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Abstract
Randomized algorithms are efficient techniques for big data tensor analysis. In this tutorial paper,
we review and extend a variety of randomized algorithms for decomposing large-scale data tensors
in Tensor Ring (TR) format. We discuss both adaptive and nonadaptive randomized algorithms for
this task. Our main focus is on the random projection technique as an efficient randomized
framework and how it can be used to decompose large-scale data tensors in the TR format.
Simulations are provided to support the presentation and efficiency, and performance of the
presented algorithms are compared.

1. Introduction

Tensor decompositions have found numerous applications such as in signal processing, machine learning
and scientific computing [1–9]. Handling very large-scale data tensors is a challenging task due to high
computational complexity and memory requirements. Tucker decomposition [10–12] can resolve this
problem by compressing a given data tensor by a smaller core tensor and factor matrices. However, the core
tensor suffers from the phenomenon known as curse of dimensionality which means that the number of
parameters for its representation is exponentially increased as the order of the core tensor is increased
[13, 14]. To tackle this difficulty, alternative tensor representations have been introduced. Tensor networks are
effective tools to cope with this difficulty by approximating a given data tensor by a series of inter-connected
smaller low order core tensors [2, 3, 15]. For example, Tensor Train/Tensor Ring (TT/TR) decompositions
[16–20] are special cases of Hierarchical Tucker decomposition [21, 22] which are two simple but powerful
tensor networks representing the original tensor as a train and a ring (chain) of inter-connected third order
tensors, respectively. The TT decomposition is known asMatrix Product States (MPS) in quantum physics
[23–26]. The TT and the TR decompositions have found many applications in scientific computing and
machine learning communities such as computing extreme singular values and computing pseudoinverse of
very large matrices [27, 28], reducing number of parameters in deep neural networks (DNNs) [29–33],
tensor completion [34–39], machine learning [40–44], quantum chemistry [45], solving high-dimensional
PDEs [46], low rank approximation of large sparse matrices [47]. Other related tensor networks are Projected
Entangled Pair States (PEPS) [48], theMulti-scale Entanglement Renormalization Ansatz (MERA) [49] and the
Tree Tensor Network (TTN) [50]. While the Tucker decomposition suffers from the curse of dimensionality,
recently an efficient algorithm has been proposed in [51] to compute a Tucker decomposition whose core
tensor stored in the TT format to avoid this difficulty. The idea is based on decomposing a tensor into the TT
format followed by a conversion into the Tucker format whose core tensor is stored in the TT format.
Deterministic algorithms for computing the TR decomposition involves computation of a series of the SVD
of unfolding matrices. Clearly this is computationally prohibitive for large-scale data tensors and requires
large memory and computational complexity. Randomized algorithms are effective techniques to cope with
this problem by reducing the computational complexity of the deterministic algorithms and also reducing
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the communication among different levels of memory hierarchy. In this paper, we review a variety of
randomized algorithms for computing the TR decomposition of large-scale data tensors.

Our main contributions in this paper are as follows:

• Extending random projection technique for fast TR decomposition (Algorithms 7 and 10),
• Extending randomized algorithms for fast TR decompositionwith permutation of core tensors (Algorithms
13 and 14),

• Extending randomized rank-revealing algorithm for fast TR decomposition (Algorithm 7),
• Applying randomized algorithms for fast TR completion task (Example 3 in section 5).

Before starting the next section, we introduce some concepts and notations used throughout the paper.
Tensors, matrices and vectors are denoted by underlined bold upper case, bold upper case and bold lower case
letters as X, X, x, respectively. The notations ‘T’ and ‘Tr’ denote the transpose and the trace of a matrix. The
Frobenius norm of a tensor is denoted by ∥.∥F. Slices are matrices taken from tensors produced by fixing all
but two indices. Slices X(:, i2, :) of a 3rd-order tensor X ∈ RI1×I2×I3 , are called lateral slices. We can multiply
tensors and matrices. For example, the tensor-matrix multiplication of a tensor X ∈ RI1×I2×···×IN and a
matrix Q ∈ RK×In along mode n is denoted by X×nQ ∈ RI1×···×In−1×K×In+1×···×IN and defined as follows

(X×nQ)i1···in−1 k in+1···iN =

IN∑
in=1

xi1i2 ···iN qk in , k= 1,2, . . . ,K. (1)

The same definition can be presented for tensor-vector multiplication. Based on the definition of the
tensor-matrix multiplication, when a tensor is multiplied by a vector, the resulting tensor has a mode of size
1. In order to remove the mentioned mode and reduce the order of the resulting tensor, we use a special
notation ×̄. For example, for X ∈ RI1×I2×···×IN and y ∈ RIn , we have X×̄ny ∈ RI1×···×In−1×In+1···×IN . A tensor
can be reshaped to a matrix and vice versa. These procedures are called matricization (unfolding or
flattening) and tensorization, respectively. For a tensor X ∈ RI1×I2×···×IN , the n-unfolding of the tensor X, is
denoted by X⟨n⟩ ∈ RI1···In×In+1···IN , and its components are defined as follows

X⟨n⟩
(
i1 . . . in, in+1 . . . iN

)
= X(i1, i2, . . . , iN) ,

where i1i2 . . . iN =
N∑

k=1
(ik − 1) Jk, Jk =

k−1∏
m=1

Im. A special case of the n-unfolding with only one index for the

first coordinate is called mode-n unfolding and is denoted by X(n) ∈ R
In×

∏
i̸=n

Ii
.

If a tensor is multiplied by a matrix along a specific mode, then its mode-n unfolding can be computed as
follows

Y= X×nA ⇔ Y(n) = AX(n).

For a given data matrix X, operator SVDδ(X) denotes the truncated SVD of X, i.e.

min
Y

rank(Y) , s.t. ∥X−Y∥F < δ,

and the corresponding minimal rank is denoted by rankδ(X).
The Tucker decomposition of a tensor X ∈ RI1×I2×···×IN admits the following model [10–12]

X∼= S×1Q
(1)×2Q

(2) · · · ×NQ
(N), (2)

where S ∈ RK1×K2×···×KN is the core tensor and the matrices Q(n) ∈ RIn×Kn , Kn ≤ In, n= 1,2, . . . ,N are
factor matrices. A shorthand notation for the Tucker decomposition is X∼=

[[
S;Q(1),Q(2), . . . ,Q(N)

]]
.

The N-tuple (K1,K2, . . . ,KN) is called multilinear or Tucker rank. Higher order SVD (HOSVD) [52] is a
special Tucker decomposition in which the factor matrices are orthogonal.

The organization of this paper is structured as follows. In section 2, basic randomized algorithms for low
rank matrix approximation are introduced. The TR model, its properties and basic algorithms are described
in section 3. Adaptive and non-adaptive randomized variants of the algorithms presented in section 3 are
elaborated in section 4. Simulations are provided in section 5 to support the presentation and the conclusion
is give in section 6.
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2. Basic randomized algorithms for large-scale matrices

Randomized algorithms are efficient techniques for computing low rank matrix approximation. The
principle idea behind this framework is capturing the range (column space) of a matrix and making
reduction in the data matrix in this manner. Note that if the number of rows of a matrix is more than its
columns then we should capture its row space. The randomized approaches can be categorized into next
three groups:

• Random projection. In the random projection approach, a matrix is multiplied by a random matrix such
as Gaussian, uniform or Bernoulli matrices3 on the right-hand side [53]. This procedure may be expensive.
In order to accelerate the computation procedure, we can use structured randommatrices such sparse ran-
dommatrices [54, 55], subsampled randomFourier transform [56, 57], subsampledHadamard transforms,
sequence of Givens rotations [57, 58] which are established techniques and have been used extensively in
the literature [59].

• Sampling. In the sampling techniques [60], a part of columns of the originalmatrix is selected and reduction
is made in the data matrix in this manner.

• Count-Sketch. The count-sketch approach [61–63] first labels the columns of the data matrix uniformly.
This is also called Hashing. Then, the columns with the same labels are grouped together. Afterwards, the
columns of each group are multiplied with±1 uniformly4 and they are summed as representative columns.

In this paper, we only consider the random projection technique although the sampling and the
count-sketch techniques are also applicable. We mainly focus on standard and distributed data tensors which
means that they can be stored in Random Access Memory (RAM) on a single workstation or distributed
among several disks, respectively. We only make a few comments on streaming data sets.

2.1. Fast SVD
After making enough reduction in the data matrix via one of the above-mentioned randomized
dimensionality reduction techniques, the original data matrix is projected onto the low rank
approximation obtained in the first step. To be more precise, let X ∈ RI×J be a given data matrix with
rank(X) = R≪min(I, J). In the first step, the matrix X is multiplied by a random matrixΩ ∈ RJ×R as

Y= XΩ ∈ RI×R.

In the next step, an orthogonal projector onto the column space of the matrix X, i.e. QQT, is computed
where Q is an orthonormal basis for the range of Y. The orthonormal basis Q can be computed through the
QR decomposition Y=QR, where Q ∈ RI×R, and R ∈ RR×R. Here, we have

X∼=QQTX,

and the compressed matrix B=QTX ∈ RR×J is of smaller size than X. The SVD of the original matrix X is
recovered from the SVD of B= USVT as follows

X∼=QUΣVT.

This procedure is summarized as follows:

Remark 1. (Oversampling technique) The oversampling technique can be used to improve the solution accuracy
of the randomized algorithms. In the oversampling technique, we use additional random vectors (for example R+ P
random vectors instead of R random vectors) in the first step, i.e. the dimensionality reduction step. In practice,
typically P= 5 or P= 10 is enough to achieve reasonable solutions [53].

Remark 2. (Power iteration technique) The power iteration technique, is used when the singular values of a data
matrix do not decay very fast. Here, we exploit matrix Z=

(
XXT

)q
X (q is a non-negative integer number) instead

of the matrix X and the randomized algorithms are applied to this new matrix. Considering the SVD, X= USVT,
we have

(
XXT

)q
X= US2q+1VT, and it is seen that the left and right singular vectors of the new matrix Z are the

same as those of the matrix X but the singular values of Z have faster decay rate. This can improve the solution
accuracy obtained by the randomized algorithms. One should avoid constructing the matrix Z explicitly because
of instability issues and it should be computed iteratively using QR decomposition [53]. It was experimentally
confirmed that the power iteration q= 1 or q= 2 is often enough in practice for achieving accurate solutions [53].

3Matrices whose components are taken from Gaussian, uniform or Bernoulli distributions.
4 This is also called Rademacher distribution.
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Algorithm 1: Randomized SVD algorithmwith oversampling and power iteration [53]

Input: A data matrix X ∈ RI×J, target rank R, oversampling P and power iteration q
Output: SVD factor matrices U ∈ RI×R,S ∈ RR×R and V ∈ RR×J

1 Generate a random matrixΩ ∈ RJ×(P+R) with a prescribed probability distribution
2 Form Y=

(
XXT

)q
XΩ ∈ RI×R

3 Compute QR decomposition: Y= QR
4 Compute: B= QTX ∈ RR×J

5 Compute an SVD, B= USV
T

6 Ũ= QU
7 U= Ũ(:,1 : R), S= S(1 : R,1 : R), V= V(:,1 : R)

• Reduction. Replacing an extremely large-scale datamatrix with a new one of smaller size comparedwith the
original one capturing either the column or the row space of the original data matrix as much as possible.

• SVD computation. Applying deterministic algorithms, e.g. truncated SVD to the reduced data matrix and
finding its low rank approximation5.

• Recovery. Recovering the SVD of the original data matrix from the SVD of the compressed one.

The basic form of the randomized SVD algorithm equipped with the oversampling and the power
iteration strategies is outlined in Algorithm 1.

2.2. Two-sided randomized algorithm
It is also possible to make reduction on both dimensions of a data matrix when both of them are large. This
can be done by simultaneous multiplying a given data matrix with two random matrices from the left and
right hand sides. Algorithm 2 outlines the structure of such a randomized algorithm. Both Algorithms 1 and
2 are randomized multi-pass SVD algorithms because both of them need to access (pass) the original data
matrix X two times in Lines 2 and 4. These algorithms can be modified to become single-pass algorithms. To
this end, Line 4 in both algorithms can be replaced by alternative representations. For Algorithm 1, we can
consider [66]

B∼= (Ω2Q)
†W, W=Ω2X, Ω2 ∈ RR×I, (3)

and for Algorithm 2, we can consider

B∼=
(
Ω2Q

(1)
)†
W

(
Q(2)TΩ1

)†
, W=Ω2XΩ1. (4)

The benefit of these approaches is that they avoid computation of the terms QTX and Q(1)TXQ(2) which
may be computationally expensive, especially when the data matrix is stored out-of-core and the cost of
communication may exceed our main computations. Instead, in formulations (3) and (4), the original data
matrix X is sketched using the random projection technique and the corresponding matrix B is obtained by
solving some well-conditioned overdetermined linear least-squares problems [66]. The matrix multiplication
by a random matrix can be performed relatively fast by employing structured random matrices. We should
note that this strategy passes the original data matrix only once because all sketching procedures can be done
in the first pass over the raw data6. Other types of single-pass techniques can be found in [53, 67–70].

2.3. Randomized matrix rank-revealing (RR) algorithms
In randomized Algorithms 1 and 2, we need an estimation of the matrix rank in advance which may be a
difficult task. Randomized rank-revealing (RR) or equivalently randomized fixed-precision algorithms are able
to retrieve the rank of a given data matrix and also the corresponding low-rank matrix approximation
automatically. In practice, we use randomized RR Algorithm 3 proposed in [71] which is a modification of
the RR algorithm developed in [72]. The operator ‘orth’ in Lines 6, 8, 9, 11 computes an orthonormal basis
for the range of a given data matrix. Also, in the first step, the matrices Q and B are empty and they are

5 In [64], randomization is also used in the second step. This is considered as a randomized algorithm with two-step randomization for
Nyström kernel matrix approximation. In the first step, authors use a sub-sampling approach after which they apply randomized SVD
instead of deterministic SVD.
6 The MATLAB codes of several randomized algorithms are provided in https://github.com/wangshusen/RandMatrixMatlab and https://
github.com/XuFengthucs/fSVT.
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Algorithm 2: Two-SidedMatrix Randomized SVD [53, 65]

Input: A data matrix X ∈ RI×J, and target rank R
Output: SVD factor matrices U ∈ RI×R,S ∈ RR×R and V ∈ RR×J

1 Draw random matrices of prescribed sizesΩ1 ∈ RJ×R,Ω2 ∈ RI×R

2 Compute Y1 = XΩ1 ∈ RI×R and Y2 = XTΩ2 ∈ RJ×R

3 Compute QR decompositions Y1 = Q(1)R1, Y2 = Q(2)R2

4 Compute B= Q(1)TXQ(2) ∈ RR×R

5 Compute an SVD, B= USV
T

6 Set U= Q(1)U, S= S and V= Q(2)V

Algorithm 3: RandomizedMatrix Rank-Revealing Algorithm [71, 72]

Input: A data matrix X ∈ RI×J, approximation error bound ε, block size b and power iteration q
Output:Q ∈ RI×R, B ∈ RR×J such that ∥X−QB∥F < ε

1 Q= [], B= []

2 E= ∥X∥2F
3 i= 0
4 while E> ε2do
5 Ωi = randn(J,b)
6 Qi = orth(XΩi −Q (BΩi))
7 for l= 1, 2,…, q do
8 Qi = orth

(
XTQi

)
9 Qi = orth(XQi)
10 end
11 Qi = orth

(
Qi −Q

(
QTQi

))
12 Bi = Q

T
i X

13 Q= [Q,Qi]

14 B=

[
B
Bi

]
15 E= E−∥Bi∥2F
16 i= i+ 1
17 end

updated sequentially. The algorithm requires an approximation error bound ε, block size b and the power
iteration q. For more details on theoretical results of this algorithm7, we refer to [71, 72].

3. Basic tensor ring (TR) decomposition

Tensor Chain (TC) or Ring (TR) decomposition [17–20] is a tensor network representing a tensor as a ring
(chain) of 3rd-order tensors (see figure 1). A special case of the TR decomposition with condition
R0 = RN = 1 is called the Tensor Train (TT) decomposition [16] because it represents a tensor as a train of
3rd-order tensors. For simplicity of presentation, throughout the paper, we only focus on the TR
decomposition and all materials naturally hold true for the TT decomposition.

Let X ∈ RI1×I2×···×IN , then the TR decomposition of the tensor X admits the following model

X(i1, i2, . . . , iN)∼=
R0∑

r0=1
· · ·

RN−1∑
rN−1=1

X̂
(1)

(r0, i1, r1) . . .X̂
(N)

(rN−1, iN, r0) , (5)

where X̂
(n)

∈ RRn−1×In×Rn , n= 1,2, . . . ,N are called core tensors and the (N − 1)-tuple (R0,R1, . . . ,RN−1) is
called TR-ranks. Note that in the TR decomposition, we have R0 = RN and it is also shown in [20] that the
TR-ranks satisfy R0Rn ≤ rank

(
X⟨n⟩

)
for n= 1, 2,…,N. Equation (5), is called component-wise TR

representation and an equivalent slice-wise representation is

7 The MATLAB implementation of this algorithm and related efficient randomized algorithms can be found in https://
github.com/WenjianYu/randQB_auto.
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Figure 1. Graphical illustrations of the TR decomposition, Tensor network representation (top), slice-wise representation
(bottom) For R0 = RN = 1, the TR decomposition is simplified into the TT decomposition.

X(i1, i2, . . . , iN) = Tr
(
X̂(1) (i1) · · · X̂(N) (iN)

)
. (6)

Here, X̂(n) (in) are Rn−1 ×Rn lateral slices of the core tensors X̂(n) for n= 1, 2,…,N. In view of (5),
introducing an auxiliary index r0 makes it possible to consider the TR decomposition as a linear combination
of R0 terms of the TT decomposition with partially shared cores. Generally the topological structure of
tensor networks can be changed. For example, the TT and TR decompositions can be converted to each
other8 [73, 74].

There are several efficient algorithms for computation of the TR decomposition such as Sequential SVDs
algorithm, Alternating Least-Squares (ALS) algorithm, ALS with adaptive ranks9 and Block-wise ALS algorithm
[20, 73]. Note that in the ALS-type algorithms, at each iteration, all core tensors are kept fixed except one and
the corresponding core tensor is updated. Moreover, the fixed core tensor is alternatively changed and this
justifies the name ALS. A closely related algorithm ismodified ALS (MALS) or Density Matrix
Renormalization Group (DMRG) algorithm [18, 73, 75–77], where consecutive core tensors are updated
simultaneously.

Here, we introduce the TR-SVD algorithm [20] for computing the TR decomposition. It is summarized
in Algorithm 4. This algorithm is robust because it relies on the SVD where at each iteration of the algorithm
the truncated SVD of the unfolding matrices are computed. It is worth mentioning that the TR-SVD
algorithm with initial rank R0 = 1 is equivalent to TT-SVD algorithm [16]. The idea of cross/skeleton or
equivalently CUR decomposition [78–81] has been used for the TT decomposition [82–84] which can be
naturally used for the TR decomposition [19]. For ALS and MALS-types algorithms see [18, 20, 85, 86]. The
TT decomposition can also be computed by Tucker-2 model which is also applicable for the TR
decomposition, (see [2, 85]).

Remark 3. The TR-ranks obtained by Algorithm 4may not be optimal and often rounding algorithms [16, 87] are
used to find a decomposition with lower TR-ranks. Unlike the TT format, the rounding algorithms for mathem-
atical operations in the TR format is more complicated [88]. The TR decomposition as a tensor network contains
loop. Hence, it is in general not closed in the Zariski topology [73], section 3,[14, 89, 90]. Thismeans that a sequence
of tensors in the TR format may not necessarily converge to a tensor in the TR format, for a detailed theoretical
justification see [14, 89, 90]. This may cause instability issues when one wants to find the best TR approximation
[18, 73, 91, 92]. That is, the best TR approximation of a given tensor with predefined TR-ranks may not exist and

8 The MATLAB codes for converting the TR to the TT and vice versa are available at https://github.com/oscarmickelin/tensor-ring-
decomposition.
9 It is also called incremental rank algorithm.

6

https://github.com/oscarmickelin/tensor-ring-decomposition
https://github.com/oscarmickelin/tensor-ring-decomposition


Mach. Learn.: Sci. Technol. 2 (2021) 011001 S Ahmadi-Asl et al

Algorithm 4: TR-SVD algorithm [20]

Input: A data tensor X ∈ RI1×I2×···×IN , a prescribed approximation error bound ε, and initial rank R0 as a
divisor of rankδ

(
X⟨1⟩

)
Output: Approximative representation of the tensor X in the TR format X̂=≪ X̂

(1)
, X̂

(2)
, . . . , X̂

(N) ≫, such that∥∥∥X− X̂
∥∥∥
F
≤ ε∥X∥F and the TR-ranks (R0,R1, . . . ,RN−1)

1 Compute δ =
ε∥X∥F√

N
2 C= reshape(X, [I1, I2I3 . . . IN])
3 [U,S,V] = SVDδ (C)
4 Set R0R1 = rank(S)

5 X̂
(1)

= permute(reshape(U, [I1,R0,R1]), [2,1,3])

6 C= permute
(
reshape

(
SVT,

[
R0,R1,

∏N
j=2 Ij

])
, [2,3,1]

)
7 for n= 2,…,N− 1 do

8 C= reshape
(
C,
[
Rn−1In,

numel(C)
Rn−1In

])
9 [U,S,V] = SVDδ (C)
10 Rn = rank(S)

11 X̂
(n)

= reshape(U, [Rn−1, In,Rn])

12 C= reshape
(
SVT,

[
Rn,
∏N

j=n+1 Ij,R0

])
13 end

14 X̂
(N)

= reshape(C, [RN−1, IN,R0])

it can be arbitrarily approximated well by the TR decomposition with lower TR-ranks. In contrast, the best low
rank TT decomposition is a well-posed problem [16].

Let τ be a cyclic permutation of the dimensions of a data tensor X ∈ RI1×I2×···×IN , and produce a new
reshaped data tensor Xτ ∈ RIτ(1)×Iτ(2)×···×Iτ(N) which is equivalent to

Xτ (i1, i2, . . . , iN) = X
(
iτ(1), iτ(2), . . . , iτ(N)

)
.

Assume that the TR representation of the tensor Xτ is as follows

Xτ (i1, . . . , iN) =

R′
0∑

r0=1

· · ·
R′
N−1∑

rN−1=1

X̂
(1) (

r0, iτ(1), r1
)
. . .X̂

(N) (
rN−1, iτ(N), r0

)

=

R ′
0∑

r0=1

· · ·
R ′
N−1∑

rN−1=1

X̂
(τ−1(1))

(r0, i1, r1) . . . X̂
(τ−1(N))

(rN−1, iN, r0) . (7)

where τ−1 is the inverse of the cyclic permutation τ . Since there are no boundary on the corner core tensors,
the decomposition is invariant to cyclic permutation. However, in practice, the TR-ranks of the permuted
tensor Xτ may be different from the TR-ranks of the tensor X and each cyclic permutation of indices may
provide different TR-ranks.

It turns out that two main issues underlying the compression performance of the TR decomposition are

• Cyclic shifts which leads to a suboptimal model
• Initial rank R0 of the first core tensor

More precisely, choosing different cyclic shifts and an initial rank R0 may lead to different TR
decompositions with different number of parameters. In particular, for different initial ranks, it is shown that
it is impossible to find a common minimal rank, see ([87], Proposition 2.2). These facts imply that to find a
TR decomposition with suboptimal TR-ranks, it is necessary to check all cyclic shifts and possible initial
ranks. This procedure is called Reduced storage TR-SVD [87] and is summarized in Algorithm 5. Clearly this
algorithm is computationally expensive for high order tensors and because of this issue, a heuristic algorithm
called Heuristic TR-SVD is developed [87] in which the procedure of initial rank and cyclic permutation
selections are performed heuristically. This procedure is summarized in Algorithm 6 and it essentially
consists of two parts as follows:

7
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Algorithm 5: TR-SVDwith all possible cyclic permutations (see also [87])

Input: A data tensor X ∈ RI1×I2×···×IN and a prescribed approximation error bound ε

Output: Approximative representation of the tensor X in the TR format X̂=≪ X̂
(1)

, X̂
(2)

, . . . , X̂
(N) ≫, such that∥∥∥X− X̂

∥∥∥≤ ε∥X∥F and the TR-ranks (R0,R1, . . . ,RN−1)

1 Set τ = (1,N,N− 1, . . . ,2)
2 for n= 1, 2,…,N do
3 Set γn = τ n−1

4 En = Compute all divisors of rankδ
(
Xγn

⟨1⟩

)
5 for All r∈ Endo
6 Set R0 = r

7 Apply Algorithm 4 to the permuted tensor Xγn with initial rank R0 and obtain core tensors X̃
(n)
(
i
γ−1
n (k)

)
,

k= 1,2,…,N
8 end
9 end
10 Find the optimal TR decomposition with the least number of parameters corresponding to the cyclic permutation

γn∗ and the initial rank R0, i.e. core tensors X̃
(k)
(
i
γ−1
n∗ (k)

)
for k= 1, 2,…,N

11 Set core tensors X̂
(k)

(ik)≡ X̃
(γn∗ (k))

(ik) , k= 1,2, . . . ,N

• Preprocessing part to find a sub-optimal cyclic shift and an initial rank R0 (in heuristic manner),
• Applying the TR-SVD with those parameters obtained from the first step.

Assume τ = (1,N,N− 1, . . . ,2) and consider all cyclic permutations produced by the generator τ as
γn = τ n−1 for n= 1, 2,…,N.

In the heuristic algorithm, firstly a cyclic permutation γn∗ is chosen by solving the following
minimization problem

R̂γn∗
= arg min

n=1,2,...,N
rank

(
Xγn

⟨2⟩

)
. (8)

Afterwards, the initial rank R0 corresponding to the cyclic permutation γn∗ selected in the first step, is found
by solving the following minimization problem [87]

arg min
R0|rankδ

(
X
γn∗
⟨1⟩

) g, (9)

where

g=

∣∣∣∣∣∣∣∣R̂γ{n∗−1} −
rankδ

(
X
γn∗
⟨1⟩

)
R0︸ ︷︷ ︸
R1

∣∣∣∣∣∣∣∣+
∣∣∣R̂γn∗

−R0

∣∣∣ . (10)

The main algorithms proposed so far are deterministic using truncated or economic SVD which are quite
expensive for big data matrices. Next we present the randomized variants of the mentioned algorithms.

4. Randomized tensor ring (TR) decomposition

The main computationally expensive part of Algorithms 4-6 is computation of the truncated SVD of the
unfolding matrices. Exploiting the randomized algorithms can speed-up these algorithms for the TR
decomposition. Following this strategy, in this section, randomized algorithms for the TR decomposition are
introduced.

As mentioned, we only focus on the random projection technique. The sampling and the count-sketch
strategies can be applied straightforwardly. For example, in [19], the cross decomposition was used instead of
the SVD. Here, columns and rows are sampled in heuristic ways. Also in [93], the sampling technique is used
within the ALS algorithm which scales linearly in the tensor order. The problem is treated as a tensor with
missing components (onlyO(N) known components) and the ALS-TR algorithm applied to this
uncompleted data tensor to simultaneously recover the data tensor and also decompose it into the TR format.

Recently, in order to reduce the high computational cost of the standard TT-SVD algorithm, two types of
randomized algorithms have been proposed in [94–96] as follows

8
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Algorithm 6: Simplified TR-SVD (see also [87])

Input: A tensor X ∈ RI1×I2×···×IN and a prescribed approximation error bound ε

Output: Approximative representation of the tensor X in the TR format X̂=≪ X̂
(1)

, X̂
(2)

, . . . , X̂
(N) ≫, such that∥∥∥X− X̂

∥∥∥
F
≤ ε∥X∥F and the TR-ranks {R0,R1, . . . ,RN−1}

1 Set τ = (1,N,N− 1, . . . ,2)
2 for n= 1, 2,…,N do
3 Set γn = τ n−1

4 R̂γn = rank
(
Xγn

⟨2⟩

)
5 end
6 R̂γn∗ = arg min

n=1,2,...,N
R̂γn

7 Compute R∗
0 by solving optimization problem (9)

8 Apply Algorithm 4 to the permuted tensor Xγn∗ with the initial rank R∗
0 and obtain core tensors

X̃
(n)
(
i
γ−1
n∗ (n)

)
,n= 1, 2,…,N

9 Set core tensors X̂
(n)

(in)≡ X̃
(γn∗ (n))

(in) , n= 1,2, . . . ,N

• Random projection TT algorithm,
• Adaptive randomized TT algorithm.

The random projection TT algorithm is a variant of the TT-SVD algorithm where at each iteration of the
algorithm, random projection technique is used to find low rank approximations of unfolding matrices. This
procedure is outlined in Algorithm 7.

We discuss this idea for the general setting of the TR decomposition. To be more clear, we explain one
iteration of Algorithm 7. In the first iteration of Algorithm 7, C(1) ∈ RI1×I2I3···IN is the mode-1 unfolding
matrix of the Nth-order tensor C ∈ RI1×I2×···×IN . Considering random Gaussian matrixΩ of conforming
dimension and taking into account the oversampling P, we have

Ω ∈ RI2I3···IN×(R0R1+P) ⇒ C(1)Ω ∈ RI1×(R0R1+P).

In order to find an orthonormal basis for the range of matrix C(1)Ω, the QR decomposition of mentioned
matrix is computed as follows

C(1)Ω=QR, Q ∈ RI1×(R0R1+P).

The first R0R1 columns of matrix Q are taken as orthonormal basis for range of C(1) or

Q(1) =Q(:,1 : R0R1) .

Since Q(1)Q(1)T is an orthogonal projection onto the range of C⟨1⟩, we have

C(1) ≈Q(1)
(
Q(1)TC(1)

)
, Q(1) ∈ RI1×R0R1 .

Two termsQ(1) andQ(1)TC(1) are reshaped into tensors of conforming dimensions in the following manners
(see figure 2 for graphical illustration)

Reshaping & Permutation : Q(1) ⇒ X̂(1) ∈ RR0×I1×R1 ,

Tensorization : Q(1)TC(1) ⇒ C×1Q
(1)T ∈ RR0R1×I2×···×IN .

In the next step, the tensor C×1Q(1)T is reshaped to a 3rd order tensor as

C= permute
(
reshape

(
C×1Q

(1)T, [R0,R1, I2 . . . IN]
)
, [2,3,1]

)
,

C= reshape(C, [R1I2, I3 . . . IN,R0]) ,

9
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Figure 2. The first step of randomized projection TR-SVD algorithm.

and the procedure is continued with the tensor C. In general, in the nth iteration of Algorithm 7, the
following reshaped 3rd order tensor is considered

C⇐ reshape(C, [Rn−1In, In+1In+2 . . . IN,R0]) .

Similar to the procedure discussed above, first its mode-1 unfolding, i.e. C(1) ∈ RRn−1In×In+1...INR0 is
computed. Then from the following randomized low rank matrix approximation

C(1) ≈Q(n)
(
Q(n)TC(1)

)
, Q(n) ∈ RInRn−1×Rn . (11)

the nth core tensor X̂
(n)

can be computed as

Reshaping& Permutation : Q(n) ⇒ X̂(n) ∈ RRn−1×In×Rn ,

Tensorization : Q(n)T C(1) ⇒ C×1Q
(n)T ∈ RRn×In+1...IN×R0 .

Remark 4. Algorithm 7 can be equipped with the power iteration technique when the data tensor is corrupted by a
level of noise or equivalently the singular values of the unfolding matrices do not decay very fast and oversampling
technique may not provide satisfactory approximations. To that end, in Algorithm 7 we replace Z= CΩ in Lines
3 and 11, by Z=

(
CCT

)q
CΩ.

Algorithm 7 needs an estimation of the TR-ranks in advance because it is necessary to have estimation of the
unfolding matrices ranks for the projection step in Lines 2 and 11. This imposes a restriction on it because
we may not have any information about the TR-ranks. It is of interest to choose the TR-ranks of tensors
adaptively during running the algorithm.

Estimating the TR-rank Rn in (11) is equivalent to finding an orthogonal matrix Q(n) ∈ RRn−1In×Rn

satisfying

C(1) ≈
(
Q(n)Q(n)T

)
C(1) ⇒ C≈ C×1

(
Q(n)Q(n)T

)
.

This can be equivalently reformulated as the following problem:
Problem 1. Suppose that C ∈ RInRn−1×In+1×···×IN and ε is a prescribed approximation error bound. The

objective is to find a columnwise orthogonal matrix Q(n) ∈ RInRn−1×Rn with Rn ≤ InRn−1, such that∥∥C−C×1

(
Q(n)Q(n)T

)∥∥
F
=
∥∥C×1

(
I−Q(n)Q(n)T

)∥∥
F
≤ ϵ, (12)

where I is the identity matrix of size Rn−1In ×Rn−1In. Problem 1, can be solved by Algorithm 8 or 9, for a
detailed study on these algorithms see [53, 94]. Note that in Algorithm 8 a stopping criterion can be either a
predefined maximum number of iterations or a predefined approximation error bound. An adaptive
randomized algorithm based on this idea is summarized in Algorithm 10. At each iteration of Algorithm 10,

10
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Algorithm 7: Random projection TR-SVD algorithm (see also [94])

Input: A data tensor X ∈ RI1×I2×···×IN , a prescribed approximation error bound ε, and TR-ranks
(R0,R1, . . . ,RN−1), oversampling P

Output: Approximative representation of the tensor X in the TR format X̂=≪ X̂
(1)

, X̂
(2)

, . . . , X̂
(N) ≫, such that∥∥∥X− X̂

∥∥∥
F
≤ ε∥X∥F

1 C= reshape(X, [I1, I2I3 . . . IN])
2 Compute Z= CΩ whereΩ ∈ RI2I3···IN×(R0R1+P)

3 Compute Q as a columnwise orthogonal basis of Z by using the QR decomposition
4 Let Q(1) = Q(:,1 : R0R1)

5 X̂
(1)

= permute
(
reshape

(
Q(1), [I1,R0,R1]

)
, [2,1,3]

)
6 Compute C= X×1Q(1)T

7 C= permute(reshape(C, [R0,R1, I2 . . . IN]) , [2,3,1])
8 C= reshape(C, [R1I2, I3 . . . IN,R0])
9 for n= 2,…,N− 1 do
10 C= reshape(C, [Rn−1In, In+1 . . . INR0])

11 Compute Z= CΩ whereΩ ∈ RIn+1In+2···INR0×(Rn+P)

12 Compute Q as a columnwise orthogonal basis of Z by using the QR decomposition;
13 Let Q(n) = Q(:,1 : Rn)

14 X̂
(n)

= reshape
(
Q(n), [Rn−1, In,Rn]

)
15 Compute C= C×1Q(n)T

16 C= reshape(C, [Rn−1In, In+1 . . . IN, R0])
17 end

18 X̂
(N)

= reshape(C, [RN−1, IN,R0])

Algorithm 8: Pseudocode for solving Problem 1 [53, 94]

Input: A data tensor C ∈ RInRn−1×In+1×···×IN

Output: A columnwise orthogonal matrix Q(n) ∈ RInRn−1×Rn satisfying (12)
1 k= 1, Q(0) = 0
2 while a stopping criterion is not satisfied do
3 Draw N− n standard Gaussian vectors ωm ∈ RIm withm= n+ 1,n+ 2, . . . ,N
4 Compute yk = C ×̄n+1 ωn+1 ×̄n+2 · · · ×̄N ωN

5 if k> 1 then

6 Compute yk =
(
I−Q(k−1)Q(k−1)T

)
yk

7 end

8 Normalize qk =
yk

∥yk∥2
and form Q(k) =

[
Q(k−1),qk

]
9 k= k+ 1
10 end

Problem 1 is numerically solved and both an estimation rank Rn and also corresponding columnwise
orthogonal matrix Q(n) are computed.

It is also possible to use randomized RR Algorithm 3 (also see Algorithm 5 in [97]). within the TR-SVD.
This procedure is summarized in Algorithm 7 and we refereed to it as Randomized RRTR-SVD algorithm.
Please note that in Lines 3 and 9 of Algorithm 7, by Rank-Revealing Algorithm, we mean Algorithm 3.
Recently, this idea has been used for the Tucker decomposition [98] and here we utilize it for the TR
decomposition.

Following the idea of computation of CANDECOMP/PARAFAC decomposition (CPD) [99–101] with a
prior fast randomized HOSVD compression [102], in [103], a randomized algorithm was proposed for
computation of the TR decomposition based on a prior Tucker compression. The idea is utilizing a
randomized Tucker decomposition in the first step as a preprocessing step after which the deterministic
algorithms such as Algorithm 4, Algorithm 5, Algorithm 6 or TR-ALS Algorithm [20] can be applied to the
smaller Tucker core tensor.

The randomized Tucker compression is summarized in Algorithm 12 and the TR decomposition with a
prior Tucker compression is outlined in Algorithm 13 (see figure 3 for graphical illustration). Please note that
Algorithms 12 is also called randomized Sequentially Truncated HOSVD (r-STHOSVD) [98, 104]. A main
drawback with Algorithm 13, is that it needs an estimation of the multilinear rank of the original data tensor

11
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Algorithm 9: Pseudocode for solving Problem 1 (See also [53, 94])

Input: A data tensor C ∈ RInRn−1×In+1×···×IN , an integer P, an approximation error bound ε, a Boolean flag “take max”
and maximum number of iterations Itermax

Output: A columnwise orthogonal matrix Q(n) ∈ RInRn−1×Rn satisfying (12)

1 Draw N− n independent families
{
ω

(p)
m ∈ RIm : p= 1,2, . . . ,P

}
of standard Gaussian vectors wherem= n+ 1,n+

2, . . . ,N

2 Compute yp = C×̄n+1 ω
(p)
n+1×̄n+2 · · · ×̄N ω

(p)
N with p= 1, 2,…, P

3 Start with an empty basis matrix Q(0) and set k= 0
4 whilemax{∥yk+1∥2,∥yk+1∥2, . . . ,∥yk+P∥2}> ε or k< Itermax do
5 Set k= k+ 1
6 if the value of ‘take max’ is ‘True’ then
7 Choose k0 ∈ {k+ 1, . . . ,k+ P} such that

∥yk0∥2 =max{∥yk+1∥2, ∥yk+2∥2, . . . , ∥yk+P∥2}
yk =

(
I−Q(k−1)Q(k−1)T

)
yk0 if k> 1

8 else

9 yk =
(
I−Q(k−1)Q(k−1)T

)
yk if k> 1

10 end

11 Compute qk =
yk

∥yk∥2
and form Q(k) =

[
Q(k−1),qk

]
12 Draw N− n standard Gaussian vectors ωm ∈ RIm wherem= n+ 1,n+ 2, . . . ,N

13 Compute yk+P =
(
I−Q(k)Q(k)T

)
(C×̄n+1 ωn+1×̄n+2 · · · ×̄N ωN)

14 for i= k+ 1,k+ 2, . . . ,k+ P− 1 do
15 yi = yi −

(
qTk yi

)
qk

16 end
17 end
18 Set Q= Q(n) and Rn as the number of all columns of Q(n).

which may be difficult. However, an adaptive algorithm, e.g. Algorithm 3, can be used in Algorithm 12 to
find the factor matrices and their corresponding multilinear rank automatically[98]. This procedure is
summarized in Algorithm 14.

It has been shown in [105], that the computational complexity of the TT-SVD algorithm for
decomposing an Nth-order tensor of size I× I× ·· ·× I and the TT-ranks (R,R, . . . ,R) isO

(
INR2

)
, due to

the computation of N SVD of the unfolding matrices, (Theorem 2.1 in Page 2136). Since the computational
complexity of the TR-SVD algorithm is the same as the TT-SVD algorithm, we have the same complexity for
the TR-SVD algorithm. The idea of decomposing tensors in the TT format with a prior Tucker compression
was first proposed in [16]. The computational complexity of TR-SVD (with a prior Tucker decomposition)
of an Nth-order tensor of size I× I× ·· ·× I, with the Tucker rank

(
R̃, R̃, . . . , R̃

)
and the TR-ranks

(R,R, . . . ,R) isO
(
INR̃+ R̃NR2

)
.

The first term is the cost for multiplying the unfolding matrices with random matrices which is the most
expensive operation. The second term is for the TR decomposition of the core Tucker tensor. So, if R̃< R2,
then the approach of the TR decomposition with a prior Tucker compression is cheaper.

We should emphasize that the TR decomposition with a prior Tucker compression is applicable when

• The underlying data tensor is of small order (up to 5) otherwise the curse of dimensionality occurs.
• The Tucker core tensor admits a low multilinear rank.

Concerning Algorithms 5 and 6, the complexity is more involved because they need several permutations
of modes. They are not applicable directly to very large-scale tensors and a prior Tucker compression can
somewhat reduce the computational complexity. Please note that all algorithms discussed in this paper
achieve a suboptimal compression ratio and developing algorithms for finding the optimal model is a
challenging topic that needs to be investigated. For example, in [85], novel algorithms are developed for the
TT decomposition.

Remark 5. For decomposing a streaming data tensor in the TT format, specialized algorithms should be used.
Recently a streaming TT decomposition is developed in [106] with applications in cyber-physical big data. Further
applications of the streaming TT decomposition in DNNs can be found in [107].

Remark 6. Recently an efficient technique called TT-HSVDwas proposed in [108, 109] for decomposing tensors in
the TT format in which the core tensors can be computed in parallel. This is in contrast to the TT-SVD in which at

12
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Algorithm 10: Adaptive Random projection TR-SVD algorithm (see also [94])

Input: A data tensor X ∈ RI1×I2×···×IN , a prescribed approximation error bound ε, a positive number P and an
initial rank R0 as a divisor of rankδ

(
X⟨1⟩

)
Output: Approximative representation of the tensor X in the TR format X̂=≪ X̂

(1)
, X̂

(2)
, . . . , X̂

(N) ≫, such that∥∥∥X− X̂
∥∥∥
F
≤ ε∥X∥F

1 Apply Algorithm 3 to the C⟨1⟩ and generate the columnwise orthogonal matrix Q(1) ∈ RI1×R0R1

2 X̂
(1)

= permute
(
reshape

(
Q(1), [I1,R0,R1]

)
, [2,1,3]

)
3 Compute C= X×1Q(1)T

4 C= permute(reshape(C, [R0,R1, I2 . . . IN]) , [2,3,1])
5 C= reshape(C, [R1I2, I3 . . . IN,R0])
6 for n= 2,…,N− 1 do
7 C= reshape(C, [Rn−1In, In+1 . . . INR0])
8 Apply Algorithm 8 or 9 to the tensor C for solving Problem 1 and generate the columnwise orthogonal

matrix Q(n) ∈ RInRn−1×Rn

9 X̂
(n)

= reshape
(
Q(n), [Rn−1, In,Rn]

)
10 Compute C= C×1Q(n)T

11 C= reshape(C, [Rn−1In, In+1 . . . IN, R0])
12 end

13 X̂
(N)

= reshape(C, [RN−1, IN,R0])

Algorithm 11: Randomized RRTR-SVD Algorithm

Input: A data tensor X ∈ RI1×I2×···×IN , a prescribed approximation error bound ε, a power iteration q and an
initial rank R0 as a divisor of rankδ

(
X⟨1⟩

)
Output: Approximative representation of the tensor X in the TR format X̂=≪ X̂

(1)
, X̂

(2)
, . . . , X̂

(N) ≫, such that∥∥∥X− X̂
∥∥∥
F
≤ ε∥X∥F and the TR-ranks are {R0,R1, . . . ,RN−1}

1 Compute δ =
ε∥X∥F√

N
2 C= reshape(X, [I1, I2I3 . . . IN])
3 [Q,B, R̃1] = Rank-Revealing Algorithm(C, ϵ,b, q)
4 R1 = R̃1/R0

5 X̂
(1)

= permute(reshape(Q(:,1 : R0) , [I1,R0,R1]) [2,1,3])

6 C= permute

(
reshape

(
B,

[
R0,R1,

N∏
j=2

Ij

])
, [2,3,1]

)
7 for n= 2,…,N− 1 do

8 C= reshape
(
C,
[
Rn−1In,

numel(C)
Rn−1In

])
9 [Q,B,Rn] = Rank-Revealing Algorithm(C, ϵ,b, q)

10 X̂
(n)

= reshape(Q(:,1 : Rn), [Rn−1, In,Rn])

11 C= reshape
(
B(1 : Rn, :),

[
Rn,
∏N

j=n+1 Ij,R0

])
12 end

13 X̂
(N)

= reshape(C, [RN−1, IN,R0])

each step just one core tensor is computed. This technique can be generalized for the TR decomposition employing
randomization for further acceleration in computations.

Remark 7. Consider Algorithm 1 which is the basic form of randomized algorithms for low rank approximation
of matrices [53]. It has been recently shown in that for large sparse matrices, Algorithm 1 or its variants can be
totally improved by prior transformation of a given data matrix into the TT matrix format (equivalently Matrix
Product Operator (MPO))[105], and performing all computations in the TT matrix format. This algorithm is
called tensor train randomized SVD (TTrSVD) algorithm and simulations have shown that for some experiments,
it can achieve more than 10 times speed up for the TT decomposition compared with tensor-based alternating least
squares SVD (ALS-SVD) [27] and modified alternating least squares SVD (MALS-SVD) matrix approximation
methods [27] even with better accuracy.
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Figure 3. Randomized TR decomposition with a prior Tucker compression.

Algorithm 12: Pseudocode for the Tucker compression

Input: A data tensor X ∈ RI1×I2×···×IN and a Tucker rank (K1,K2, . . . ,KN)

Output: Approximate Tucker decomposition X∼=
[[
S;Q(1),Q(2), . . . ,Q(N)

]]
1 S= X
2 for n= 1, 2,…,N do
3 [Hn,∼] = Size(S(n))
4 Draw a random matrixΩn ∈ RKn×Hn

5 Y= S(n)Ωn

6
[
Q(n),∼

]
= qr(Y)

7 S= S×nQ(n) T

8 end

Algorithm 13: Randomized TR decomposition with a prior Tucker compression (see also [103])

Input: A data tensor X ∈ RI1×I2×···×IN , an approximate multilinear rank (K1,K2, . . . ,KN) and approxim-
ate TR-ranks {R0,R1, . . . ,RN−1}
Output: Approximative representation of the tensor X in the TR format X̂=≪ X̂

(1)
, X̂

(2)
, . . . , X̂

(N) ≫,

such that
∥∥∥X− X̂

∥∥∥≤ ε∥X∥
1 Apply Algorithm 12 to the data tensor X to compress it in the Tucker model with Tucker rank multilin-

ear rank (K1,K2, . . . ,KN) and obtain
[[
S,Q(1),Q(2), . . . ,Q(N)

]]
2 Apply Algorithm 4, Algorithm 6, Algorithm 5 or TR-ALS Algorithm [20] to the compressed data tensor

S and obtain≪ Ŝ
(1)

, Ŝ
(2)

, . . . , Ŝ
(N) ≫

3 Recover the TR cores of the original data tensor from the TR cores of the compressed data tensor, X̂
(n)

=

Ŝ
(n) ×2 Q(n), n= 1,2, . . . ,N

4 Return≪ X̂
(1)

, X̂
(2)

, . . . , X̂
(N) ≫

5. Simulations

In this section, we evaluate the presented randomized algorithms for computation of the TR decomposition
of synthetic and real data tensors. All numerical simulations were conducted on a laptop computer with 2.60
GHz Intel(R) Core(TM) i7-5600U processor and 8GB memory. The evaluation measures of the algorithms
are compression ratio and relative error. The compression ratio is defined as
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Algorithm 14: Adaptive randomized TR decomposition with a prior Tucker compression (see also
[103])

Input: A data tensor X ∈ RI1×I2×···×IN and a prescribed approximation error bound ε

Output: Approximative representation of the tensor X in the TR format X̂=≪ X̂
(1)

, X̂
(2)

, . . . , X̂
(N) ≫,

such that
∥∥∥X− X̂

∥∥∥≤ ε∥X∥ and the TR- ranks {R0,R1, . . . ,RN−1}
1 Apply the r-SHOSVD algorithm [98] (also see Algorithm 5 in [97]) to compress the data tensor in the

Tucker format and obtain
[[
S;Q(1),Q(2), . . . ,Q(N)

]]
2 Apply Algorithm 4, Algorithm 6, Algorithm 5 or TR-ALS Algorithm [20] to the compressed data tensor

and obtain S represented as≪ Ŝ
(1)

, Ŝ
(2)

, . . . , Ŝ
(N) ≫

3 Recover the TR cores of the original data tensor from the TR cores of the compressed data tensor, X̂
(n)

=

Ŝ
(n) ×2 Q(n), n= 1,2, . . . ,N

4 Return≪ X̂
(1)

, X̂
(2)

, . . . , X̂
(N) ≫

Table 1. Example 1. Compression ratio of the TR-SVD algorithm for different possible initial ranks R0 for a random tensor of size
70× 70× 70× 70 and TR-rank {5, 3, 5, 7} with optimal compression 2.9155e-04.

Initial rank R0 TR-ranks Compression ratio

1 {1, 15, 25, 35} 0.0038
3 {3, 5, 75, 105} 0.0250
5 {5, 3, 45, 63} 0.0096
15 {15, 1, 15, 21} 0.0019

Compressionratio=
C2

C1
,

where C1, C2 are the number of components of the original data tensor and its approximation in the TR
format, respectively. Also, the relative error is defined as

e=

∥∥∥X̃−X
∥∥∥
F

∥X∥F
,

where X̃ and X are approximate and exact data tensors, respectively.
Example 1. In the first experiment, the performance and accuracy of the randomized TR algorithms are

compared for synthetic data. We set the power iteration as q= 1 and the oversampling as P= 5, within the
randomized algorithms. Consider a 4th-order random tensor X ∈ R70×70×70×70 with exact TR-ranks
(5, 3, 5, 7). We applied the deterministic and randomized TR algorithms (Algorithms 5–7, 7, 10, 13, 14) to
the tensor X. The possible initial rank, i.e. R0, for the TR decomposition were R0 = 1, 3, 5, 15 and the best
compression was achieved for R0 = 15. The compression ratio of the TR-SVD achieved using different initial
ranks R0 are reported in table 1. The same compression was achieved using the randomized TR-SVD but
with better running time reported in table 2. From table 1, it is seen that the best compression ratio was
achieved by initial rank R0 = 15.

Algorithms 5–6 and their variants with a prior Tucker compression (Algorithm 13 or 14) were able to
find the TR-ranks {15, 1, 15, 21} but with higher computational costs. The running time and relative error of
algorithms are reported in table 2. For a prior reduction in the Tucker format, the tensor was compressed to a
tensor of size (15, 15, 35, 35) using the r-STHOSVD algorithm. From table 2, it is seen that the randomized
algorithms have better running time compared to the deterministic counterparts. Note that the last two
algorithms in table 2 are non-adaptive and we gave the true TR-ranks to the algorithms. This is why they
achieved a better compression ratio.

In a second simulation, we generated a 5th tensor of size 30× 30× 30× 30× 30 with TR-ranks
(5, 3, 5, 3, 5). Here, we wanted to highlight the performance of TR decomposition with a prior Tucker
compression when it is combined with Algorithms 5 and 6. Note that for the Tucker compression step, we
used multilinear rank (15, 15, 15, 15, 25). The results of this experiment are reported in table 3. The results
show significant speed-up of the deterministic algorithms using the randomization technique.

Example 2. In this example, we consider the highly oscillating function f(x) = (x+ 1) sin
(
100(x+ 1)2

)
depicted in figure 4. It was shown in [110] and [111] that the discretized form of such functions after a
tensorization can be compressed in the TR format. Discretization of this function over the range [−1, 1] with
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Table 2. Example 1. Comparison results for the data tensor of size 70× 70× 70× 70 and TR-ranks (5, 3, 5, 7) with optimal compression
2.9155e-04.

Algorithm Relative Error CPU Time Compression ratio

Algorithm 4 (with initial R0 = 15) 7.3475e-06 4.887479 0.0019
Algorithm 7 (with initial R0 = 15) 5.0265e-06 1.443426 0.0019
Algorithm 7 with a prior Tucker compression (Algorithm 14) 1.2578e-06 2.4633 0.0019
Algorithm 5 4.2254e-06 265.4523 0.0019
Algorithm 5 with a prior Tucker compression (Algorithm14) 5.4346e-06 2.6749 0.0019
Algorithm 6 6.6723e-06 72.3477 0.0019
Algorithm 6 with a prior Tucker compression (Algorithm 14) 1.2578e-06 2.4633 0.0019
Algorithm 10 2.1165e-06 3.3244 0.0019
Algorithm 7 2.0875e-06 3.2679 2.9155e-04
Algorithm 13 2.5686e-06 2.7645 2.9155e-04

Table 3. Example 1. Comparison results for the data tensor of size 30× 30× 30× 30× 30 and TR-ranks (5, 3, 5, 3, 5) with optimal
compression 1.0494e-04.

Algorithm Relative Error CPU Time Compression ratio

Algorithm 5 7.6743e-04 139.6735 6.5598e-04
Algorithm 5 with a prior Tucker compression (Algorithm 14) 4.3423e-04 11.7935 6.5598e-04
Algorithm 6 2.2911e-04 19.3457 6.5598e-04
Algorithm 6 with a prior Tucker compression (Algorithm 14) 5.5467e-04 5.3598 6.5598e-04

Figure 4. The highly oscillating function f(x) = (x+ 1) sin
(
100(x+ 1)2

)
over [−1, 1]. Discretization of this function with

step-size 1
224

followed by a tensorization has low TR-ranks [110, 111]

Table 4. Example 2. Comparison results for the highly oscillating function f(x) = (x+ 1) sin
(
100(x+ 1)2

)
.

Algorithm Relative Error CPU Time Compression ratio

Algorithm 5 5.3849e-06 803.9073 1.4782e-04
Algorithm 5 with a prior Tucker compression (Algorithm 14) 5.8412e-06 10.1231 1.4782e-04
Algorithm 6 5.3859e-06 360.2503 1.4782e-04
Algorithm 5 with a prior Tucker compression (Algorithm 14) 7.1662e-06 8.4494 1.4782e-04

step-size 1
224 leads to a long vector of size 33554433. We remove the first component of this long vector so that

the new vector can be reshaped to a 4th-order tensor of size 128× 256× 32× 32. This tensor has true
multilinear rank (3, 7, 21, 21) which can be computed via the MATLAB function ‘mlrank.m’ included in the
tensorlab toolbox [112]. The MATLAB function ‘mlrankest.m’ gave the numerical multilinear rank
(2, 4, 16, 16) but we used the former in our compression step. We again used Algorithm 12 for the Tucker
compression step with the multilinear rank (3, 7, 21, 21). In this experiment, we highlighted the importance
of prior Tucker compression in the data tensor in reducing the running time of TR algorithms with cyclic
permutations of the cores. The results of this simulation are reported in table 4. From the results, the
superiority of the randomized algorithms compared to deterministic counterparts is visible. Also, all
algorithms achieved the same compression ratio.
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Figure 5. The running time of the TRLRF and the R-TRLRF algorithms for ‘Giant’ image and TR-ranks 20.

Figure 6. PSNR comparison results of the TRLRF and the R-TRLRF algorithms.

Example 3. In this simulation, we are dealing with the tensor completion problem. The problem of
recovering a given data tensor from its partially observed components is known as tensor completion
[113, 114]. The TR model has recently been used for recovering the missing elements of incomplete
higher-order data tensors in [34, 115–117]. Here, we used the TR low rank factors (TRLRF) algorithm
proposed in [116, 117] because as reported in [116, 117], it was the most stable and efficient algorithm in
terms of sensitivity to TR-ranks and reconstruction error compared to others. The algorithm is based on
nuclear norm minimization formulation and it uses the ADMM algorithm [118] to solve the underlying
optimization problem10. It requires to compute the SVD of some unfolding matrices in Lines 86–88 of the
MATLAB code ‘TRLRF.m’. We modified it to a randomized algorithm by replacing the SVD with Algorithm 3

10 The MATLAB implementations of it is available in the GitHub repository https://github.com/yuanlonghao/TRLRF.
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Figure 7. The reconstructed images using the TRLRF algorithm and its randomized variant for TR-rank 20.

where the block size was b= 100 and the power iteration was q= 1. We call it randomized TRLRF
(R-TRLRF) algorithm.

Consider three benchmark images (‘Giant’ , ‘Kate’ , ‘Peppers’) depicted in figure 7, respectively
(images in the first column). The “Giant’ was of size 256× 256× 3, while the ‘Kate’ and ‘Peppers’
were of size 512× 512× 3. We reshaped ‘Giant’ , ‘Kate’ , ‘Peppers’ to 7th-order tensors of sizes
8× 8× 4× 8× 8× 4× 3, 16× 8× 4× 16× 8× 4× 3 and 16× 8× 4× 16× 8× 4× 3, respectively. We
removed randomly 80% of the pixels of the mentioned images and the TRLRF and the R-TRLRF algorithms
were applied to the images with missing pixels with varying TR-ranks R1 = R2 = · · ·= R7 = R, for
R= 12, 13,…, 20. The running times of the TRLRF and the R-TRLRF algorithms for different TR-ranks and
all images were almost the same and we only report it for the ‘Giant’ image and TR-ranks 20 in figure 5.
From figure 5, the scalability of the R-TRLRF algorithm compared to the TRLRF algorithm is visible. Our
simulations confirmed the R-TRLRF algorithm achieves roughly the same accuracy as the TRLRF algorithm
while it is computationally much cheaper. The PSNR and the RSE of recovered images obtained by the
TRLRF algorithm and the R-TRLRF algorithm are reported in figures 6,

where RSE=
∥X−X̂∥

F
∥X∥F

, PSNR= 10log10
(
2552/MSE

)
, and MSE=

∥∥∥X− X̂
∥∥∥2
F
/num(X) . Note ‘num’ denotes

the number of parameters of a given data tensor. Here again, it is seen that the R-TRLRF algorithm
outperforms the TRLRF algorithm. We visualize the results of recovered images by the TRLRF algorithm and
the R-TRLRF algorithm in figure 7 for TR-rank 20.

6. Conclusion

In this paper, we reviewed and extended a variety of randomized algorithms for computation of the Tensor
Ring (TR) decomposition which to some extent can be applied to the TT decomposition with R0 = 1. We
discussed both adaptive and non-adaptive randomized algorithms for this task. Our main focus was on the
random projection technique and used it to speed-up the decomposition of a tensor in the TT/TR format.
Simulations were performed on synthetic and real data-sets to support the presentation.
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