
Machine Learning: Science and Technology

LETTER • OPEN ACCESS

Classifying global state preparation via deep reinforcement learning
To cite this article: Tobias Haug et al 2021 Mach. Learn.: Sci. Technol. 2 01LT02

View the article online for updates and enhancements.

This content was downloaded from IP address 106.213.19.213 on 30/06/2023 at 08:57

https://doi.org/10.1088/2632-2153/abc81f

Mach. Learn.: Sci. Technol. 2 (2021) 01LT02 https://doi.org/10.1088/2632-2153/abc81f

OPEN ACCESS

RECEIVED

25 June 2020

REVISED

20 October 2020

ACCEPTED FOR PUBLICATION

5 November 2020

PUBLISHED

24 December 2020

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Classifying global state preparation via deep reinforcement
learning
Tobias Haug1, Wai-Keong Mok1,2, Jia-Bin You2, Wenzu Zhang2, Ching Eng Png2

and Leong-Chuan Kwek1,3,4,5

1 Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
2 Department of Electronics and Photonics, Institute of High Performance Computing, 1 Fusionopolis Way, 16-16 Connexis, Singapore
138632, Singapore

3 MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore
4 National Institute of Education and Institute of Advanced Studies, Nanyang Technological University, 1 Nanyang Walk, Singapore
637616, Singapore

5 School of Electrical and Electronic Engineering Block S2.1, 50 Nanyang Avenue, Singapore 639798, Singapore

E-mail: tobiasxhaug@gmail.com

Keywords:machine learning, quantum control, NV centers, quantum mechanics, deep reinforcement learning

Supplementary material for this article is available online

Abstract
Quantum information processing often requires the preparation of arbitrary quantum states, such
as all the states on the Bloch sphere for two-level systems. While numerical optimization can
prepare individual target states, they lack the ability to find general control protocols that can
generate many different target states. Here, we demonstrate global quantum control by preparing a
continuous set of states with deep reinforcement learning. The protocols are represented using
neural networks, which automatically groups the protocols into similar types, which could be
useful for finding classes of protocols and extracting physical insights. As application, we generate
arbitrary superposition states for the electron spin in complex multi-level nitrogen-vacancy
centers, revealing classes of protocols characterized by specific preparation timescales. Our method
could help improve control of near-term quantum computers, quantum sensing devices and
quantum simulations.

1. Introduction

Deep reinforcement learning has revolutionized computer control over complex games [1–3], which are
notoriously difficult to optimize with established methods [3]. Recently, reinforcement learning has also
been successfully applied to a wide array of physics problems [4–15]. A particularly promising application is
optimizing quantum control problems [6, 8–10, 12, 16], which are of utmost importance to enable quantum
technologies and quantum devices for information processing and quantum computation. Quantum
systems are controlled by unitary operations engineered by a set of physical operations on the quantum
system, which we refer to as a protocol. To efficiently manipulate quantum sensing devices and
programmable quantum computers, a large set of different unitary operations and protocols has to be
mastered. This is in general a non-trivial task. For example, to generate an arbitrary quantum state in a
two-level system, a two-dimensional set of protocols has to be learned. Of course, for specific types of driving
the parameterization is well-known (e.g. in terms of rotations around the Bloch sphere) and there is a simple
understanding of how to control the spin dynamics on the Bloch sphere. However, in higher-dimensional
quantum systems or systems where the driving is constrained, no general description is available, which is a
limiting factor in the control of quantum devices. Standard numerical tools available can find control
protocols for individual target quantum states, however it is difficult to find a class of protocols that can
parameterize all the protocols as it can be highly disordered with many near-optimal solutions [5]. Thus, we
ask: how can one find classes of solutions to generate arbitrary states in higher-dimensional quantum
systems and/or with constrained driving parameters? And can they be used to extract physical insights?

© 2020 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/abc81f
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/abc81f&domain=pdf&date_stamp=2020-12-24
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2707-9962
https://orcid.org/0000-0002-1920-5407
mailto:tobiasxhaug@gmail.com
https://doi.org/10.1088/2632-2153/abc81f

Mach. Learn.: Sci. Technol. 2 (2021) 01LT02

Figure 1. Overview of deep reinforcement algorithm to learn protocols to generate any target states. (a), (b) Learning scheme to
generate piece-wise constant control protocol with proximal policy optimization (PPO, details in method section): at the first
iteration step, a random target stateΨtarget (parameterized by angles θ,ϕ) and the initial stateΨ(t0) is chosen. At iteration step
n+ 1 of the algorithm, the neural network takes inΨtarget and the current wavefunctionΨ(tn). The output of the neural network
generates the driving parameters (timestep∆t, driving strengthΩ) to manipulate the quantum system to reachΨ(tn+ 1), which
is fed back to the neural network. These steps are repeated until final step NT. The fidelity of the generated state with the target
state is calculated and used to update the weights of the neural network. For training, proximal policy optimization (PPO) uses
two separate neural networks, called policy and value network. The policy network decides the next driving parameter, whereas
the value network estimates the quality of that choice [17]. This concludes one epoch of the training protocol. Over many training
epochs, the neural network learns the control protocols for arbitrary target states parameterized with θ,ϕ. (c) After the training,
the neural network returns optimized piece-wise constant control protocols to reach any target stateΨtarget.

Here, instead of finding the optimal driving protocol for a single state, we propose a scalable method to
learn all the driving protocols for global state preparation (over the continuous two-dimensional subspace
represented by the Bloch sphere, embedded in a higher-dimensional Hilbert space) using deep reinforcement
learning and parameterizing the protocols with neural networks. We discover that this approach
automatically finds clusters of similar protocols. For example, it groups protocols according to how much
time is needed to generate specific target states, which could be used to identify patterns and physical
constraints in the protocols. For this multi-dimensional problem, conventional optimization often finds
uncorrelated protocols in the target space, especially if there are multiple distinct protocols achieving similar
fidelity. This makes it very difficult to interpolate between the protocols. Using our approach, the clustering
of similar protocols is a consequence of effective interpolation by the neural network of nearby protocols
within the same cluster, thereby achieving effective arbitrary state preparation. The neural network is trained
with random target states as input. This makes it naturally suited for parallelization and could allow it to
scale to higher dimensions. In essence, our proposal shows a path to solve the key limitations of single-state
learning or a transfer-learning approach as shown in [12].

As a demonstration of our method, we apply it to control the electron spin in multi-level
nitrogen-vacancy (NV) centers [18–21]. The multiple levels give rise to complicated coherent and dissipative
dynamics, thus ruling out simple driving protocols such as those in two-level systems (e.g. quantum dot,
transmon) and further increasing the difficulty of optimization. The electron spin triplet ground states are
characterized by a long lifetime which makes them ideal candidates for solid-state qubits used in quantum
information processing [22–24]. However these states cannot be coupled directly using lasers, which would
be important for many applications [25, 26]. Optical control can instead be achieved by indirect optical
driving via a manifold of excited states, which renders finding fast control protocols a difficult problem. With
our algorithm we find protocols to prepare arbitrary superposition states with a preparation speed of about
half a nanosecond, which is much faster than protocols based on STIRAP control [19] and reduces the
impact of dissipation on the state preparation. Additionally, our protocols require only nine steps, which is
considerably less than in comparable approaches [13, 21]. More importantly, our algorithm finds
near-optimal protocols that are automatically grouped into distinct classes by the neural network. We find
that the protocols within a class have similar driving protocols as well as similar total protocols times T. Each
class prepares a subset of all the target states on the Bloch sphere with high fidelity.

2. Learn global control protocols

A quantum system is evolved by a unitary operator Û, which takes a quantum stateΨ to the final state
Ψ ′ = ÛΨ. The unitary is physically realized by evolving with the Hamiltonian Ĥ(Ω), parameterized by
controllable parameters Ω, over a time t with Û= exp(−iĤt). We can engineer more sophisticated unitaries
by piece-wise applying NT different unitaries Û= Û(NT)Û(NT−1) . . . Û(2)Û(1), each unitary given by
Û(k) = exp(−iĤ(Ω(k))∆t(k)) with driving strength Ω(k) and timestep∆t(k). To apply the unitary on a

2

Mach. Learn.: Sci. Technol. 2 (2021) 01LT02

Figure 2. Create arbitrary quantum stateΨ(θ,ϕ) (equation (2); states parameterized by angles θ, ϕ) using deep reinforcement
learning. (a) Fidelity F (equation (1)) of preparing state (mean fidelity ⟨F⟩= 0.972). (b) Protocol gradient G(θ,ϕ) (equation (3)).
Protocols are grouped into three distinct areas of low gradient (areas numbered with R1 to R3), divided by a sharp lines of large
gradient. (c) Protocol time T. The three areas are characterized by different protocol times T. (d) Two-dimensional representation
of the distance between protocols (determined by equation (4)) using t-SNE algorithm. Color indicates protocol time. Protocols
are close to each other if they are similar. Corresponding regions to the gradient plot in (b) are marked with R. Parameters:
NT = 9 timesteps, variable time per step with maximal time 0.2ns< T< 0.8ns,−20GHz< Ω1,2 < 20 GHz, detuning
δ1 = 50GHz, δ2 = 0 and Bext = 0.15T (all variables in units of ℏ), 800 000 training epochs and n= 600 neurons in two
fully-connected layers. Using approximated closed system dynamics (result for full open system in the supplementary materials).

physical system, a total time T=
∑

k∆t(k) is needed. The minimal time needed to perform a specific task
may vary depending on the target unitary and the driving Hamiltonian [27]. We define a protocol as a vector
β = {Ω(1),∆t(1), . . . ,Ω(NT),∆t(NT)} that contains all the control parameters to generate a specific target state
Ψtarget.

We now outline the algorithm to generate control protocols βθ,ϕ(t) to create all possible target states
Ψtarget(θ,ϕ) parametrized by angles θ and ϕ (see figure 1). At time tk the input to the neural network a
randomly sampled target stateΨtarget and a description of the system state (e.g. the current wavefunction
Ψ(tk)). The neural network output determines the parameters (driving strength Ω(k), timestep∆t(k)) for the
piece-wise constant protocol used to evolve the wavefunction to the new stateΨ(tk+1) = Û(k)Ψ(tk) with
unitary Û(k) given by Û(k) = exp(−iĤ(Ω(k))∆t(k)). This new wavefunction is then input to the neural
network to determine the next protocol step. This is repeated until the final timestep NT, which concludes
one training episode. The goal is to drive the system such that wavefunction is as close as possible to a target
stateΨtarget, measured by maximizing the fidelity:

F=
∣∣⟨Ψ(tNT)|Ψtarget⟩

∣∣2 , (1)

as a reward function. With each training episode, the neural network is trained with randomly sampled
target statesΨtarget(θ,ϕ) as input, until it converges and learns to represent protocols for all possible target
states. The input to the neural network is vector of real numbers. To generate the protocol, the neural
network is fed with information about the current state of the system at a specific timestep as well as the
target state to be achieved. The neural network is given the angles θ and ϕ, which parametrize the target state.
Further, the current wavefunctionΨ(tk) is fed to the neural network with the real and imaginary parts of the
probability amplitudes of each quantum level.

The neural network is trained using PPO [17]. The neural network is composed of two parts: the critic
estimates at every step the final quality of the protocol to optimize itself, while the actor at each step returns a
part of the protocol. We use the PPO algorithm implemented by the OpenAI Spinning Up library [28].
Similar results can be achieved using the numerically more complex Trust Region Policy Optimization
method (see results in supplementary materials (available online at stacks.iop.org/MLST/2/01LT02/
mmedia)) [29].

3. Electron spin control in NV center

The goal is to achieve coherent control between the states |−1⟩ and |+1⟩ of the triplet ground state manifold
{|−1⟩ , |0⟩ , |+1⟩} via coupling to a manifold of excited states. Starting from the ground stateΨ0 = |−1⟩, we
would like to achieve a general superposition state of the Bloch sphere spanned by the two states

Ψ(θ,ϕ) = cos

(
θ

2

)
|−1⟩+ eiϕ sin

(
θ

2

)
|+1⟩ , (2)

where θ∈ {0,π} and ϕ∈ {0, 2π}. These two degenerate ground states are not coupled directly. The
degeneracy can be lifted with an external magnetic field Bext. To coherently control them, we couple the
ground states via two lasers to the excited state manifold {A2,A1,EX,EY,E1,E2}, which is separated in energy

3

https://stacks.iop.org/MLST/2/01LT02/mmedia
https://stacks.iop.org/MLST/2/01LT02/mmedia

Mach. Learn.: Sci. Technol. 2 (2021) 01LT02

Figure 3. Examples of optimized driving protocols for target states calculated in figure 2. Driving protocols at step k are
parameterized by driving strengthΩk

1,Ω
k
2 and timestep length∆tk. (a)–(c) Example protocols for three representative examples

from different protocol ‘phases’ for driving parameter: (a) Ωk
1, (b) Ω

k
2, (c) timestep length∆tk. Examples taken from regions as

defined in figure 2, for R1: cos(θ)= 0.9, ϕ=π, R2: cos(θ)= 0.5, ϕ=π, R3: cos(θ)=−0.5, ϕ=π. (d)–(f) Driving protocol for
cut along θ with ϕ=π for different protocol timesteps nt and driving parameters (d)Ω1, (e)Ω2, (f)∆t. Protocol show distinct
‘phases’ that jump at cos(θ)≈ 0 and cos(θ)≈ 0.75. See supplementary materials for further example protocols.

from the ground state triplet within the optical frequency range. Through dissipative couplings
(see Methods), a further metastable state can be occupied, thus the NV center is described by an open
ten-level system. We investigate the limit where the protocol time is much faster than the dissipation, thus we
can approximately treat the system as an effective closed eight-level system (comparison with full dynamics
in the supplementary materials). We apply two driving lasers, with time-dependent strengths chosen by the
protocol Ω1(t), Ω2(t). They have a relative detuning δ1, δ2 to the energy difference of states |−1⟩ (|+1⟩) and
|A2⟩ (see section 5). This system resembles the well-known Λ system with three levels, however with an
additional complicated set of levels that has to be excited and controlled. The excited levels interact
non-trivially with one another as well. For these systems, simple or analytic solutions are difficult to find,
especially for the non-adiabatic regime considered here.

The goal is to learn protocols to reach arbitrary superposition states of the two levels parameterized by
angles θ and ϕ. To evaluate how similar protocols are, we introduce the following measures: Firstly, to
evaluate the local change of protocols, we define the norm of the protocol gradient in respect to the target
parameters θ and ϕ:

G(θ,ϕ) = ||∂θβ(θ,ϕ)||1 + ||∂ϕβ(θ,ϕ)||1 , (3)

where β(θ,ϕ) is the protocol for a given θ and ϕ and ||.||1 the L1 norm. This measures how much the
protocol is changing across the Bloch sphere. Secondly, to measure how close two different protocols are, we
define the protocol distance:

C(θ,θ ′,ϕ,ϕ ′) = ||β(θ,ϕ)−β(θ ′,ϕ ′)||1 . (4)

If two protocols are identical, the measure is zero. Else, the protocol distance is positive. Our protocols β are a

vector of length 3NT consisting of NT timesteps with the two driving strengths Ω(k)
1 , Ω(k)

2 and length of
timestep∆t(k). To calculate the correlation measure and gradient, we map the parameters between−0.5 and
0.5.

The result after training is shown in figure 2. We see that the fidelity of reaching the target state is high in
most areas, with very sharp lines of low fidelity (see figure 2(a) that divides it into three areas; marked as R1
to R3). The sharpness of these lines increases with number of neurons as the neural network can represent
more complex features and abrupt changes. (Further demonstration of this feature on a simpler spin rotation
problem in the supplementary materials (available online at stacks.iop.org/MLST/2/01LT02/mmedia).) At
these lines, the protocol changes drastically, while it changes only slowly in the other areas. We visualize this

4

https://stacks.iop.org/MLST/2/01LT02/mmedia

Mach. Learn.: Sci. Technol. 2 (2021) 01LT02

Figure 4. Fidelity by reinforcement learning trained protocols to generate stateΨ(θ,ϕ) averaged over all θ,ϕ. (a) Average fidelity
⟨F⟩ against number of timesteps for n= 150 neurons. (b) Average fidelity against number of neurons for NT = 9 timesteps. Same
parameters as in figure 2.

with the protocol gradient equation (3) in figure 2(b). It measures how much the protocol changes with θ
and ϕ. The gradient is low within those three distinct areas, where the protocol is changing only slowly and
protocols are very similar. Protocols in these areas are very similar to each other. We observe specific sharp
lines where the gradient is very large. These correlate with the lines of low fidelity in figure 2(a). These lines
are borders between two different protocol classes. At the lines of low fidelity, the protocol changes
drastically, as the neural network is trying to trying to find a protocol between the two classes. As an analogy,
we describe this phenomena as a kind of phase diagram: the areas of low gradient represent ‘phases’ (class of
protocols of specific type), that are separated lines of high gradient akin to a ‘phase transition’. At these lines,
the algorithm struggles to find good protocols. These ‘phases’ are very well visible in the protocol time T,
shown in figure 2(c) with distinct areas of similar T. These directly reveal some physical insight into the state
generation. For states with cos(θ)≈ 1 (close to initial state), fast protocols are sufficient. For increasing θ,
protocols require a longer duration. Our algorithm automatically groups protocols into areas of similar
protocol time T. Intermediate timed protocols (area R2) is concentrated for ϕ < π, while protocols with long
duration (area R3) is mostly located in ϕ > π. This asymmetry comes from the magnetic field B that lifts the
degeneracy between the states |±1⟩. We also note that ϕ= 0 and ϕ= 2π have different results in terms of
fidelity and protocol, although they represent the same quantum state. The reason is that the neural network
receives as input only the angles θ and ϕ of the target state and does not know about the symmetry of the
problem (e.g. that ϕ is periodic). This symmetry can be enforced by hand, yielding similar fidelities (see
supplementary materials). In figure 2(d), we show the distances between different protocols using equation
(4). We chose a 21× 21 sampling grid on the Bloch sphere. Although the protocols are actually
parameterized by a 3NT dimensional vector, using the t-SNE algorithm we can map the distances between
different protocols (given by equation (4)) onto a 2D representation. The color indicates the protocol time T.
We see again distinct clusters of similar protocols, corresponding to the areas marked in figure 2(b).

Representative examples of driving protocols from the three different protocol ‘phases’ are shown in
figures 3(a)–(c). The protocols belonging to different ‘phases’ look distinct, while protocols within the same
‘phase’ look very similar (see supplementary materials for further example protocols). Figure 3(c) shows the
length of each time step, where the total time (given by the integral over the steps) increases from R1 to R3.
We observe also distinct shapes in the sequence of driving strengths, which vary for R1 to R3 (see figures 3(a)
and (b)). In figures 3(d)–(f) we show the change of the protocol parameters for a cut at ϕ=π along the θ
axis. We again observe the three distinct ‘phases’ for varying θ in the driving parameters. They change
contentiously with θ, however remain similar within one ‘phase’. However, sudden jumps where the protocol
changes drastically are observed at cos(θ)≈ 0 and cos(θ)≈ 0.75 (most visible for timestep nt = 4 and
nt = 8). At the border between two protocol ‘phases’, the protocols change drastically in order to choose
between them. This creates the sudden jumps observed. The protocols found are near-optimal solutions
within a complicated optimization landscape [5]. As such, there are many possible solutions of nearly the
same fidelity. By varying hyperparameters of the neural network (such as the number of neurons) or external
parameters (such as the applied magnetic field) one may find different types of the protocols in the
two-dimensional subspace. However, in most cases there are either two or three distinct areas (see other
example in supplementary materials).

The hyperparameters of the neural network and the reinforcement learning affect the quality of the
learning protocols. In figure 4, we show the average fidelity over all target states for varying number of
protocol timesteps (figure 4(a)) and number of neural network neurons (figure 4(b)). We observe that
beyond a certain number of neurons or timesteps, the average fidelity does not increase anymore.

To compare with a standard method, we optimize the state preparation with Nelder–Mead (using Python
scipy library implementation). The result is shown in figure 5. The two-dimensional space of target states is
subdivided into a discrete grid and optimized independently. The achieved average fidelity over all target

5

Mach. Learn.: Sci. Technol. 2 (2021) 01LT02

Figure 5. Create arbitrary quantum state in two-level subspace equation (2) by optimizing with a standard optimization tool
(Nelder–Mead). (a) Fidelity F for preparing stateΨ(θ,ϕ). Optimizing a 11× 11 grid over the parameter space, intermediate
points interpolated by using nearest protocol (mean fidelity ⟨F⟩= 0.90). (b) Protocol time T. No clustering of protocols is
observed. (c) Two-dimensional representation of the distance between protocols (determined by equation (4)) using t-SNE
algorithm. Color indicates protocol time of a specific datapoint. Same parameters as in figure 2. Optimization took in total
5.7× 106 training episodes. Each grid point is optimized with Nelder–Mead for up to 20 000 optimization steps, repeated over up
to 5 optimization runs starting from a random initially guessed protocol. Optimization is stopped early when fidelity F> 0.99 is
reached.

states is lower compared to the reinforcement learning as it tends to get stuck in local optimization minimas.
To reduce this problem, each trained target state was optimized up to five times, using random initial
guesses. This optimization required also nearly an order of magnitude more training episodes as every grid
point is learned independently and sequentially, instead of training all target states at the same time. The
resulting optimized protocols across ϕ and θ is quite different compared to the one achieved by
reinforcement learning. As an example, we investigate the protocol time T of the optimized protocols in
figure 5(b). For reinforcement learning we find a connected landscape with well defined classes. For the grid
optimization, however, there is a large spread in the protocol parameter and T varies largely between
different target states, even for neighboring θ and ϕ. Thus, a small change in the target state can translate into
a very different protocol. If one wants to find a protocol for a target state lying in between two grid points by
interpolating between the two grid points, the interpolated protocol would achieve a low fidelity. A
two-dimensional representation of the distance between the different protocols reveals no clustering or order
(figure 5(c)), in contrast to reinforcement learning (figure 2(c)). From this result, we gather the following
explanation: the control problem has many nearly equivalent solutions [5, 30], which yield similar fidelity
but can have widely different control schemes. Reinforcement learning tends to find solutions belonging to
the same control class, which produces the observed clusters, whereas Nelder–Mead converges to one of the
solutions at random, giving uncorrelated protocol schemes. Further, this optimization method takes more
training epochs than reinforcement learning since each grid point is optimized individually. Scaling to a
higher density of discretization points or more than two target parameters would require even more training
time for the grid approach. The reinforcement learning approach in [12] also suffers from similar scalability
issues, whereas our deep learning algorithm can overcome such scalability problems as all target states can be
trained in parallel.

4. Discussion

We demonstrated how to learn all control protocols for a two-dimensional set of quantum states. The neural
network is trained using randomly sampled target states. After training, the neural network knows how to
generate all possible target states and classifies the near-optimal protocols automatically in specific groups,
e.g. the time needed to generate specific states as well as the driving strengths. The clustering feature could be
useful tool to identify physical principles and find generalized driving protocols. For practical usage, the
clustering of solutions is also advantageous as the driving protocols within a cluster do not need to change
drastically for a small change in target state. The drop in fidelity at the boundary between two clusters is a
result of the finite capacity of neural networks to represent sharp changes and could be mitigated by choosing
a discontinuous activation function. However, the exact mechanism how the clusters are found by the neural
network remains unclear and requires further studies. To speed up training, our algorithm could be easily
parallelized by calculating multiple target states at the same time. This is more difficult for other
optimization techniques such as transfer learning as it requires input from previously trained neural
networks and does not scale well with number of sampling points as well as the dimension of the problem
(i.e. number of target parameters) [12].

6

Mach. Learn.: Sci. Technol. 2 (2021) 01LT02

In this article, we have shown how to optically control the electron spin in a complex multi-level NV
center. The electron spin is only indirectly coupled via several other interacting levels, making it difficult to
construct good control pulses. Our approach via reinforcement learning gives us access to a tailored protocol
for any superposition state. We are able to create arbitrary states within a short time T≈ 0.5 ns, avoiding
slower dissipative processes and superseding other adiabatic-type protocols to create superposition states
[19]. Our protocol requires only nine timesteps to achieve high fidelity for arbitrary states, which is
considerably less than comparable approaches [13, 21]. Our results indicate that even less timesteps could be
sufficient to reach high fidelity (see figure 4(a)). The control protocols we found could help to efficiently
control NV centers for quantum processing [31] and could be applied for optimal control of other physical
systems [27].

Our neural network-based algorithm learns the full two-dimensional set of target states. The same
concept could help to identify control unitaries for continuous variable quantum computation [32] or serve
as an alternative to transfer learning in quantum neural network states [33]. The neural network finds
patterns, which may be useful to identify phase transitions in quantum control [5], as well as identify
physical concepts in the way the protocols create quantum states [34, 35]. The resulting classification of
protocols also opens up the potential of using reinforcement learning in identifying phase transitions in
physical systems [36–38]. Furthermore, our approach could help correcting drifts in superconducting qubits
[39]. When the system parameters change, the control unitaries have to be re-trained to accommodate the
change. If one has multiple control unitaries, this may take a long time since every unitary has to be retrained
individually. Our method allows one to retrain all the protocols at the same time, which can significantly
shorten the time needed to correct errors and drifts. Finally, in our study we have trained the neural network
by randomly sampling from all possible target states. It would be interesting to study training from a reduced
subset of target states, and then see how well the neural network is able to generalize to yet unseen target
states or whether over-fitting occurs.

5. Methods

5.1. NV center
In this paper we consider the 10-level model of the NV− center, which comprises three ground states, six
excited states and one metastable state. The ground states form a spin-1 triplet with a zero-field splitting of
Dgs ≈ 2π× 2.88 GHz between thems =±1 andms = 0 sublevels. The energy gap of Eg = 1.94 eV between the
ground states and excited states due to Coulomb interaction gives rise to the well-known zero-phonon line
(ZPL) optical transition. The level structure is shown in figure 6.

The ground state Hamiltonian can be written in the basis {|−1⟩, |0⟩, |+1⟩} ≡ {|ms =−1⟩, |ms = 0⟩,
|ms =+1⟩} as (setting ℏ= 1 and the energy of |0⟩ as zero) [21]:

Hgs = (Dgs − ggsµBBext) |−1⟩⟨−1⟩+(Dgs + ggsµBBext) |+1⟩⟨+1⟩ (5)

where ggs = 2.01 is the Landé g-factor for the ground state, µB is the Bohr magneton, and Bext is the external
magnetic field applied along the NV quantization axis. The magnetic field splits the degeneracy of the states
|−1⟩ and |+1⟩. Considering low temperatures, the phononic effects in the diamond are suppressed (and not
considered here), while the splittings in the excited state due to spin–spin and spin–orbit interactions
become significant. Taking into account these interactions, the excited-state Hamiltonian can be written in
the basis of {|A2⟩ , |A1⟩ , |EX⟩ , |EY⟩ , |E1⟩ , |E2⟩} as

Hes = EgI+

(
H1 0
0 H2

)
(6)

where I is the 6× 6 identity matrix and

H1 =

(
∆+ 2lz gesµBBext

gesµBBext −∆+ 2lz

)
, (7)

H2 =

−Des + lz 0 0 ∆ ′ ′

0 −Des + lz i∆ ′ ′ 0
0 −i∆ ′ ′ 0 −gesµBBext

∆ ′ ′ 0 −gesµBBext 0

 , (8)

7

Mach. Learn.: Sci. Technol. 2 (2021) 01LT02

Table 1.Decay channels and rates for the NV center. |m⟩ represents the metastable state which comprises the singlet states |1A1⟩ and |1E⟩.

Transition Decay rate (ns−1)

|A2⟩ , |A1⟩ , |E1⟩ , |E2⟩ → |+1⟩ 1/24
|A2⟩ , |A1⟩ , |E1⟩ , |E2⟩ → |−1⟩ 1/31
|A2⟩ , |A1⟩ , |E1⟩ , |E2⟩ → |0⟩ 1/104
|A2⟩ , |A1⟩ , |E1⟩ , |E2⟩ → |m⟩ 1/33
|Ex⟩ , |Ey⟩ → |0⟩ 1/13
|Ex⟩ , |Ey⟩ → |+1⟩ , |−1⟩ 1/666
|Ex⟩ , |Ey⟩ → |m⟩ 0
|m⟩ → |0⟩ 1/303
|m⟩ → |+1⟩ , |−1⟩ 0

describe the level splittings in the excited-state manifold with∆= 2π× 1.55 GHz, Des = 2π× 1.42 GHz and
∆ ′ ′ ≈ 2π× 0.2 GHz denotes the spin–spin interactions. lz = 2π× 5.3 GHz is the axial spin–orbit splitting,
and ges ≈ 2.01 is the Landé g-factor for the excited state.

Coherent control of the NV− center is accomplished by applying two laser fields with frequencies ω1 and
ω2 and Rabi frequencies Ω1 and Ω2.

The electric-dipole coupling between the ground and excited states is given by the interaction
Hamiltonian:

Hint =

(
0 v
v† 0

)
, (9)

where

v=

 iϵx −iϵx 0 0 −iϵx −iϵx
0 0 0 2ϵx 0 0

−iϵx −iϵx 0 0 iϵx −iϵx

 , (10)

is the 3× 6 coupling matrix with the rows forming the ground state basis and the columns forming the
excited state basis. ϵx = 2Ω1 cos(ω1t)+ 2Ω2 cos(ω2t). The total Hamiltonian including driving is given as
HNV =Hgs +Hes +Hint. We now move into the rotating frame by transforming the Hamiltonian to the

interaction picture HI = eiHEgt
(
Htot −HEg

)
e−iHEgt, with Htot =Hgs +Hes +Hint and HEg = Eg

∑9
k=4 |k⟩⟨k⟩.

Neglecting the counter-rotating terms, the εx terms in the interaction Hamiltonian are replaced by
ϵ ′x =Ω1 cos(δ1t)+Ω2 cos(δ2t), with the detuning δi = ωi − Eg, i= 1, 2. In addition, there is a metastable state
|m⟩ in the Hamiltonian, totaling to a 10 level system. The NV center is subject to dissipation via decay of
excited states as shown in table 1. The full system including dissipation is solved using the Lindblad Master
equation [40]

∂ρ

∂t
=− i

ℏ
[H,ρ]− 1

2

∑
m

{
L̂†mL̂m,ρ

}
+
∑
m

L̂mρL̂
†
m , (11)

where L̂m are the Lindblad operators describing the dissipation.
For timescales shorter than the fastest dissipation channel, the effect of dissipation can be neglected. For

the NV center, this would be for T≪ 13ns. In this limit, the dynamics is effectively governed by the coherent
Hamiltonian only and reduces to a eight level system, as both state |0⟩ and |m⟩ are only accessible via
dissipation.

5.2. Deep reinforcement learning
Here, we describe our machine learning algorithm in more detail. We learn the driving protocol via a deep
Q-learning network [41], utilizing the actor-critic method with PPO [17]. We use [28] implementation of
the algorithm in Tensorflow [42]. A sketch is shown in figure 7. The quantum system is controlled by an
agent, that depending on the state st of the system acts with an action at (e.g. driving parameters for time t)
using the probabilistic policy π(at|st). At every timestep a reward (e.g. the fidelity of quantum state) is paid
out. The goal is to repeatedly interact with the quantum system and learn the best policy that gives the
highest final reward. One normally starts with a random policy, that explores many possible trajectories.
Over the course of the training, the policy is refined and converges (hopefully) to the optimal (deterministic)
policy. However, optimizing the policy directly can be difficult, as one round of the protocol is played out
over NT timesteps. The question is how to optimize the policy at each step such that one finds the optimal

8

Mach. Learn.: Sci. Technol. 2 (2021) 01LT02

Figure 6. Level structure of the NV center. Consists of two target ground state levels {|−1⟩ , |+1⟩}, third ground state level |0⟩,
excited states {|A2⟩ , |A1⟩ , |EX⟩ , |EY⟩ , |E1⟩ , |E2⟩} and metastable states {|1A1⟩ , |1E⟩}. Laser coupling of levels is shown as red
dashed lines, coupling via internal level structure as blue solid lines. For short driving protocols {|1A1⟩ , |1E⟩} and |0⟩ are
disregarded as approximation.

Figure 7. Deep reinforcement learning with proximal policy optimization (PPO) to control arbitrary target quantum states
Ψtarget(θ,ϕ).

final reward. A common problem in optimization is that one does not find the global optimal solution, but
only a local maximum of the optimization landscape.

Here, it has been shown one can overcome the difficulties of policy learning with Q-learning. The idea is
to find the Q-function Qπ(st,at) that estimates the future reward (from the point of timestep t) that is paid
out at the end the full protocol with this policy. The goal is to learn a policy that prioritizes long-term
rewards over smaller short-term gains. The optimal Q-function is determined by the Bellman equation:

Q(st,at,π) = E [rt + γQ(st+1,at+1,π)]

= E
[
rt + γrt+1 + γ2rt+2 + . . .

]
,

9

Mach. Learn.: Sci. Technol. 2 (2021) 01LT02

where E[.] indicates sampling over many instances. γ≤ 1 is a discount factor that weighs future rewards
against immediate rewards.

PPO is based on the idea of combining both methods, policy learning and value learning, into the
actor-critic method. The idea is to have two neural networks: a policy network and a value network. The
policy network (actor) decides on the next action by determining the parameters of the policy. The
value-based network (critic) evaluates the taken action on how well it solves the task and estimates the future
expected reward. It is used as an input to train the policy network.

Better performance can be achieved if the Q-function is split into two parts [43]:
Q(st,at) = A(st,at)+V(st), where A(st,at) is the advantage function and V(st) the value function. V(st) gives
the expected future reward averaged over the possible actions according to the policy. This is the output of the
critic network. A(st,at) gives the improvement in reward for action at compared to the mean of all choices.

Learning is achieved by optimizing the network parameters with a loss function via gradient
descent [44]. The loss function of the value network is the square of the difference of the value function of
the network and the predicted reward in the next timestep LV(θ) = Et

[
(Vθ(st)− yt)2

]
, where θ are the

current network parameters, yt = rt +Vt+1, where V t+ 1 is the output of the value network for the next
timestep (it is set to zero if this is the last timestep).

The advantage function A(st,at) tells us how good a certain action at is compared to other possible
actions. The advantage function is the input to train the policy network (the actor). Following the idea of
PPO [17], the goal is to minimize the loss function of the policy network:

Lp(θ) =−Et

[
πθ(st,at)

πθold(st,at)
A(st,at)

]
, (12)

where θ are the network parameters and θold are the network parameters of a previous instance. Maximizing
Lp(θ) for the network parameters θ over many sampled instances guides the distribution πθ(st,at) such that
it returns actions at with maximal advantage. However, the ratio

bt(θ) =
πθ(st,at)

πθold(st,at)
,

can acquire excessively large values, causing too large changes in the policy in every training step and making
convergence difficult. For PPO, it was proposed to use a clipped ratio ε [17]:

Lp(θ) =−Et [min{bt(θ)A(st,at),clip(rt(θ),1− ϵ,1+ ϵ)A(st,at)}] ,

such that the update at each step stays in reasonable bounds.
The input state st to the neural network are the wavefunctionΨ(tn) (or density matrix ρ(tn) at previous

timestep n, as well as a random target stateΨtarget. The output of the policy network are the parameters for
the policy π(at|st,µ,σ), where the actions (pulse amplitude and time step duration) are sampled from a
normal distribution with mean value µ and width σ. µ is chosen by the neural network (given the input
state) and σ is a global variable that is initially large (ensuring that driving parameters are initially sampled
mostly randomly to explore many possible trajectories). It is optimized via the loss function and decreases
over the training, until at convergence it is close to zero and the sampled driving parameters converge to µ.
We constrain the possible output values for the driving parameters by punishing values outside the desired
range with a negative reward.

We optimize the neural network over many epochs NE. In each epoch, the Schrödinger equation (or
master equation) is propagated for a total time T with NT discrete timesteps of width∆t, with respective
times tn. For one epoch, the system runs the network NT times. From the policy network the driving
parameters for the n+ 1 timestep are sample. The output of the value network is used to train the policy
network. Each network is composed of two hidden layers of fully connected neurons of size NH with ReLu
activation functions. The neural networks are trained with the loss function after calculating the full time
evolution to time T over NT timesteps. Training data is sampled from a buffer storing earlier encountered
trajectories. For the actual implementation, we choose the following parameters: learning rate for both value
and policy network α= 10−5, training over NE = 800000 epochs and clip ratio ε= 0.05. Out of bounds
driving parameters are punished by a factor of 0.2.

To improve the mean fidelity over all target states, we choose the target states not completely random, but
biased towards areas of lower fidelity. This is achieved by laying a 20× 20 grid across the θ and ϕ space, then
binning the last 10 000 results and the achieved fidelity. We choose the next target state by sampling the
probability distribution:

P(θ,ϕ) =
1

2N
(η+(1− η)(1−⟨F(θ,ϕ)⟩)) ,

10

Mach. Learn.: Sci. Technol. 2 (2021) 01LT02

whereN is a normalization factor and η determines how strongly the sampling is biased toward low fidelity.
We chose η= 0.5.

Acknowledgments

The computational work for this article was partially performed on resources of the National
Supercomputing Centre, Singapore (https://www.nscc.sg).

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Author contributions

T H and W-K M conceived the project, performed the calculations and wrote the paper. All authors
discussed the results and implications at all stages.

Competing interest

The authors declare that there are no competing interests.

Code availability

Computer code is accessible online on Github in [45].

ORCID iDs

Tobias Haug https://orcid.org/0000-0003-2707-9962
Wai-Keong Mok https://orcid.org/0000-0002-1920-5407

References

[1] Schulman J, Moritz P, Levine S, Jordan M and Abbeel P 2015 arXiv:1506.02438
[2] Mnih V, Badia A P, Mirza M, Graves A, Lillicrap T, Harley T, Silver D and Kavukcuoglu K 2016 Int. Conf. on Machine Learning

pp 1928–37 arXiv:1602.01783
[3] Silver D et al 2016 Nature 529 484
[4] Chen C, Dong D, Li H-X, Chu J and Tarn T-J 2013 IEEE Trans. Neural Netw. Learn. Syst. 25 920
[5] Bukov M, Day A G, Sels D, Weinberg P, Polkovnikov A and Mehta P 2018 Phys. Rev. X 8 031086
[6] Zhang X-M, Wei Z, Asad R, Yang X-C and Wang X 2019 NPJ Quant. Inf. 5 1
[7] Bharti K, Haug T, Vedral V and Kwek L-C 2019 arXiv:1912.10783
[8] Haug T, Dumke R, Kwek L-C, Miniatura C and Amico L 2019 arXiv:1911.09578
[9] Dalgaard M, Felix M, Sørensen J J and Jacob S 2020 NPJ Quant. Inf. 6
[10] An Z and Zhou D 2019 EPL 126 60002
[11] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L and Zdeborová L 2019 Rev. Mod. Phys. 91 045002
[12] Niu M Y, Boixo S, Smelyanskiy V N and Neven H 2019 NPJ Quant. Inf. 5 33
[13] Porotti R, Tamascelli D, Restelli M and Prati E 2019 Commun. Phys. 2 1
[14] Xu H, Li J, Liu L, Wang Y, Yuan H and Wang X 2019 NPJ Quant. Inf. 5 1
[15] Bharti K, Haug T, Vedral V and Kwek L-C 2020 arXiv:2003.11224
[16] Arrazola J M, Bromley T R, Izaac J, Myers C R, Brádler K and Killoran N 2019 Quant. Sci. Technol. 4 024004
[17] Schulman J, Wolski F, Dhariwal P, Radford A and Klimov O 2017 arXiv:1707.06347
[18] Yale C G, Buckley B B, Christle D J, Burkard G, Heremans F J, Bassett L C and Awschalom D D 2013 Proc. Natl. Acad. Sci. USA

110 7595
[19] Zhou B B et al 2017 Nat. Phys. 13 330
[20] Yale C G, Heremans F J, Zhou B B, Auer A, Burkard G and Awschalom D D 2016 Nat. Photon. 10 184
[21] Tian J, Du T, Liu Y, Liu H, Jin F, Said R S and Cai J 2019 Phys. Rev. A 100 012110
[22] Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J and Von Borczyskowski C 1997 Science 276 2012
[23] Balasubramanian G et al 2009 Nat. Mater. 8 383
[24] Maurer P C et al 2012 Science 336 1283
[25] Chu Y, Lukin M D 2015 Quantum Optics and Nanophotonics eds, C Fabre, V Sandoghdar, N Treps and L F Cugliandolo (Oxford:

Oxford University Press) p 229 arXiv:1504.05990
[26] Wang Z-Y, Cai J-M, Retzker A and Plenio M B 2014 New J. Phys. 16 083033
[27] Werschnik J and Gross E 2007 J. Phys. B 40 R175
[28] Achiam J Openai spinning up (available at: https://spinningup.openai.com/)
[29] Schulman J, Levine S, Abbeel P, Jordan M and Moritz P 2015 Int. Conf. on Machine Learning pp 1889–97 arXiv:1502.05477
[30] Rabitz H A, Hsieh MM and Rosenthal C M 2004 Science 303 1998
[31] Chen Y, Stearn S, Vella S, Horsley A and Doherty MW 2020 arXiv:2002.00545

11

https://www.nscc.sg
https://orcid.org/0000-0003-2707-9962
https://orcid.org/0000-0003-2707-9962
https://orcid.org/0000-0002-1920-5407
https://orcid.org/0000-0002-1920-5407
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1602.01783
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1109/TNNLS.2013.2283574
https://doi.org/10.1109/TNNLS.2013.2283574
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.1038/s41534-018-0113-z
https://doi.org/10.1038/s41534-018-0113-z
https://arxiv.org/abs/1912.10783
https://arxiv.org/abs/1911.09578
https://doi.org/10.1209/0295-5075/126/60002
https://doi.org/10.1209/0295-5075/126/60002
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1038/s41534-019-0141-3
https://doi.org/10.1038/s41534-019-0141-3
https://doi.org/10.1038/s42005-019-0169-x
https://doi.org/10.1038/s42005-019-0169-x
https://doi.org/10.1038/s41534-019-0198-z
https://doi.org/10.1038/s41534-019-0198-z
https://arxiv.org/abs/2003.11224
https://doi.org/10.1088/2058-9565/aaf59e
https://doi.org/10.1088/2058-9565/aaf59e
https://arxiv.org/abs/1707.06347
https://doi.org/10.1073/pnas.1305920110
https://doi.org/10.1073/pnas.1305920110
https://doi.org/10.1038/nphys3967
https://doi.org/10.1038/nphys3967
https://doi.org/10.1038/nphoton.2015.278
https://doi.org/10.1038/nphoton.2015.278
https://doi.org/10.1103/PhysRevA.100.012110
https://doi.org/10.1103/PhysRevA.100.012110
https://doi.org/10.1126/science.276.5321.2012
https://doi.org/10.1126/science.276.5321.2012
https://doi.org/10.1038/nmat2420
https://doi.org/10.1038/nmat2420
https://doi.org/10.1126/science.1220513
https://doi.org/10.1126/science.1220513
https://arxiv.org/abs/1504.05990
https://doi.org/10.1088/1367-2630/16/8/083033
https://doi.org/10.1088/1367-2630/16/8/083033
https://doi.org/10.1088/0953-4075/40/18/R01
https://doi.org/10.1088/0953-4075/40/18/R01
https://spinningup.openai.com/
https://arxiv.org/abs/1502.05477
https://doi.org/10.1126/science.1093649
https://doi.org/10.1126/science.1093649
https://arxiv.org/abs/2002.00545

Mach. Learn.: Sci. Technol. 2 (2021) 01LT02

[32] Hillmann T, Quijandría F, Johansson G, Ferraro A, Gasparinetti S and Ferrini G 2020 arXiv:2002.01402
[33] Zen R, My L, Tan R, Hebert F, Gattobigio M, Miniatura C, Poletti D and Bressan S 2020 (Phys. Rev. E 101) 053301
[34] Nautrup H P, Metger T, Iten R, Jerbi S, Trenkwalder L M, Wilming H, Briegel H J and Renner R 2020 arXiv:2001.00593
[35] Iten R, Metger T, Wilming H, Del Rio L and Renner R 2020 Phys. Rev. Lett. 124 010508
[36] Wang L 2016 Phys. Rev. B 94 195105
[37] Rem B S, Käming N, Tarnowski M, Asteria L, Fläschner N, Becker C, Sengstock K and Weitenberg C 2019 Nat. Phys. 15 917
[38] Ming Y, Lin C-T, Bartlett S D and Zhang W-W 2019 NPJ Comput. Mater. 5 88
[39] Foxen B et al 2020 (available at: arXiv:2001.08343)
[40] Breuer H-P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[41] Mnih V et al 2015 Nature 518 529
[42] Abadi M et al 2015 TensorFlow: large-scale machine learning on heterogeneous systems software available from tensorflow.org

(available at: http://tensorflow.org/)
[43] Wang Z, Schaul T, Hessel M, Van Hasselt H, Lanctot M and De Freitas N 2015 arXiv:1511.06581
[44] Kingma D P and Ba J 2014 arXiv:1412.6980
[45] Haug T and Mok W-K Deep q-control (available at: https://github.com/txhaug/deepQControl)

12

https://arxiv.org/abs/2002.01402
https://doi.org/10.1103/PhysRevE.101.053301
https://doi.org/10.1103/PhysRevE.101.053301
https://arxiv.org/abs/2001.00593
https://doi.org/10.1103/PhysRevLett.124.010508
https://doi.org/10.1103/PhysRevLett.124.010508
https://doi.org/10.1103/PhysRevB.94.195105
https://doi.org/10.1103/PhysRevB.94.195105
https://doi.org/10.1038/s41567-019-0554-0
https://doi.org/10.1038/s41567-019-0554-0
https://doi.org/10.1038/s41524-019-0224-x
https://doi.org/10.1038/s41524-019-0224-x
https://arxiv.org/abs/2001.08343
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
http://tensorflow.org/
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1412.6980
https://github.com/txhaug/deepQControl

	Classifying global state preparation via deep reinforcement learning
	1. Introduction
	2. Learn global control protocols
	3. Electron spin control in NV center
	4. Discussion
	5. Methods
	5.1. NV center
	5.2. Deep reinforcement learning

	Acknowledgments
	References

