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Abstract
The development of quantum-classical hybrid (QCH) algorithms is critical to achieve
state-of-the-art computational models. A QCH variational autoencoder (QVAE) was introduced in
reference [1] by some of the authors of this paper. QVAE consists of a classical auto-encoding
structure realized by traditional deep neural networks to perform inference to and generation
from, a discrete latent space. The latent generative process is formalized as thermal sampling from a
quantum Boltzmann machine (QBM). This setup allows quantum-assisted training of deep
generative models by physically simulating the generative process with quantum annealers. In this
paper, we have successfully employed D-Wave quantum annealers as Boltzmann samplers to
perform quantum-assisted, end-to-end training of QVAE. The hybrid structure of QVAE allows us
to deploy current-generation quantum annealers in QCH generative models to achieve competitive
performance on datasets such as MNIST. The results presented in this paper suggest that
commercially available quantum annealers can be deployed, in conjunction with well-crafted
classical deep neutral networks, to achieve competitive results in unsupervised and semisupervised
tasks on large-scale datasets. We also provide evidence that our setup is able to exploit large
latent-space QBMs, which develop slowly mixing modes. This expressive latent space results in
slow and inefficient classical sampling and paves the way to achieve quantum advantage with
quantum annealing in realistic sampling applications.

1. Introduction

Deep learning [2–6], in which a labeled dataset is used to train a statistical model to solve tasks such as
clustering and classification, is currently revolutionizing the field of supervised learning. Deep neural
networks (NN) are now commonly used in many scientific and industrial applications. Unlike supervised
learning [7], unsupervised learning is a much harder, and still largely unsolved, problem. And yet, it has the
appealing potential to learn the hidden statistical correlations of large unlabeled datasets [5, 8, 9], which
constitute the vast majority of data available today.

Training and deployment of large-scale machine learning models, especially for unsupervised learning,
faces computational challenges [10] that are only partially met by the development of special purpose
classical computing units such as GPUs. This has led to an interest in applying quantum computing to
machine learning tasks [11–15] and to the development of several quantum algorithms [16–19] with the
potential to accelerate training. Most quantum machine learning (QML) algorithms need fault-tolerant
quantum computation [20–22], which requires the large-scale integration of millions of qubits and is still

© 2020 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/aba220
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/aba220&domain=pdf&date_stamp=2020-10-29
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8191-3375
mailto:walter.vinci@nasa.gov


Mach. Learn.: Sci. Technol. 1 (2020) 045028 W Vinci et al

not available today. It is however believed that QML will provide the first breakthrough algorithms to be
implemented on commercially available quantum annealers [23, 24] and gate-model devices [25, 26]. For
example, small gate-model devices and quantum annealers have been used to perform quantum heuristic
optimization [26–31] to solve clustering [32] and classification problems [33–36].

Current-generation quantum annealers physically simulate a transverse-field Ising model and operate in
interaction with in a thermal environment [37]. Perhaps the most natural use of quantum annealers is thus
as samplers from the Boltzmann distribution of an Ising system [38–40]. This observation inspired the use of
quantum annealers to perform quantum-assisted training of classical Boltzmann machines (CBMs)8

[41–47], powerful and versatile probabilistic models that can be trained in either a supervised or
unsupervised fashion. Training of CBMs requires computationally-expensive techniques, such as persistent
contrastive divergence (PCD) [48] and population annealing (PA) [49], to accurately sample from the
correct thermal distribution. Quantum annealers with advanced annealing control schedules for the
transverse field allow sampling from both CBM and quantum Boltzmann machine (QBM) [50, 51]. QBMs
[52] might be able to better model input datasets thanks to the more complex correlations realized by
quantum states. Training QBM with classical algorithms is however prohibitively expensive since it requires
the use of QuantumMonte Carlo techniques.

1.1. Quantum-Classical hybrid models
Early numerical studies showed that Boltzmann machines (BMs) with the quasi two-dimensional
connectivities typical of current-generation quantum annealers perform poorly [53], even on simple
standard datasets such as MNIST [54]. A possible approach to circumvent the limitation above is the
following quantum-classical hybrid (QCH) paradigm: 1) employ classical feed-forward NN to encode the
data into a compressed representation that is more easily processed by a quantum device and 2) jointly train
the NN and the quantum device. This approach was pioneered in reference [55], where the authors
introduced a quantum-assisted Helmholtz machine (QAHM), a generative model with latent variables. A
QAHM has an inference (encoder), a generation (decoder) network and a generative process that is
represented by BM and can thus be simulated by a quantum annealer. QAHMs do not have a well-defined
loss function [9], which means that training does not scale well, even to standard machine-learning datasets
such as MNIST. This approach was taken a step further in reference [1] by using variational autoencoders
(VAE), a class of generative models with latent variables that provide an efficient inference mechanism [56,
57]. VAEs can be trained by minimizing the evidence lower bound (ELBO), a variational lower bound to the
exact log-likelihood. The ELBO is a well-defined loss function with fully propagating gradients that can be
efficiently optimized via backpropagation. This allows us to achieve competitive and scalable performance on
large-scale datasets. Upon discretization of the latent space [58, 59], the generative process can be then
realized by CBM or QBM. A QCH variational autoencoder (QVAE) is a VAE with an integrated QBM.
Crucially, QVAEs can also be trained by optimizing a lower bound to the exact log-likelihood [1].

Our hybrid approach exploits a large amount of classical computational resources (backpropagation
through deep NN performed on GPUs). This is advantageous since it allows us to achieve competitive results
on relatively large-scale datasets such as MNIST. However, validating the training with quantum annealers is
a major challenge: VAEs can train well even with unstructured priors (e.g., a product of Gaussian or
Bernoulli distributions). One thus needs to carefully validate and demonstrate any performance
improvement due to the use of structured samples coming from well-trained BMs. To this end, existence of a
well-defined loss function, which allows for a quantitative comparison between different models, is critical.
In order to single out the performance improvement due to computations that can be off-loaded to a
quantum annealer (sampling from the BM), we always focus on comparing the performance of a model
trained with a nontrivially connected BM (for example with full or Chimera connectivity D) to a baseline in
which we employ a BM with no connectivity; that is, a set of independent Bernoulli variables. After a certain
number of gradient updates, training of such models will have used exactly the same amount of classical
resources that cannot be off-loaded to the quantum annealer, with the only difference being the
computational effort needed to correctly sample from the latent-space BM.

A complete description of our model will be given in section 2, more theoretical details about hybrid
quantum-classical VAEs can be found in [1].

1.2. Toward quantum advantage
We successfully train a convolutional QVAE with 288 latent units and Chimera-structured QBM (a 6-by-6
Chimera graph; see appendix D) using only D-Wave 2000Q quantum annealers to draw the samples required

8In the following, we will use the acronyms QBM and CBM to explicitly refer to quantum and classical Boltzmann machines (BM), while
we will simply use BM to refer to either QBM or CBM when the distinction is not necessary.
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to evaluate the gradients for the QBM parameters. We then use several techniques to validate the trained
models. In particular, to perform quantitative evaluation we use auxiliary CBMs trained on the annealer
samples to quantitatively estimate the test log-likelihood. Using these auxiliary CBMs is necessary in practice
since we can easily evaluate the log-likelihood of reasonably large CBMs, while it would not be feasible to
evaluate the log-likelihood of large QBMs. This approach is consistent because we empirically find that the
quantum annealer samples from a QBM with a very small effective transverse field and it is thus close to
simulating a CBM. With this approach, we show that models trained on Chimera connectivity outperform
their trivial (‘Bernoulli’) baseline and can achieve competitive performance on the MNIST dataset.

The next question is whether our approach offers a path toward obtaining quantum advantage with
quantum annealers in machine learning applications. To achieve such a goal, we need to exploit large
latent-space BMs that develop complex multimodal probability distributions (i.e., a complex energy
landscape) from which sampling is classically inefficient. We give evidence that this is indeed possible within
our setup. For example, we demonstrate that the BMs placed in the latent space develop nontrivial modes
that are likely to cause Monte Carlo algorithms to have long mixing times. Moreover, we show that training
on more complex datasets likely takes advantage of larger BMs to improve performance. In addition, we
discuss the role of connectivity, emphasizing its importance even in this hybrid approach and the necessity to
develop device-specific classical NN to better exploit physical connectivities such as the Chimera graph.

The structure of the paper is as follows. In section 2 we review VAE and the implementations of discrete
latent variables, a necessary step to implement BMs and QBMs in their latent space. Section 3 motivates the
use of quantum annealers as samplers to train quantum and classical BMs. In section 4 we report our
experiments in training VAEs with D-Wave 2000Q systems. In section 5 we discuss a possible path toward
quantum advantage in our setup. Finally, we present our conclusions in section 6.

2. Variational autoencoders

In this section, we will briefly introduce VAEs and describe their extension to discrete latent variables; a
necessary step to hybridize with quantum priors and to perform quantum-assisted training.

In generative modeling, the goal is to train a probabilistic model such that the model distribution pθ(X)
(where θ are the parameters of the model) is as close as possible to the data distribution, pdata(X), which is
unknown but assumed to exist. The ensemble X= {xd}Nd=1 represents the training set; that is,N independent
and identically distributed samples coming from pdata(X). Maximum likelihood estimation (MLE) is
arguably the most mathematically justified method for training probabilistic models (although needs not
always to be the preferred, see reference [60] for a discussion). With MLE training the optimal model
parameters are obtained by maximizing the log-likelihood L(X,θ) of the dataset with respect to the model:

L(X,θ) =
∑
x∈X

pdata(x) logpθ(x) = Ex∼pdata [logpθ(x)] , (1)

where Ex∼pdata [. . . ] is the expectation over pdata(x). Similarly to generative adversarial networks [61], VAEs
[56] are ‘directed’ probabilistic models with latent variables (see figure 1): the model distribution, defined as
the joint between the visible units x and latent units ζ, is explicitly parameterized as the product of the ‘prior’
pθ(ζ) and ‘marginal’ pθ(x|ζ) distributions, pθ(x,ζ) = pθ(x|ζ)pθ(ζ). The model prediction for the data is
then obtained by marginalizing over the latent units:

pθ(x) =

ˆ
pθ(x|ζ)pθ(ζ)dζ . (2)

Generative models with latent variables can potentially learn and encode useful representations of the
data in the latent space. This is an important property that can be exploited in many practical applications
[62–65] to improve other tasks such as supervised and semi-supervised learning [66]. The drawback is
‘intractable inference’ due to the appearance of integrals such as the one in equation (2). Essentially, VAEs
remove the necessity to evaluate such integrals by introducing a variational approximation qϕ(ζ|x) to the
true posterior pθ(ζ|x). A so-called ‘reparameterization trick’ is also introduced to obtain an efficient and
low-variance estimate of the gradients needed for training. We will briefly review these two important
elements in the next two sections.

2.1. Variational inference
Training generative models with latent variables via MLE requires the evaluation of the intractable integral of
equation (2) to calculate the posterior distribution pθ(ζ|x). VAEs circumvent this problem by introducing a
tractable variational approximation qϕ(ζ|x) to the true posterior [67], with variational parameters ϕ (see

3
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ζ

x

prior: pθ(ζ)

joint: pθ(x, ζ)

marginal: pθ(x|ζ)approx. posterior: qφ(ζ|x)

Figure 1. Generative models with latent variables can be represented as probabilistic graphical models that describe conditional
relationships among variables. In a directed generative model, the joint probability distribution pθ(x,ζ), is decomposed as
pθ(x,ζ) = pθ(x|ζ)pθ(ζ). The prior distribution over the latent variables pθ(ζ) and the marginal (decoder) distribution
pθ(x|ζ) are hard-coded to explicitly define the model. The computation of the true posterior, pθ(ζ|x) is intractable. In VAEs, an
approximating posterior qϕ(ζ|x) (decoder) is introduced to replace the true posterior.

figure 1). VAEs are then trained by maximizing a variational lower bound L(x,θ,ϕ) to the log-probabilities
logpθ(x):

L(x,θ,ϕ) = logpθ(x)−Eζ∼qϕ(ζ|x)

[
log

qϕ(ζ|x)
pθ(ζ|x)

]
≡

≡ logpθ(x)−DKL(qϕ(ζ|x)||pθ(ζ|x)) , (3)

where DKL(qϕ(ζ|x)||pθ(ζ|x)) is the Kullback-Leibler divergence (KL divergence) between the true and
approximating posteriors. Since KL divergences are always non-negative, we have

L(x,θ,ϕ)≤ logpθ(x), (4)

which immediately gives:

L(X,θ,ϕ) ≡ Ex∼pdata [L(x,θ,ϕ)]
≤ Ex∼pdata [logpθ(x)]≡ L(X,θ) , (5)

where L(X,θ,ϕ) is called the ELBO. The ELBO can be written in terms of tractable quantities:

L(X,θ,ϕ) = Ex∼pdata

[
Eζ∼qϕ(ζ|x)[logpθ(x|ζ)]+

− DKL(qϕ(ζ|x)||pθ(ζ))
]
. (6)

The marginal pθ(x|ζ) and approximating posterior qϕ(ζ|x), also called ‘decoder’ and ‘encoder’, respectively.
In our set-up, both encoder and decoder are a product of Bernoulli distributions whose parameters
(probabilities, or logits) are modeled by the convolutional NN described in section A.

2.2. The reparameterization trick
To train VAEs, we need to calculate the derivatives of the objective function (equation (6)) with respect to the
generative (θ) and inference (ϕ) parameters. The naive evaluation of ∂ϕ of terms of the type Eζ∼qϕ [f(ζ)] is
called REINFORCE [68]. With the use of the identity ∂ϕqϕ = qϕ∂ϕ logqϕ, one has:

∂ϕEζ∼qϕ [f(ζ)] = Eζ∼qϕ [f(ζ)∂ϕ logqϕ] . (7)

However, the term above has high variance and requires intricate variance-reduction mechanisms to be of
practical use [69].

A better approach is to write the random variable ζ as a deterministic function of the distribution
parameters ϕ and of an additional auxiliary random variable ρ. The latter is given by a probability
distribution p(ρ) that does not depend on ϕ. This reparameterization ζ(ϕ,ρ) is appropriately chosen so
that one can write Eζ∼qϕ [f(ζ)] = Eρ∼p(ρ)[f(ζ(ϕ,ρ))]. Therefore, we can move the derivative inside the
expectation with no difficulties:

∂ϕEζ∼qϕ [f(ζ)] = Eρ∼p(ρ) [∂ϕf(ζ(ϕ,ρ))] . (8)

This is called the reparameterization trick [56] and its efficient implementation is responsible for the recent
success and proliferation of VAE.
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2.3. VAE with discrete latent variables
The application of the reparameterization trick as in equation (8) requires that f(ζ(ϕ,ρ)) be differentiable,
so the latent variables ζ are continuous. However, discrete latent units can be indispensable to represent the
right distributions, such as in attention models, language modeling and reinforcement learning [66, 70, 71].
For example, a latent space composed of discrete variables can learn to disentangle content and style
information of images in an unsupervised fashion [72]. Several methods have thus been developed to
circumvent the non-differentiability of discrete latent units [69, 73–75]. In the context of VAE, the
reparameterization trick has been extended to discrete variables by either relaxation of discrete variables into
continuous variables [59, 70, 76] or by introducing smoothing functions [58]. In reference [1], QVAE was
introduced based on the implementation of reference [58]. In this work, we follow the implementation of
reference [59], which gives biased estimates but provides a much simpler and flexible implementation.

To set up a notation that we keep throughout the paper, we now assume the prior distribution is defined
on a set of discrete variables ζ ∼ pθ(ζ), with ζ ∈ {0,1}L. Given a discrete variable z with mean q and logit
l= σ−1(q) = log(q)− log(1− q) (where σ = 1/[1+ exp(−l)] is the sigmoid function), a non-differentiable
implementation of equation (8) for discrete variables can be obtained as

z=Θ[ρ− (1− q)] = Θ[σ−1(ρ)+ l)] , (9)

whereΘ is the Heaviside function and the random variable ρ∈ [0, 1] is distributed according to a uniform
distribution U . In the second equality, we have used the fact that the inverse sigmoid function is monotonic.

A continuous smoothing (also known as the Gumbel trick [76]), is performed by replacing the Heaviside
function with the sigmoid function:

z=Θ[σ−1(ρ)+ l]⇝ ζ = σ

(
σ−1(ρ)+ l

τ

)
, (10)

where τ is a temperature parameter introduced to control the smoothing. Typically, τ is annealed from large
to low values during training. For large values of τ , the bias introduced by substituting ζ with ζ everywhere
in the loss function is large, but the gradients propagating through ζ are also large, facilitating training.
Conversely, for low values of τ the bias is reduced but gradients vanish and training stops. Evaluation of
trained models is done in the limit τ → 0, where ζ → ζ. Throughout this paper, we will use BMs to provide
powerful and expressive prior distributions defined on discrete variables. For CBMs:

pθ(ζ) ≡ e−Hθ(ζ)/Zθ , Zθ ≡
∑
ζ

e−Hθ(ζ) ,

Hθ(ζ) ≡
∑
l

zlbl +
∑
l<m

Wlmzlzm . (11)

To train a VAE with CBM prior, following the prescription of the previous section, we formally replace
pθ(ζ)⇝ pθ(ζ). As usual, the gradient of log-probability is given by the difference between a positive and
negative phase:

∂ logpθ(ζϕ) =−∂Hθ(ζϕ)+Eζ̄∼pθ [∂Hθ(ζ̄)] . (12)

In the equation above, we have highlighted the fact that the smoothed latent samples ζϕ depend on the
variational parameters ϕ. The model samples ζ̄, however, remain discrete variables sampled from the CBM
and are thus not smoothed during training [59].

2.4. Hybridization with quantum prior
Once we have a framework to train VAEs with discrete latent variables, we can consider QCH VAEs in which
the generative process ζ ∼ pθ(ζ) is realized by measuring the computational basis on a given quantum state
ρθ . Such quantum states can be realized by a quantum circuit or via a quantum annealing process controlled
by a set of parameters θ we wish to adjust during training of the model.

As introduced in reference [1], QVAE is obtained by assuming the quantum state ρθ is a Gibbs state of a
transverse field Ising model; i.e., a QBM [52]. The prior pθ(ζ) distribution is then given by:

pθ(ζ) ≡ Tr[Λζe
−Hθ ]/Zθ , Zθ ≡ Tr[e−Hθ ] ,

Hθ =
∑
l

σx
l Γl +

∑
l

σz
l bl +

∑
l<m

Wlmσ
z
l σ

z
m, (13)
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where Γ,h,W ∈ {θ}, Λζ ≡ |ζ⟩⟨ζ| is the projector on the classical state ζ and σx,z
l are Pauli operators. Unlike

for a classical BM, the direct evaluation of the gradients of the logpθ(ζ) above is intractable. As discussed in
reference [52], a possible workaround is to perform the following substitution:

pθ(ζ) = Tr[Λζe
−Hθ ]/Zθ → p̃θ(ζ) = e−Hθ(ζ)/Zθ (14)

in the ELBO L, whereHθ(ζ)≡ ⟨ζ|Hθ|ζ⟩, to obtain the so-called quantum ELBO (Q-ELBO) L̃. As a
consequence of the Golden-Thompson inequality Tr[eAeB]≥ Tr[eA+B], one has:

pθ(ζ)≥ p̃θ(ζ) ⇒ L≥ L̃ . (15)

The Q-ELBO L̃ is thus a lower bound to the ELBO with tractable gradients that can be used during training.
The derivatives of the log-probabilities log p̃θ(ζ) can be estimated via sampling from the QBM [52]:

∂ log p̃θ(ζ) =−∂Hθ(ζ)+Eζ̄∼pθ [∂Hθ(ζ̄)] , (16)

where ζ̄ are the model samples distributed according to the quantum Boltzmann distribution. The use of the
Q-ELBO and its gradients precludes the training of the transverse field Γ [52], which is treated as a constant
(hyper-parameter) throughout the training. Training via the Q-ELBO is performed as in the BM case, by
smoothing ζ⇝ ζ.

3. Sampling with quantum annealers

Currently manufactured quantum annealers physically implement a transverse-field Ising model:

H(s) = A(s)
∑
l

σx
l +B(s)

[∑
l

σz
l hl +

∑
l<m

Jlmσ
z
l σ

z
m

]
,

where s∈ [0, 1] is a control parameter and A(s) and B(s) are, respectively, decreasing and increasing
monotonic functions of the parameter s with A(0)≫ B(0) and A(1)≪ B(1). Quantum annealers operate
immersed in a thermal environment. There is theoretical and numerical evidence [37, 42, 77, 78] that when
the anneal is performed sufficiently slowly the system above is in thermal equilibrium with the environment.
This property can be exploited to turn quantum annealers into programmable Boltzmann samplers.
Thermal relaxation rates are controlled by the intensity of the transverse field A(s). At the beginning of the
anneal, relaxation times are small and the system proceeds through a sequence of thermal states. As the
anneal proceeds, relaxation times grow larger and eventually the state of the system freezes at the point s*

where relaxation times roughly become larger than the annealing time ta.
With the above picture in mind, we can use quantum annealers to sample from the QBM defined in

equation (13) with:

bl = β∗
effhl, Wlm = β∗

effJlm, Γl = β∗
effΓ

∗,

βeff ≡ B(s∗)/βphys, Γ∗ ≡ A(s∗)/B(s∗) . (17)

Advanced control techniques for the anneal schedule (such as pauses and fast ramps present in the latest
generation of D-Wave quantum annealers) allow in principle to control the freezing point s*. To perform
such sampling we used the publicly available Solver API provided by D-Wave [79].

Note however that the explicit knowledge of the effective transverse field Γ* is not necessary. QBMs are
trained using the gradients evaluated according to equation (16): the first term does not depend on the
transverse field, while the second term depends only implicitly on the transverse field in determining the
statistics of the model samples. This observation allows us to train the QBM using a quantum annealer via
maximization of the Q-ELBO without explicitly knowing the value of the effective transverse field Γ* at
which the annealer samples. In the following we assume that for the models and datasets under
consideration freezing happens late in the anneal. This means we effectively sample from a QBM that is very
close to a CBM. This motivates and justifies our approach to validate the learned models using auxiliary
CBMs, as described in the next section. Alternatively, our approach can be also seen as using quantum
annealers to quantum-assist training of VAEs with latent-space CBMs.

6
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Figure 2. Images generated by sampling latent configurations with a quantum annealer that are subsequently transformed by a
classical deconvolutional decoder. The classical networks and the quantum annealer weights have been trained end-to-end for
2000 epochs on the MNIST dataset using the quantum annealer as a sampler for estimating the gradients of the annealing
parameters.

4. Training VAE with quantum annealers

We have implemented a convolutional VAE whose prior is implemented by a QBM. To improve the
performance of the model, we use several techniques such as learning-rate and KL-term annealing,
importance-weight annealing, convolution gating and batch normalization. We give a detailed description of
the model in appendix A. In this section, we restrict ourselves to a Chimera structured QBM with 288 latent
units (a six-by-six patch of Chimera cells) and present our results with models trained end-to-end by using
samples drawn with D-Wave 2000Q quantum annealers on the common handwritten digit dataset MNIST
[54]. Samples used to estimate the negative phase (second term of equation (16)) are obtained following the
prescription given in appendix B.

The effective temperature β∗
eff must be chosen appropriately to correctly train the parameters of the

inference network qϕ (see appendix C for a more detailed discussion). The parameter β∗
eff can be considered

as a multiplicative correction for the learning rate of the prior parameters b,W ∈ θ. However, this
observation is not true for the inference parameters ϕ, whose gradients also propagate through the first term
in equation (16) via ζ(ϕ,ρ). Due to our simple forward-anneal schedule, we expect the value of β∗

eff to
change during training. To account for this effect, in this work we employ a real-time β∗

eff estimation as
explained in appendix C. In future works, we expect to be able to train at a fixed-temperature with
appropriate pause-and-ramp annealing schedules such as those available with D-Wave quantum annealers
[50, 51].

Training is performed jointly on the parameters of the classical networks and on the parameters of the
quantum device. The gradients of the latter parameters require estimation of the negative phase (a thermal
expectation of the energy) in equation (16). At each gradient update, such expectations are computed using
samples from the quantum annealer only and do not involve any classical Gibbs sampling such as PVD, or
any classical post-processing of the samples obtained by the annealer. We typically trained our models for
2000 epochs and a batch size of 1000. Figure 2 shows a set of images generated by a VAE trained end-to-end
using a D-Wave 2000Q system. The set of images, obtained by generating latent samples ζ with the quantum
annealer and subsequently decoded as x∼ pθ(x|ζ), shows a good amount of global consistency and
consistent statistical variety.

4.1. Validation of training
In this section we give more evidence that we have successfully exploited the Chimera-structured QBM prior
in the latent space of our convolutional VAE. Validating the training of QCH generative models can be
nontrivial and must be assessed carefully, especially when training uses a large amount of classical processing.
We trained the deep networks of our model using GTX 1080 Ti GPUs and the quantum annealer is called
only to estimate the negative phase. A principled validation strategy is thus to compare a model trained with
quantum assistance to a simpler baseline for which the quantum hardware is not required. In our case, a

7
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Figure 3. Visual validation of training with Chimera connectivities is not conclusive.

Table 1. Log-likelihood of convolutional VAEs trained with samples coming from either D-Wave 2000Q or PA. All models share the
same encoding and decoding networks, but are trained independently for 2000 epochs on the MNIST dataset.

MNIST (dynamic binarization) LL

Sampler Chimera Bernoulli
DW2000Q −82.8± 0.2 −83.7± 0.2
PA −82.8± 0.1 −84.2± 0.05

convenient baseline is a model that has the same classical networks but whose prior is trivial. As a trivial
prior, we choose a set of independent Bernoulli variables, which is equivalent to a QBM with vanishing
weights between latent units. For simplicity, in the following we refer to such prior as Bernoulli prior9.

For image processing, comparison between different generative models could be done qualitatively by
visually inspecting the generated samples [60]. In our research however, visual comparison is inconclusive. In
figure 3, for example, we compare samples generated by a trained model with Chimera (figure 3(a)) and
Bernoulli (figure 3b) priors. Both models have been trained by evaluating the negative phase with a D-Wave
2000Q system. The images are also generated using samples coming from the annealers. Given our specific
implementation, it is difficult to discern an improvement of visual quality when using a Chimera-structured
rather than a Bernoulli prior. To overcome this difficulty, we seek to evaluate quantitatively the generative
performance of our model by computing the ELBO defined in equation (3) or by estimating the
log-likelihood via an importance sampling technique as described in reference [57]. These quantities are
however not accessible when training with analog devices as samplers. In fact, while we assume that samples
generated by quantum annealers are distributed according to the required Boltzmann distribution, we must
treat quantum annealers as black-box samplers during testing and validation. In other words, the
log-probabilities for the quantum generative process log pDWθ (ζ)must be assumed to be unknown.
Therefore, we validate results by replacing the unknown hardware log-probabilities with those of an auxiliary
CBM whose weights are given by the relations in equation (17) 10:

logpDWh,J (ζ)⇝ logpCBMb,W (ζ) . (18)

This approach can be more rigorously interpreted as validating a fully classical model in which we replace the
quantum annealer by the auxiliary CBM defined by the relations above. We can consistently evaluate training
using a fully classical auxiliary model since the quantum bias due to the presence of a transverse field is small
enough that the estimation of the negative phase of the QBM [80] obtained with the quantum annealer is a
good approximation of the negative phase of the auxiliary CBM.

In table 1 we report the LL of the auxiliary VAE with 288 latent unit on a Chimera connectivity trained
with a D-Wave 2000Q quantum annealer. We compare it to a VAE with a CBM trained end-to-end with PA
[1]. We also compare each model with its respective Bernoulli baseline. We have reported the mean and the
standard error over 5 independent training runs.

9Both CBMs and QBMs with no weights are trivially equivalent to a product of independent Bernoulli variables.
10The computation of the log-probabilities requires the estimation of the partition function, which is done using annealed population
sampling as in reference [1].
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Figure 4. Left panel: Samples generated by D-Wave 2000Q using a fully trained model. Right panel: Samples generated by D-Wave
2000Q after setting the couplings of the annealer to zero.

Training on Chimera improves significantly the log-likelihood of the auxiliary model over the Bernoulli
baseline. Moreover, the auxiliary models trained with quantum annealers achieved the same log-likelihood as
the models trained with PA. Notice that each model and its baseline employed exactly the same amount of
classical computational resources. Models trained with structured BMs achieve better performance by
requiring thermal sampling, a computational task that can be offloaded to a quantum annealer.

In general we would like to use quantum annealers to sample from the trained generative model. As
explained above, treating quantum annealers as black-boxes means we cannot quantitatively evaluate such a
model. However, we argue that the log-likelihood of such a QVAE is likely very close to that of the auxiliary
VAE. After all, the training assumes the hardware samples are distributed according to a Boltzmann
distribution of the auxiliary restricted BM (RBM) and in the previous section we have shown that this
assumption is accurate enough to correctly train the auxiliary CBM. We perform an additional visual analysis
in figure 4. On the left panel we show a set of digits generated by sampling from a D-Wave 2000Q. On the
right panel we use the same trained model but sample from a D-Wave 2000Q after setting its weights to zero.
We see that while the annealer still generates plausible digits, it does not generate an ensamble of digits with
the correct statistics (in the right panel of figure 4, digits 9 and 4 seem to dominate the scene). This gives
evidence that D-Wave 2000Q quantum annealers sampled consistently, such that the classical networks were
able to correctly learn the correlations between latent units existing due to the QBM with non-vanishing
weights.

5. A path toward quantum advantage with VAE

In the previous section we have shown that it is possible to use quantum annealers as Boltzmann samplers to
train QVAE. In the experiments presented, we have settled on relatively small, Chimera-structured QBMs
with 288 latent units. We found that larger QBMs did not appreciably improve performance of the overall
VAE when training on the MNIST dataset. We will explain why this is the case in this section. Sampling from
CBMs with a few hundred units can still be done classically with relative ease and the natural question that
arises is whether we can obtain a quantum advantage in this hybrid setup.

A necessary condition to obtaining quantum advantage with our QCH setup is to engineer models that
can exploit very large BMs with complex, multimodal distributions. Sampling from CBMs with complex
landscapes is slow and inefficient for classical approaches such as Gibbs sampling, PCD, PA. Sampling from
QBMs is especially computationally intensive since it requires QuantumMonte Carlo. Another important
requirement is to be able to reliably sample from thermal states using quantum annealers with sufficiently
low control errors.

In the next sections, we give evidence of the existence of a natural path toward obtaining quantum
advantage by applying quantum annealing to generative modeling within the proposed VAE framework. Our
discussion is based on a set of numerical experiments in which we have trained VAE with CBM, but it equally
applies to QVAEs models with integrated latent-space QBMs.

5.1. Exploit large latent-space RBMs
Exploiting a larger number of latent units to improve the generative performance of a VAE is a popular and
active research area. One known obstacle in achieving this is the loss function used for training. We rewrite
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Figure 5. Comparison of active units during training between a D-Wave 2000Q and population annealing on both Chimera and
Bernoulli priors.

the ELBO here for convenience by highlighting its two terms:

L(x,ζ,ϕ) = Eζ∼qϕ(ζ|x)[logpθ(x|ζ)]︸ ︷︷ ︸
autoencoding term

+

− DKL(qϕ(ζ|x)||pζ(ζ))︸ ︷︷ ︸
KL−regularization

. (19)

The first term is sometimes called the ‘autoencoding’ term and can be thought of as a reconstruction error:
an encoded latent configuration ζeta is first sampled from the encoder qϕ(ζ|x) and is subsequently decoded
by pθ(x|ζ). When both approximating posterior and marginal distributions are factorized distributions, this
term can be also interpreted as a reconstruction error. Maximizing the ELBO results in maximizing this term,
which tends to maximize the number of latent units used to prevent information loss during the
encoding-decoding steps. The second term, the KL divergence between the approximating posterior and the
prior, has the effect of a regularization term and it is sometimes also called KL regularization. Maximizing
the ELBO results in minimizing the KL term, which pushes the approximating posterior close to the prior.
This also means the approximating posterior depends less sharply on the inputs x. In the case of factorized
distributions, this usually means some latent units are conditionally independent from the input (‘inactive
units’): zinact ∼ qθ(zinact|x) = qθ(zinact).

The balance between the autoencoding and KL terms means using VAE can be efficient at lossy data
compression by using the right number of latent units. However, the tension between KL and autoencoding
terms results in an optimization challenge: during training the model is usually stuck in a local minimum
with a suboptimal number of latent units. The main takeaway, for our purposes, is that the number of latent
units effectively used is highly dependent on the model, the optimization technique and the training set. To
exploit a larger BM, one thus has to work on all these elements. In figure 5 we show the number of active
units during a training run of 2000 epochs when the models are trained with either PA or D-Wave 2000Q,
with either a Chimera-structured BM or a Bernoulli prior. Lines (bold or dashed) are the means over 5
independent runs while light-color areas delimit the smallest and largest values among the 5 runs. To identify
whether a latent unit is active or not, we compute the variance σ of the value of each unit z over the test set
and we set a threshold of σ > 0.01 as definition of an active unit.

Figure 5 shows several key points that we will expand upon in the next sections. First, it shows the use of
a KL annealing technique: the KL term is turned off at the beginning of the training and it is slowly (linearly)
turned on within 200 epochs. The figure clearly shows the effect of the KL term in shutting down a large
number of active units. Since the number of active units plateaus around a number much lower than 288,
using a larger BM usually does not improve performance of our implementation on MNIST. It also shows
that connectivity of the BM plays a major role in determining the number of active units, which is much
higher with a Chimera-structured BM. Notice also that in the Bernoulli case, both samplers (PA and D-Wave
2000Q) train a model that uses a very similar number of latent units. However, when sampling is nontrivial
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Figure 6. Comparison between VAE using different latent-space CBM connectivities and same convolutional networks. Both
log-likelihood (left panel) and latent-space utilization (right panel) improve with more densely connected CBM. Performance on
Pegasus graph increases despite the development of an architecture fairly optimized for Chimera graphs.

(as in a Chimera-structured BM) the model trained with the quantum annealer uses a number of units larger
than the Bernoulli case, but smaller than the model trained with PA. This is a manifestation (which we will
discuss later) of biased sampling with the quantum annealer: sampling quality is good enough to train the
model (indeed we obtained a log-likelihood as good as that of the model trained with PA) but exploits a
smaller number of latent units.

In the next three sections we discuss three important elements that would allow to build QCH VAEs that
can effectively exploit large latent-space BMs. This is a necessary condition to search for quantum advantage
in these models: speed-up and scale-up sampling from large BMs using quantum annealers rather than
inefficient classical sampling techniques.

5.1.1. Denser connectivities
Connectivity of the BM in the latent space plays an important role in determining both performance of the
generative model and number of active latent units. While these two elements are not directly related, we
typically observe a correlation between them. In this section, we investigate in more detail the effects of
implementing denser connectivities by performing numerical experiments in four different cases: Bernoulli
prior and Chimera, Pegasus and fully-connected RBM. Together with Bernoulli and RBM, we pick the
connectivities of currently available D-Wave 2000Q quantum annealers and D-Wave’s next-generation
Pegasus architecture [81] (see also appendix D).

In figure 6 we compare the log-likelihood and the number of active units along training runs obtained
using the same classical networks but using a different connectivity for the latent-space RBM prior. At each
step during the training run, we employed roughly the same amount of classical resources for
back-propagation. Unsurprisingly, using a more capable (dense) BM results in better generative performance
(log-likelihood) of the model (left panel)). It also results in using a larger number of latent units (right
panel). Notice how Bernoulli and Chimera priors effectively use a number of latent units well below 150,
while Pegasus and fully connected use well above 150. Because of this, we could not improve generative
performance of Bernoulli and Chimera models by just using larger graphs, at least when training on MNIST.
On the other hand, using larger Pegasus and fully connected RBMs would likely have improved the
log-likelihood of the model. In figure 6 we show results on the same number of latent units (288) for proper
comparison.

Working with VAEs allows us to easily take advantage of new connectivities without having to implement
a new convolutional VAE. In fact, our model has been fairly optimized to improve performance on Chimera
graphs (see the next section). Despite this architecture-specific optimization, just using the denser Pegasus
graphs improve performance of the model. Moreover, the flexibility of the VAE hybrid approach allows us to
easily adapt the implementation to the slightly different working graphs of different processors with different
active/inactive qubits. By using the same implementation, during training the model naturally learns to
deactivate latent units corresponding to uncalibrated qubits. We have indeed seamlessly used the same model
to train on different D-Wave 2000Q processors, as well as using different groups of qubits within the same
processor. In no case was a hard-coded connectivity (which would change for each processor) necessary.

The results of figure 6 show that developing quantum annealers with denser connectivities (such as
Pegasus) naturally leads to exploiting larger latent-space BMs, possibly getting us closer to a regime where
quantum advantage is possible.
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Figure 7. Implementation of a conditional approximate posterior (left), with two possible mappings between groups.

5.1.2. Hardware-specific optimization of classical networks
In our implementation, we have used fairly conventional convolutional NN. As we will discuss in this
section, we have implemented only one specific architecture-dependent element in the encoder network that
turned out to be very effective at improving performance on the Chimera graph. In general, we believe more
elaborate, hardware-specific implementations of both the approximating posterior qϕ(ζ|x) and the marginal
distribution pθ(x|ζ) will significantly improve performance of VAE trained with analog devices with quasi
two-dimensional connectivities. This is not just a problem of building a model with more capacity. As we
discussed in the case of latent-unit use, it is also a problem of optimizing the model hyperparameters. When
working with sparsely connected BMs, it is easier for the KL term to push both approximating posterior and
BM prior to a local minimum of the loss function in which they are both trivial. Developing
hardware-specific hybrid models will thus also aim at reaching local minima during training in which the
BM prior is as expressive as possible, exploiting the largest amount of correlations between latent units.

In the context of hybrid VAE models trained with quantum annealers, the considerations above could
replace more standard mapping techniques used in the quantum annealing community such as minor
embedding [82, 83] and majority voting. The latter techniques typically require a hard-coded specification of
the hardware connectivity of each processor, which makes adapting the code to different processors
cumbersome. Our perspective in the contest of hybrid generative modeling is to work by adapting classical
networks using a high-level specification of the connectivity and letting the model, through stochastic
gradient descent, learn the details of the connectivity of each processor (such as the locations of uncalibrated
qubits).

We now discuss an example of how the classical networks can be optimized for a given architecture (in
our case the Chimera graph). A common technique to implement a more expressive approximating posterior
qϕ(ζ|x) (with a tighter variational bound) is to introduce conditional relationships among latent units, also
called hierarchies. In the case of two hierarchies, we first define an approximating posterior for a subset of
latent units ζ1 and sample from it, then define a second approximating posterior for the remaining latent
units ζ2 that depends conditionally on both the input data and the sampled values of the first group of latent
variables:

ζ1 ∼ q1,ϕ(ζ1|x) , ζ2 ∼ q2,ϕ(ζ2, |ζ1,x) . (20)

The schematic of our implementation is shown in figure 7(a). We notice that models with a large number of
hierarchies (possibly as large as the number of latent units) are possible. Such models, also referred to as
autoregressive models [84], are very powerful but have inefficient inference, since sampling must be
performed sequentially and cannot be parallelized on modern GPU hardware.

The two hierarchical groups (ζ1,ζ2), as well as the physical qubits on the Chimera connectivity, are not
equivalent. We can thus build different models by simply choosing the mapping between the two hierarchical
groups and an arbitrary bipartition of the physical qubits. Notice that training and deploying each of these
models will involve exactly the same amount of classical and quantum computational resources. In our
experiments we consider two possible mappings of the two hierarchical groups onto the physical qubits of
the Chimera graph, which we call ‘Bipartite’ and ‘Chains’. The Bipartite mapping corresponds to the bipartite
structure of the Chimera graph (see figure 7(b). The Chains mapping corresponds to the vertical and
horizontal physical layout of qubits of the Chimera architecture (see figure 7(c)). The identification of
vertical and horizontal chains of qubits is commonly used to perform a minor embedding of an RBM on the
Chimera graph. We stress again, however, that we never perform any minor embedding and we always
sample from the native Chimera graph in all cases.
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Figure 8. Left panel: Log-likelihood comparison for chains and bipartite mappings. Right panel: Active units comparison for
chains and bipartite mappings.

Comparative results of the two mappings, obtained with classical sampling, are shown in figure 8. In the
left panel we see that there is a sizeable difference in generative performance between the two mappings, with
the Chains mapping performing remarkably better. This better performance is also reflected in the much
higher number of latent units exploited by the Chains mapping (see right panel of figure 8). An intuitive
explanation of the results above can be given as follows. Let us first write the KL term as:

DKL(qϕ(ζ|x)||pθ(ζ)) = DKL(q1,ϕ(ζ1|x)||pθ(ζ1))+

+ DKL(q2,ϕ(ζ2|ζ1,x)||pθ(ζ2|ζ1)) . (21)

In the Bipartite mapping, the conditional pθ(ζ2|ζ1) has a simple form that can be computed analytically due
to the bipartite structure of the Chimera graph. During training, it is very easy for the model to use the
capacity of q2,ϕ(ζ2|ζ1,x) to match the simple prior marginal pθ(ζ2|ζ1) and be independent from x. As a
consequence, a large portion of the representational capacity of the approximating posterior is wasted in
representing the simple marginal pθ(ζ2|ζ1). In the Chains mapping, in contrast, the marginal pθ(ζ2|ζ1) is
nontrivial and the approximating posterior q2,ϕ(ζ2|ζ1,x) has more difficulties in matching it and
decoupling x. As a consequence, the model ends up using more efficiently all the variational parameters ϕ.
This is another manifestation of the optimization challenge present with VAE models mentioned before,
which in this case it is exploited to find better local minima of the loss function.

In this section we have shown how a simple architecture-aware modification of the encoder network
allows us to train better models and to exploit a given architecture more efficiently. We expect that
architecture-aware model-engineering will be crucial to fully exploit large physical connectivities in the latent
space of VAE.

5.1.3. Training on larger datasets
Implementing more highly connected BMs and developing classical encoders and decoders tailored to a
given connectivity can only go so far in helping to exploit larger latent spaces. Together with other techniques
such as KL-term anneal, the ideas mentioned in the previous two sections help reduce the pressure of the KL
term to reach suboptimal local minima. In essence, VAE are also efficient lossy encoders. An alternative
direction to increase latent space utilization is thus to train on more complex datasets. By doing so, a larger
number of latent units is necessary to store enough information such that the reconstruction term (first term
in equation (19)) is large enough.

We give numerical evidence of the intuition above by training the same VAE models used in the previous
sections on the Fashion MNIST (FMNIST) dataset. A set of images from the FMINST dataset is shown in the
left panel of figure 9. FMNIST is the same size as MNIST (60 000, 28× 28 images) and has the same number
of classes. However, its images are more complex with more fine details, including grey-scale features that are
important for correct image classification (whereas MNIST digits are substantially black and white). In the
right panel of figure 9, we train the same models on MNIST (shaded) and FMNIST (solid) and compare the
number of active units during training. We see that, apart from the case with fully connected RBMs, all other
models use a substantially larger number of latent units.
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Figure 9. Left panel: Fashion MNIST dataset. Right panel: Active units for the same VAE models trained on FMNIST (solid
colors) and on MNIST (shaded colors). All models with sparse latent connectivities use a much larger number of latent units
when trained on the more complex dataset.

5.2. Multi-modality of latent-space RBMs
Exploiting large latent-space BMs is a necessary condition to eventually achieve quantum advantage when
sampling with quantum annealers. This condition is however not sufficient. The typical computational
bottleneck in training a BM is due to the appearance of well-defined modes. These modes make classical
sampling techniques inefficient and slow-mixing, resulting in highly correlated samples used both during
training and generation. While making sampling harder, the development of multi-modal distributions is
actually an appealing property of BMs, since it allows such models to represent complex and powerful
probability distributions. The idea behind searching for quantum advantage in training BM with quantum
annealers is, indeed, to exploit quantum resources (such as tunneling) to more efficiently mix between
different modes in the landscape defined by the BM.

When trained on visible data, a BM naturally develops complex landscapes to match the complexity of
the statistical relationship present in the training data. However, while BMs trained on latent representations
can potentially develop well-defined modes, they do not necessarily do so. In fact, one of the capabilities of
generative models with latent variables is finding a set of statistically independent latent features [85]. This is
typically enforced during model building by using trivial priors such as the product of independent Gaussian
(for continuous latent units) or the product of independent Bernoulli (for discrete latent spaces). Even when
the prior is potentially complex and trainable, as a BM, the presence of the KL term can push the model
during training into local minima in which the trained BM develops a trivial landscape.

In this section we give evidence that BMs trained in the latent space of a VAE model do indeed develop a
nontrivial landscape with well-defined modes. As we have shown in section 5.1.1 (see figure 6), BMs with
denser connectivities naturally lead to better performing VAEs. This is an indirect indication that we are
indeed exploiting the additional capacity and expressivity of more connected BMs. In this section we give
more explicit evidence of this. In figure 10, we generate a sequence of images via block Gibbs sampling. The
top left image is generated by picking a latent configuration ζ out of a uniform distribution over all
configurations. This latent sample is then sent through the decoder. Going from left-to-right, top-to-bottom,
each subsequent image is obtained after updating all latent units with a sequence of block Gibbs updates (one
for Bernoulli, two for the bipartite connectivities Chimera and RBM, four for the quadripartite Pegasus
connectivity). As expected, in the Bernoulli case (figure 10(a)), each update results in uncorrelated samples.
The Chimera connectivity (figure 10(b)) is able to develop weakly correlated samples, as shown by short
sequences of similar images. Correlated samples with well-defined modes are more clearly visible with the
Pegasus connectivity ((figure 10(c))). Finally, we confirm that increasing the connectivity up to a fully
connected RBM (figure 10(d)) results in long sequences of correlated samples and related to the deep valleys
of the RBM energy landscape.

The results shown in figure 10 show that BMs trained as priors of generative models with latent variables
naturally learn multi-modal, nontrivial probability distributions. These distributions are expressive, making
the whole VAE more expressive, while at the same time developing the same types of computational
bottlenecks that make classical sampling algorithms inefficient. This paves the way to effectively use quantum
annealers as means to more scalable quantum-assisted sampling, enabling us to sample from BMs of sizes
and complexity that are infeasible with classical methods.
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Figure 10. Block Gibbs sampling with different connectivities. Going from left to right, denser connectivities result in more
well-defined modes developed in the trained RBM. Especially in the case of Pegasus and an RBM, for example, it is clearly visible
how the block Gibbs chain is trapped in a typical basin of the landscape for MNIST connected to the digits 4 and 9.

(a) Models trained on different D-Wave 2000Q achieved
performance comparable to training with population annealing.
Log-likelihood evaluation for Baseline D-Wave 2000Q did not

converge due to diverging weights.

(b) The weights of the Baseline D-Wave 2000Q weights diverge
after about 100 epochs. For the Interim Lower Noise processors
weights are suboptimally small. Weight size of the Lower Noise

D-Wave 2000Q is closest to population annealing.

(c) The Lower-Noise D-Wave 2000Q is able to exploit a larger
number of latent units than the more noisy Interim Lower-Noise

D-Wave 2000Q.

(d) Different temperature profiles during training for the three
D-Wave 2000Q.

Figure 11. Training on different quantum annealers with different noise profiles.

5.3. Robustness to noise and control errors
Using quantum annealers to train large BMs directly on complex data remains challenging. Apart from the
unsatisfying performance of using BMs with quasi two-dimensional connectivities on visible data, a major
difficulty is biased sampling (and thus inaccurate gradients) obtained with quantum annealers. There are
two main sources of bias: control errors and imperfect or incomplete thermalization at the freezing point.
While the latter can be improved with appropriate pause-and-ramp annealing schedules, the former can only
be improved with technological advancements. Despite these known difficulties, we have shown in the
previous sections we have successfully trained large BM (hundreds of units) in the latent space of a VAE
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solely using samples coming from a D-Wave 2000Q, without using any hard-coded pre or post-processing to
the raw data obtained from the annealer.

We interpret our positive results as an indication that training BMs with our setup is relatively robust to
noise and control errors. In fact, we can interpret both the encoder and decoder as powerful tools to pre- and
post-process data to be sent to the quantum annealer. Using stochastic gradient descent, we train the encoder
and decoder to generate a set of latent features that are more easily modeled by the latent-space BM. For
example, real images might have strongly correlated, sharp features (such as regions with black or white
pixels), which require large weights to be modeled correctly. A precise implementation of such large weights
might be challenging for analog devices with finite range such as quantum annealers. Additionally, both
encoders and decoders might be able to learn and correct, or at least reduce the effects of, systematically
biased sampling.

To investigate the role of noise and control errors in determining sampling quality and performance of
the trained models, we perform a set of comparative experiments in which we train the same model on
MNIST dataset, using samples coming from three D-Wave 2000Q with different noise profiles. The Baseline
and Lower-Noise D-Wave 2000Q are both publicly available on D-Wave’s LeapTM cloud service. We have also
included an Interim Lower-Noise processor with an intermediate noise profile that is internally available at
D-Wave.

Results are shown in figure 11. In figure 11(a) we report the log-likelihood during training. Models
trained on the Lower and Interim Lower-Noise D-Wave 2000Q achieved performance comparable to
training with PA. The evaluation of the log-likelihood for the Baseline D-Wave 2000Q diverged due to
diverging weights, as can be seen in figure 11(b). The weights of the Baseline processor start diverging after
about 100 epochs. The Interim Lower-Noise processor shows an opposite behavior, with weights getting
small and plateauing after about 500 epochs. For the Lower-Noise processor, the L1 of the weights plateaus at
a value that is closer to that obtained with ‘noiseless’ PA. Notice that a consistent comparison in figure 11(b)
we have reported the weightsW rescaled by the effective temperature (see equation (17) and not the ‘bare’
annealing values J. Figure 11(b) highlights the remarkably different response of three different quantum
annealers to our model. Despite such differences, the performance of our hybrid implementation is robust
(as shown in figure 11(a)) and does not require any hardware-specific adaptations or fine-tuning. Only while
training with the Baseline D-Wave 2000Q, we needed a more aggressive clipping (that is restricting the
weights and biases to have narrower range than the maximum allowed) to achieve similar performance and
converged log-likelihood estimation.

Noise and control errors also manifest in a less efficient use of the latent space, as seen in figure 11(c). All
models trained with D-Wave 2000Q use fewer active units than PA. Since the estimate of the log-likelihood of
the models trained with the Baseline processor did not converge, we focus on the comparison between the
Interim and Lower Noise processor: the latter can exploit a larger number of latent units. We finally show in
figure 11(d) the profile for the extracted effective temperature during training, which is remarkably different
for the three D-Wave 2000Q. The results shown in figure 11(d) underlines the importance of developing
advanced annealing techniques to stabilize temperature during training.

In this section we have demonstrated the robustness to noise of our implementation, as highlighted in
figure 11(a). At the same time, figure 11(c) shows an important effect of noise, which is to make it harder for
our hybrid model to exploit the optimal number of latent units. We thus anticipate that exploiting large BMs
(with thousands of units, eventually) following the directions indicated in the previous sections must be
accompanied by continued efforts in reducing sampling bias due to noise and control errors of
future-generation quantum annealing devices.

6. Conclusions

In this work, we have demonstrated the use of quantum annealers as Boltzmann samplers to estimate the
negative phase of BMs placed in the latent space of deep convolutional VAE. This setup allows for the
construction of QCH generative models that can be scaled to large, realistic datasets. We have mostly
experimented with MNIST, a common testbed dataset which includes 60, 000, 28× 28 binarized handwritten
digits to achieve a log-likelihood of about−82.2± 0.2 nats, which compares favorably to state-of-the-art
achieved with autoregressive models (−78.5 nats (natural unit of information)). In addition to
demonstrating scalability and performance, we have discussed several other features of our hybrid approach.

First, we are able to use quantum annealers as ‘native samplers’, that is, samplers from their native graph:
we do not use any hard-coded encoding-decoding scheme such as minor embedding or majority vote.
Arguably this is one of the most effective ways to exploit the computational capabilities of quantum
annealers. The encoding and decoding process is indeed efficiently performed by deep convolutional
networks, which are trained to extract relevant feature via stochastic gradient descent. As we have shown, this
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Figure A1. Detailed specification of the networks employed in our experiments.

approach is particularly flexible, since it naturally adapts to different connectivities and arbitrary working
graphs.

Second, by successfully training the same model on three quantum annealers with different noise
profiles, we have shown that our implementation is fairly robust to noise and control errors. Indeed, the deep
convolutional networks can be seen as learned pre- and post-processing steps that regularize both the visible
data and the effects of noise. A key reason of the success of our implementation is indeed the fact that the
weights and biases as implemented on the quantum annealers rarely grow (during training) beyond their
allowed range, even with minimal or no regularization. This result is to be contrasted to training BMs
directly on visible data, for which weights are typically much larger and regularization is critical to avoid
overfitting. The latter case is much more challenging for analog devices with limited allowed range.

The QCH models we have considered in this work employ a large amount of classical computing power
performed on modern GPUs. The computational task that we offloaded to the quantum annealer (sampling
from the latent-space BMs) can still be performed classically at a fraction of the overall computational cost.
To achieve any form of quantum advantage in this framework, we need to offload generative capacity to the
prior, by exploiting large BMs capable of representing complex probability distributions from which classical
sampling becomes too expensive. We have provided evidence that this path to quantum advantage is possible
by deploying annealers with denser connectivities and lower noise, engineering classical neural nets that
better exploit physical connectivities and by working with more complex datasets. All these improvements
seem achievable in the near future and represent possible interesting lines of research that we leave for future
work.
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Appendix A. Convolutional VAE

The VAE employed in our experiments is schematically represented in figure A1. Both approximating
posterior q(ζ|x) (encoder) and marginal p(x|ζ) (decoder) are constructed using deep convolutional
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networks, see figures A1(a) and A1(b). Although not technically necessary, we use (approximately) mirror
implementations for encoder and decoder. In the encoder, down-sampling is achieved by employing strided
convolutions, while in the decoder up-sampling is similarly obtained with strided deconvolutions. The last
(first) layer of the encoder (decoder) network is a dense network with two (one) layers (see figure A1(c)). In
the case of the encoder, a hierarchical (conditional) relationship among variables is implemented as
described in figure 7(a). The convolutional networks are implemented as a simple sequence of five gated
convolutions, whose detailed implementation is given in figure A1(c). Notice the use of batch normalization
and dropout. The latter was only used in the decoder, to prevent over-fitting, with a drop-rate of 0.2.

We trained our models using batches of size 100 and the Adam optimizer with an initial learning rate of
3e−3, exponentially decaying to a minimum learning rate of 1e−4 after 1800 epochs. The temperature
parameter τ defined in equation (10) for the Gumbel trick is typically annealed from large to small values.
We however did not find a real advantage in doing so and we fixed the parameter to the low value τ = 1/7
throughout the training. To improve training and avoid collapse of the approximating posterior to trivial
local minima, we have linearly annealed the KL term from zero to its full value within 200 epochs.

In general we have trained our models using an importance-weighted estimate of the likelihood. As first
described in reference [57], a K-sample weighting estimate of the log-likelihood can be written as:

LK = Eζ1,...,ζ∼qϕ(ζ|x)

[
log

1

K

K∑
k=1

pθ(ζ,x)

qϕ(ζ|x)

]
, (A1)

which is equivalent to the ELBO defined in equation (3) for K = 1 and converges to the exact log-likelihood
for K→∞. We also found useful, to reduce the variance of the gradients of LK, to use a multi sample
evaluation of the gradients per data point x. In other words, we can use the following for training:

LK,D = Eζk,d∼qϕ(ζ|x)

[
log

1

K

K∑
k=1

pζ(ζk,d,x)

qϕ(ζk,d|x)

]
, (A2)

with k= 1, . . . ,K and d= 1, . . . ,D. Notice that equation (A2) requires sampling KD latent configurations per
data-point x. This can be parallelized on GPU by effectively working, in our case, with batches of size
KD× 100. In our experiments we found it effective to have KD= 8 and to change the relative values of K and
D while keeping their product constant. Every 200 epochs we changed their value as follows:
(K,D) = (1,8)→ (2,4)→ (2,4)→ (4,2)→ (4,2)→ (8,1) and kept it constant afterwards. While a larger K
results in a tighter variational lower bound, it also makes harder training the approximating posterior, the
reason being that in the limit of large K the bound LK does not depend on qϕ(ζ|x). We found this K↔ D
anneal to be more efficient at both training the approximating posterior and training on a tighter bound to
the log-likelihood. We used the same technique, with K = 1000,D= 1 as the estimate of the log-likelihood.

Appendix B. Sample collection with D-Wave 2000Q

To estimate the negative phase with D-Wave annealers, we used 1000 samples obtained with independent
annealing runs. For each gradient evaluation, we performed 5 random spin-reversal transformations and
collected 200 samples each time. We used a forward annealing schedule with a 1 µs forward anneal up to
s= 0.5, where we paused for 10 µs. After the pause we performed a 10 ns quench to finish the anneal. After
a bit of experimentation, we found this particular annealing schedule to slightly improve training, although a
simple forward annealing without pause-and-quench also worked well. We did not perform any
post-processing of the samples, which we used as-is to compute the negative phase.

An important question for future works is whether a more careful choice of the annealing schedule,
possibly with longer pauses, can stabilize the effective temperature at which samples are drawn from the
hardware. We discuss the importance of this aspect in the next section.

Appendix C. Estimating β∗
eff during training

As noticed in reference [46], training a BM with a quantum annealer does not necessarily require the
knowledge of the effective sampling temperature introduced in equation (17). Indeed, β∗

eff can be absorbed
into the learning rate γ:

∂ log p̃b,W(ζ) = γ
(
−∂Hb,W(ζ)+Eζ̄∼pb,W [∂Hb,W(ζ̄)]

)
= γ ′

(
−∂Hh,J(ζ)+Eζ̄∼pb,W [∂Hh,J(ζ̄)]

)
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Figure C2. β∗
eff evaluated on two simultaneous runs on a D-Wave 2000Q (Chimera and Bernoulli priors). The fluctuations of its

value on the two runs are correlated, indicating our evaluation of β∗
eff is effectively probing fluctuations of the physical

temperature of the device.

γ ′ = γβ∗
eff . (C3)

While this is still true for the gradients of the parameters of the RBM placed in the latent space of a VAE,
correctly evaluating the gradients of the inference parameters ϕ requires knowledge of β∗

eff. To see this it
suffices to note that the samples in the positive phase depends on the inference parameters through the
reparameterization trick. During training: ζ → ζ(ϕ,ρ). Tracking where these gradients come from, we have:

γ∂ϕ(ELBO) = −γ∂ϕ logqϕ(ζ(ϕ,ρ)|x)+
−γβ∗

eff∂ϕHh,J(ζ(ϕ,ρ) , (C4)

so that the correct evaluation of the gradients with respect to the inference parameters requires the
(approximate) knowledge of the effective temperature β∗

eff.
In our experiments, we have performed a real-time estimation of β∗

eff, which we used as in the equation
above to correctly estimate the gradients for the inference parameters. To do so, we employed an auxiliary
BM that we trained in parallel with the VAE on the negative samples obtained by the quantum annealers. The
parameters of the BM are shared according to equation (17), with the only trainable parameter being β∗

eff. In
other words, we update β∗

eff as follows:

β∗
eff → β∗

eff +

+ γ
(
−Eζ̄∼pHWh,J

[Hh,J(ζ)]+Eζ̄∼pBMb,W
[Hh,J(ζ̄)]

)
, (C5)

where the first expectation is evaluated with the hardware samples; the second, with thermal samples from
the auxiliary BM (obtained with PA).

In figure C2 we show the value of β∗
eff estimated with the method above on two simultaneous runs on a

D-Wave 2000Q. Its value typically drops while the KL term is annealed (200 epochs in our experiments) and
subsequently stabilizes. Some fluctuations are correlated among independent runs and are related to real
fluctuations of the physical temperature of the device.

We have noticed that, due the use of the KL anneal and the presence of a non-negligible change in β∗
eff

during training, using a time-dependent evaluation of the effective temperature is important to stabilize
training. While computing a single gradient as in equation (C5) is much more robust than training all the
weights of a comparable BM, the method is not completely scalable and requires thermal sampling with
classical algorithms. It will be critical, in future works, to implement training procedures with stable values of
β∗
eff, which could be kept constant, using values predetermined by previous experiments or simply treated as

a hyper parameter whose value must be appropriately fixed. Eventually, the use of more advanced annealing
schedules, with longer pauses and more carefully chosen pause-points, should allow a direct connection
between β∗

eff and the physical temperature of the annealer, thus removing the necessity of learning β∗
eff from

experiments.
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Figure D3. Physical connectivities used in this work.

Appendix D. Chimera and Pegasus connectivities

In figure D3 we show the Chimera and Pegasus connectivities on 288 qubits used in all the experiments
performed in this work. The Chimera graph (figure D3(a)) is a bipartite, two-dimensional tiling of a unit cell
(figure D3(c)) with 8 qubits. The Pegasus graph (figure D3(b)) is a quadri-partite, two-dimensional tiling of
a unit cell (figure D3(d)) with 8 qubits [81].
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