new 100|R|× 3N dimensional matrix V ′. The vector Y(k) is also duplicated 100
times to match up with V ′ (let us call this new vector Y ′(k) for later use). Notice that this modification does
not affect the required number of measurements of the quantum circuit. Second, we add the L2
regularization term into the cost function of the LR, particularly saying the cost function becomes

L ′
LR({w

(k)
out}) = LLR({w(k)

out})+α∥w(k)
out∥2, (9)

where we used α= 10−3 in the simulations. We may obtain the exact optimum by computing

w(k)∗
out =

(
V ′TV ′ +αI

)−1
V ′TY ′(k), (10)

where I is an identity matrix of 3N× 3N dimensions. Both of these two modifications work as
regularizations preventing the model from overfitting due to the outliers with large noises.

The prediction results are presented in figures 4 and 5. We see that the model still predicts y(r) well even
in this noisy case.
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Figure 2. The prediction results by the trained model for LiH (left column) and H4 (line) (right column) for the noiseless
simulations. Top, middle, and bottom panels display the first, second excitation energies and the transition dipole moment,
respectively. The green circles represent the training data points and the red crosses are the predictions. The exact values are
displayed as the black line. Those values are read from the left ticks of each panel. The blue plot lines with circles represent the
absolute errors between the predictions and the exact values, and the orange line indicates their mean. These error values are read
from the right ticks of each panel.

We attribute this noise-robustness to the regularization technique of the LR in equation (9). The MAEs
for the predictions of∆E1 and∆E2 are summarized in the lower rows of table 1 in the same way as the
noiseless cases. The noise makes the accuracy of the predictions worse than those of the noiseless cases, and
all of the errors become larger than the chemical accuracy. A part of the reason for this is because the noise
hinders obtaining sufficiently precise ground states of the molecular Hamiltonians. Indeed, for example in
the case of LiH, we find that the ground-state energies computed by the VQE in the noisy situation already
have a larger error (0.007 4 Ha) than the chemical accuracy, and the MAEs of the predictions (~ 0.015 Ha)
are in the similar order. Adapting the error mitigation techniques [62, 63] to the VQE can remove the effect
of the noise and will yield more accurate results even in the noisy situation. In Appendix E, we present how
the accuracy of the predictions for the excited-state properties varies as the function of the number of the
shots used to perform the VQE.

8
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Figure 3. The same figures as figure 2 for H4 (rectangle). x and y denote the two atomic spacings of the rectangular geometry.

4. Discussion

4.1. Necessity of the entanglerUent and the non-linearity of fW
Here we discuss the necessity of the entangler Uent and the non-linearity in the classical machine learning
unit fW by considering an exactly solvable model of fermions, namely, the 2-site fermion Hubbard model at
half-filling [64].

The 2-site Hubbard model is defined as

HHub(U) =−
∑
σ=↑,↓

(
c†0,σc1,σ + h.c.

)
+U

∑
i=0,1

ni,↑ni,↓ (11)

where ci,σ, c
†
i,σ are fermionic annihilation and creation operators acting on an electron with spin σ =↑,↓

located at ith site (i= 0, 1), and ni,σ = c†i,σci,σ is the number operator of an electron with spin σ at ith site.
The parameter U > 0 determines the strength of electron repulsion. This system can be considered as a
simplified model of a hydrogen molecule whereas it also serves as a prototype of strongly-correlated
materials. When we restrict ourselves into the sector where the number of electrons is two, i.e. the neutral
hydrogen states, the first, second excitation energies and the transition dipole moment are

∆E1 =
U

2

(
−1+

√
1+

16

U2

)
, (12)

∆E2 =
U

2

(
1+

√
1+

16

U2

)
, (13)

∥µeg∥=
√

1− (1+ 16/U2)−1/2

2
, (14)

respectively. We note that the dipole moment operator is defined as µ= 1
2 (n1,↑ + n1,↓ − n0,↑ − n0,↓).

Applying the Jordan-Wigner transformation [55] to the system (equation 11), we obtain the 4-qubit
Hamiltonian Hqubit(U). We denote the ground state of Hqubit(U) as |ψ0(U)⟩. When there is no entangler, the
classical vector x|ψ0(U)⟩ is trivial because

9
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Figure 4. The prediction results by the trained model for LiH (left column) and H4 (line) (right column) for the noisy
simulations. Top, middle, and bottom panels display the first, second excitation energies and the transition dipole moment,
respectively. The green circles represent the training data points and the red crosses are the predictions. The exact values are
displayed as the black line. Those values are read from the left ticks of each panel. The blue plot lines with circles represent the
absolute errors between the predictions and the exact values, and the orange line indicates their mean. These error values are read
from the right ticks of each panel.

⟨Xj⟩GS = ⟨Yj⟩GS = ⟨Zj⟩GS = 0 (15)

holds for all qubit sites j= 0, 1, 2, 3, where we define ⟨. . .⟩GS = ⟨ψ0(U)| . . . |ψ0(U)⟩. In contrast, when there is
an entangler Uent in our model, it converts the Pauli operators Xj,Yj,Zj into a sum of more complicated Pauli

strings as U†
entZ0Uent = Z0Z1 + 0.2Z1X1Z2Y2 + . . . in the Heisenberg picture. Then, the classical vector

x|ψ0(U)⟩ contains contributions from the terms like ⟨Z0Z1⟩GS. It follows that

⟨Z0Z1⟩GS =−
(
1+

16

U2

)−1/2

, (16)

and

∆E1 =
2(1+ ⟨Z0Z1⟩GS)√

1−⟨Z0Z1⟩2GS
, (17)

10
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Figure 5. The same figures as figure 4 for H4 (rectangle). x and y denote two atomic spacings of the rectangular geometry.

∆E2 =
2(1−⟨Z0Z1⟩GS)√

1−⟨Z0Z1⟩2GS
, (18)

∥µeg∥=
√

1+ ⟨Z0Z1⟩GS
2

. (19)

These equations indicate that the excitation energies can be predicted by utilizing the values of ⟨Z0Z1⟩GS
appropriately. Therefore, one can see that it is possible to predict the excitation energies from the classical
vector x|ψ0(U)⟩ if the ground state vector is processed by an entangler, and the classical machine learning unit
fW has enough non-linearity. These equations also imply that the details of the entangler, which determine
coefficients of the terms like ⟨Z0Z1⟩GS in x|ψ0(U)⟩, is not so important for predictions; the classical machine
learning unit can compensate the difference of such coefficients. In the appendix, we provide further analysis
of the 2-site Hubbard model including the necessity of non-linearity.

4.2. Generalizablity
In the numerical simulations in section 3, the models are trained and evaluated for each molecule separately.
The generalizability of our model to predict the properties of various molecules simultaneously is one
possibility of our model for future extensions.

To make our model more powerful and capable of taking various molecules as inputs, several
modifications can be considered. First, including the ground state energy which can also be calculated by the
VQE besides the ground state in the input of the classical machine learning unit fW will be necessary since
otherwise, one may not determine the energy scale of an input molecule. Second, replacing the entangler
Uent with a parametrized quantum circuit V(θ) and optimizing the circuit parameters θ along with the
classical machine learning unit increase the degree of freedoms of the model and may result in a better
predictive power, with a possible drawback that the number of required experiments on the NISQ devices
would increase in the training step. Exploring these ideas is an interesting future direction of the work.

5. Conclusion

In this study, we introduce a new quantum machine learning framework for predicting the excited-state
properties of a molecule from its ground state wavefunction. By employing the quantum reservoir and
choosing simple one-qubit observables for measurements accompanied by post-processing with classical
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machine learning, one may process our framework easily on the NISQ devices requiring the realistic number
of runs of them. The numerical simulations with and without the noise in outputs of quantum circuits
demonstrate that our model accurately predicts the excited states. Although our framework is tested only
with small molecules to illustrate its potential in the numerical simulations, we expect that it will benefit the
calculation of excited states of larger molecules by reducing the computational cost from calculating exact
solutions. Our result opens up the further possibility to utilize the NISQ devices in the study of quantum
chemistry and quantum material fields.
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Appendix A. Variational Quantum Eigensolver (VQE) and its extension to the excited
states

In this appendix, we first review the VQE algorithm [37] which finds the ground state of a given Hamiltonian
by using the near-term quantum computers. We use it to prepare the ground states of the molecular
Hamiltonians considering the realistic noisy situation in section 3. Next, to give the readers an insight on
how costly it is to find the excited states of a given Hamiltonian on the near-term quantum computers
compared with the computations for the ground states, we review the subspace-search VQE (SSVQE)
algorithm [44] as one example of such algorithms.

A.1. VQE algorithm

The VQE tries to compute the minimum eigenvalue and its corresponding eigenstate of a given observable H
by minimizing the expectation value of H with the ansatz state |ψ(θ)⟩= U(θ⃗)|0⟩, where U(θ⃗) is the
parameterized unitary circuit on a quantum computer with classical parameters θ⃗ and |0⟩ is some reference
state. When the expectation value E(θ⃗) = ⟨ψ(θ⃗)|H|ψ(θ⃗)⟩ reaches the minimum at θ⃗opt by optimizing the

parameters θ⃗, E(θ⃗opt) and |ψ(θ⃗opt)⟩ are the closest approximation of the lowest eigenvalue and its

corresponding eigenstate, respectively. Evaluation of E(θ⃗) for a given θ⃗ is performed by the near-term
quantum computers, and one uses a classical optimization algorithm to iteratively update the values of θ⃗ to
find the minimum. This classical-quantum hybrid architecture of the VQE algorithm requires less
computational/experimental abilities for quantum computers than the long-term, pure-quantum algorithms
such as the phase estimation, so that one may run it on the near-term quantum computers.

When applying the VQE to the molecular Hamiltonian, first we prepare the observable H as the
second-quantized Hamiltonian of a given molecule by using the finite number of orbitals. Typically, the
Hartree–Fock molecular orbitals are used for the second-quantization and each spin orbital corresponds one
qubit [51, 52]. Since the second-quantized Hamiltonian is written in fermionic operators while quantum
computers can handle with qubit operators P ∈ {I,X,Y,Z}⊗N only, it is then mapped into the linear
combination of qubit operators, H→

∑
P hPP where hP is a coefficient corresponding to the operator P. One

example of such the fermion-spin mapping is the Jordan-Wigner transformation which is reviewed in B.

A.2. Subspace-search variational quantum eigensolver (SSVQE) for excited states

Here, we also review the SSVQE algorithm [44], which is one of the algorithms to find the eigenstates
corresponding to the higher eigenvalues of an observable H on the near-term quantum computers. Suppose
we would like to find the k lowest eigenvalues and eigenstates of H. The SSVQE employs the k reference states
{|ϕi⟩}ki=1 which are mutually orthogonal and prepares the k ansatz states with a parameterized unitary

circuit U(θ⃗) as {|ψi(θ⃗)⟩= U(θ⃗)|ϕi⟩}ki=1. It was shown in [44] that when the following cost function

C(θ⃗) =
k∑

i=1

wi⟨ψi(θ⃗)|H|ψi(θ⃗)⟩ (A1)

takes the minimum at θ⃗opt for appropriate weights {wi}ki=1 satisfying i< j⇒ wi > wj, ith eigenvalue and

eigenstate are approximated by ⟨ψi(θ⃗)|H|ψi(θ⃗)⟩ and |ψi(θ⃗)⟩, respectively. Compared with the VQE for the
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ground state, evaluating the cost function of the SSVQE takes more computational cost (runs of quantum
circuits and measurements) by k times because one need to evaluate ⟨ψi(θ⃗)|H|ψi(θ⃗)⟩ for each i= 1,…, k
separately and combine them. Moreover, the parameterized unitary circuit must be deeper to express the
excited states because they are generally more entangled than the ground state. To implement the deeper
unitary circuit, the fidelity required for the near-term quantum computers is tougher than that for the VQE,
and more parameters need to be optimized so it will take longer for the cost function to converge.

Appendix B. Jordan-Wigner transformation

The Jordan-Wigner transformation [55] converts the fermionic creation and annihilation operators to the
spin (qubit) operators faithfully preserving the algebra. It regards the vacuum state |0⟩ as the down spin | ↓⟩
and the occupied state |1⟩ as the up spin | ↑⟩. The algebra of the fermionic operators follows the
anti-commutation relations

{cm, c†n}= δmn, {cm, cn}= {c†m, c†n}= 0 (B2)

where c†m and cm are the fermionic creation and annihilation operators acting on them-th lattice site,
respectively, and δmn is the Kronecker delta. These relations can be represented in terms of the spin operators
if one replaces the fermionic operators as

c†m → (−1)m−1Z1Z2 · · ·Zm−1σ
+
m , cm → (−1)m−1Z1Z2 · · ·Zm−1σ

−
m (B3)

where σ+
m = (Xm + iYm)/2 and σ−

m = (Xm − iYm)/2.

Appendix C. Nonlinearity of excited-state properies

In this appendix, we present further analysis of the 2-site Hubbard model discussed in section 4. The exact
expressions of the excited-state properties of the Hubbard model in terms of the elements of the classical
vector x|ψ0(r)⟩ present specific examples demonstrating that they may and may not be approximated with a
linear model, given the classical vector.

There are 44 = 256 Pauli operators (from I0I1I2I3 to Z0Z1Z2Z3) which may act on the Hilbert space for the
2-site Hubbard model (11). Exhaustive search for all of these Pauli operators reveals that only two functions
of U appear as the ground state expectation values:

f1(U) :=
1√

1+ 16
U2

=−⟨Z0Z1⟩GS = ⟨Z0Z3⟩GS = ⟨Z1Z2⟩GS =−⟨Z2Z3⟩GS (C4)

=−⟨X0X1X2X3⟩GS =−⟨X0Y1X2Y3⟩GS =−⟨Y0X1Y2X3⟩GS =−⟨Y0Y1Y2Y3⟩GS, (C5)

f2(U) :=
1√

1+ U2

16

= ⟨X0Z1X2⟩GS = ⟨Y0Z1Y2⟩GS = ⟨X1Z2X3⟩GS = ⟨Y1Z2Y3⟩GS (C6)

=−⟨X0X2Z3⟩GS =−⟨Y0Y2Z3⟩GS =−⟨Z0X1X3⟩GS =−⟨Z0Y1Y3⟩GS. (C7)

In other words, for any choice of the entangler Uent, all components of the classical vector

x|ψ0(U)⟩ =
(
⟨ψ0(U)|U†

entX0Uent|ψ0(U)⟩, · · · ,⟨ψ0(U)|U†
entZN−1Uent|ψ0(U)⟩

)T
will be written as a linear

combination of f 1(U) and f 2(U).
Now, we can see that the non-linearity in the classical unit is not necessary for a small value of U, but it is

for a large U. For 0< U≪ 1, f 1(U)≈U/4 and f 2(U)≈ 1, and the excited-state properties in terms of these
functions are

∆E1 ≈ 2− U

2
, ∆E2 ≈ 2+

U

2
, ∥µeg∥ ≈

1√
2
− U

8
√
2
, (C8)
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ignoringO(U2) terms. In this case, the excited-state properties can be expressed easily as the linear
combination of f 1(U) and f 2(U). On the other hand, when U is large, i.e. when 0< 1/U≪ 1, it follows that
f 1(U)≈ 1 and f 2(U)≈ 4/U, and the excited-state properties can be expressed as

∆E1 ≈
4

U
, ∆E2 ≈ U, ∥µeg∥ ≈

2

U
, (C9)

ignoring O(1/U2) terms.∆E2 may not be expressed as a linear combination of f 1 and f 2.
To support the observation, we also perform a numerical simulation for the 2-site Hubbard model. We

randomly sample 30 distinct values of U for the training data and 50 distinct values of it for the test data in
the range of U ∈ [0.1, 6] (Case 1) and U ∈ [0.1, 20] (Case 2). The ground state wavefunction of HHub(U) is
prepared by the exact diagonalization. Instead of using an entangler, here we define the classical vector
x|ψ0(U)⟩ as (⟨Z0Z1⟩GS,⟨X0Z1X2⟩GS)T. The linear regression to learn the excited-state properties
y= (∆E1,∆E2,∥µeg∥)T from x|ψ0(U)⟩ is performed both for Case 1 and Case 2. All values of x|ψ0(U)⟩ and y
are standardized by using the mean and the standard deviation of the training dataset, respectively, during
the training process of the LR. The results are shown in figure C1. The LR predicts the excites state properties
almost perfectly for small values of U as one may see in the results for Case 1, whereas it fails once one tries to
learn and predict from the data with large U values as shown in the results for Case 2, especially evident from
the prediction of∆E2. Those results support our expectation that a linear classical unit can sufficiently
approximate the excited-state properties in the case of small U, but it may not for a large U. We consider a
similar mechanism applies to the numerical simulations of small molecules in section 3, where
atomic-spacings are not very small so that the Coulomb repulsion U is not large.

Appendix D. Time evolution operator as the entangler: its action on the single qubit
operators

In the numerical simulations in section 3, we adopt the time evolution operator e−iHrandT, where Hrand is a
random Hamiltonian and T is a fixed time for the evolution, as the entangler Uent. In this case, we can
intuitively understand the effect of the entangler by considering the time evolution of the single-qubit Pauli
operators

⋃N−1
i=0 {Xi,Yi,Zi} in the Heisenberg picture, where N is the number of qubits in the system.

As discussed in section 2.1, the information we obtain as the outputs of the quantum circuit in our model
are the expectation values of the complicated operators

⋃N−1
i=0 {U†

entXiUent,U
†
entYiUent,U

†
entZiUent} for the

ground state |ψ⟩. If we expand the random Hamiltonian as Hrand =
∑

P∈{I,X,Y,Z}⊗N hPP in the basis of
N-qubit Pauli operators P and coefficients hP, it follows

U†
entXiUent = eiHrandTXie

−iHrandT = Xi + iT
∑

P∈{I,X,Y,Z}⊗N,P̸=I

hP[P,Xi] +O(T2), (D10)

where [A,B]=AB−BA. Same for the Y i and Zi operators. i[P,Xi] is another N-qubit Pauli operator with
larger support (i.e. the number of qubits on which i[P,Xi] acts nontrivially is larger) than Xi, if P nontrivially
acts on the ith qubit and one or more other qubits. As seen in section 4.1 and Appendix C, to estimate the
excited-state properties, we generally need the information of the expectation values of certain Pauli
operators nontrivially acting on multiple qubits. Hence, if the set of the Pauli operators {i[P,Xi]}P includes
such required operators, the machine learning unit may automatically find them and construct the
excited-state properties as a function of the expectation values. We note that O(T2) terms contain the terms
like [[P ′, [P,Xi]], O(T3) terms contain the terms like [[P ′ ′, [P ′, [P,Xi]]], and so on, so even when {i[P,Xi]}P
does not contain the required operators, they may be contained in these higher-order terms, and the
machine learning unit may find them if T is large enough so that the higher-order terms in T contribute
enough to U†

entXiUent. Hence, the operators {U†
entXiUent,U

†
entYiUent,U

†
entZiUent}N−1

i=0 are constituted from
more long-ranged, multi-qubit Pauli operators if (1) the random Hamiltonian Hrand contains stronger and
longer-ranged interactions and/or (2) the time for the evolution becomes larger. This means that the
expectation values of

⋃N−1
i=0 {U†

entXiUent,U
†
entYiUent,U

†
entZiUent} for the ground state |ψ⟩ bring more

information of |ψ⟩ and the original molecular Hamiltonian than those of
⋃N−1

i=0 {Xi,Yi,Zi} for the ground
state, and there is more chance for the machine learning unit to successfully predict the excited-state
properties from the information. We note that the physical picture of the spreading of the single-qubit Pauli
operators over the whole system under chaotic Hamiltonians was discussed in reference [65].
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Figure C1. The prediction results by the trained model for the 2-site Hubbard model (11) with two datasets sampled from (Case
1) U ∈ [0.1, 6] (left column) and (Case 2) U ∈ [0.1, 20] (right column). Top, middle, and bottom panels display the first, second
excitation energies and the transition amplitude, respectively. The green circles indicate the training data points and the red
crosses do the predictions. The exact values are displayed as the black line. Those values are read from the left ticks of each panel.
The blue plot lines with circles represent the absolute errors between the predictions and the exact values, and the orange line
indicates their mean. These error values are read from the right ticks of each panel.

Appendix E. Dependence of the excited-state prediction on the number of shots for the
VQE

In this appendix, we present how the accuracy of the predictions from our model varies with the number of
shots used to perform the VQE for preparing the dataset of the ground states. We carried out the same
numerical simulation for the LiH molecules in the noisy situation as described in sections 3.3 and 3.4.2, but
with the various numbers of shots ranging from 100 to 106 for the computation of the VQE, instead of fixing
it to 10 000 shots. Left panel of figure E2 displays the MAE for the predictions of∆E1 versus the number of
shots for the VQE, showing that the MAE decreases almost monotonically with the number of shots. Right
panel of figure E2 shows the MAE between the ground state energy computed by the VQE and the exact one
obtained by diagonalization of the molecular Hamiltonians of LiH, as a function of the number of shots.

15



Mach. Learn.: Sci. Technol. 1 (2020) 045027 H Kawai and Yuya O Nakagawa

Figure E2. (Left) Dependence of the MAEs of the predictions of∆E1 for LiH on the number of shots employed in performing the
VQE. (Right) Dependence of the MAEs between the ground state energy obtained by the VQE and the exact one computed by
diagonalization of the molecular Hamiltonian of LiH on the number of shots to perform the VQE.

Interestingly, the accuracy of the VQE has an empirical overhead at around 103 − 104 shots and gradually
saturates the infinite-shots limit which is non-zero because of the presence of the noise. Two panels of
figure E2 suggest that the accuracy of the predictions of the excited-state properties is almost independent of
the precision of the computation result from the VQE. Rather, it depends on the number of shots, and one
may simply increase the shots to obtain estimations with higher accuracy. We leave a deeper analysis of this
curious dependence as future work.
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