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ABSTRACT 
 
Predicting stock market prices is a critical yet challenging task in finance. Technical analysis, a 
widely used methodology in investment theory, involves forecasting price movements by analyzing 
historical market data. Recently, deep learning has gained prominence for its exceptional ability to 
process complex data, making it a popular tool for financial applications such as stock prediction, 
portfolio optimization, financial information analysis, and trade execution strategies. In this study, we 
propose a novel deep learning architecture that integrates a Generative Adversarial Network (GAN) 
with a Convolutional Neural Network (CNN) as the discriminator and Gated Recurrent Units (GRU) 
as the generator. This framework generates distributions of daily stock prices through adversarial 
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learning to predict stock closing prices. Using daily trading data from Ruchi Soya Industries Limited, 
an empirical analysis was performed across a broad time frame. Results show that the proposed 
GAN-based architecture significantly outperforms traditional deep learning models, including GRU, 
LSTM, and Bi-LSTM, in predicting stock closing prices. These findings demonstrate the potential of 
this novel approach for improving stock price forecasting accuracy. 
 

 

Keywords: Bidirectional LSTM (Bi-LSTM); Convolutional Neural Network (CNN); discriminator; Gated 
Recurrent Unit (GRU); generative models; generator; Long Short-Term Memory (LSTM). 

 
1. INTRODUCTION 
 
Predicting stock prices is a highly complex task 
due to the chaotic nature and intricate dynamics 
of financial markets, influenced by non-
decidable, nonstationary stochastic variables 
(Marszalek and Burczynski, 2014). Various 
methods have been proposed to analyze 
historical financial time series, but achieving 
accurate forecasts often requires expert 
knowledge, precise input selection, and the 
application of advanced statistical methods. This 
complexity can be a barrier for individuals without 
financial expertise (Huang et al., 2014; Wang et 
al., 2017; Chong et al., 2017). 
 
In recent years, machine learning (ML) and deep 
learning (DL) models have shown promising 
results in predicting agricultural prices for crops, 
as reported by Avinash et al. [1,2] (2023a, 
2023b), Nayak et al. [3,4], Vinay et al. [5], 
Baishya et al. [6], and Singh et al. [7]. Other AI 
applications related to the several domains were 
also studied by Nayak et al. (2023) and Shah et 
al. [8]. Generative Adversarial Networks (GANs), 
introduced by Goodfellow et al. [9], have 
demonstrated success in generating image 
patches from random noise [10-13]. GANs 
consist of two networks: a discriminative network 
(D) that learns to distinguish between real and 
generated data, and a generative network (G) 
that aims to produce data indistinguishable from 
the real data. Although GANs have been applied 
to image processing and video prediction, their 
use in stock forecasting is relatively new, as seen 
in Iizuka et al. (2017). However, there has been 
no prior application of GANs to agricultural 
market prediction. 
 
This study introduces a GAN-based model 
utilizing technical index data, which can be 
readily obtained from trading platforms, allowing 
individuals without financial expertise to predict 
stock prices. This approach tackles challenges in 
deep generative models, such as intractable 
probabilistic computations arising from maximum 
likelihood estimation and the use of piecewise 

linear units in a generative context [14,15]. The 
GAN framework drives improvement through 
competition between the generative model and 
the discriminative model, where the former 
attempts to generate realistic data while the latter 
seeks to detect the generated data as fake [16-
18]. This adversarial process continues until the 
generated data becomes indistinguishable from 
real data. 
 

The paper is organized as follows: Section 2 
reviews the literature on financial market 
prediction algorithms. Section 3 outlines the GAN 
framework and problem formulation. The 
experimental section compares the proposed 
model's performance with classical prediction 
models. Sections 4 and 5 present the results, 
conclusions, and references. 
 

2. MATERIALS AND METHODS 
 

2.1 Genesis of Gan 
 

Related work falls into two categories: 
econometric and soft computing models. 
Econometric models like AR, MA, ARMA, and 
ARIMA (Brockwell & Devis, 2013) forecast by 
treating new signals as noisy combinations of 
recent signals but rely on assumptions like i.i.d. 
noise, which GARCH models address by 
predicting conditional variances. Soft computing 
models, inspired by AI, include ANN [19], FL 
(Hassan et al., 2009), SVM [20], and PSO [21]. 
Deep neural networks (Rather et al., 2015; 
Chong et al., 2017) effectively predict high-
frequency financial time series, while Chen et al. 
(2017) use a double-layer network for stock 
return dependencies. These methods often need 
expert constraints, unlike the proposed model, 
which directly uses trading software data. 
Algorithms like RNN, LSTM, and GRU are widely 
used in time-series forecasting [22,23-25]. GANs, 
developed by Goodfellow et al. [9] for image 
generation, have been adapted for sequential 
data, improving stock price prediction through the 
adversarial generator-discriminator relationship. 
Some of these studies are summarized in            
Table 1. 
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Table 1. Review of modelling tasks using GAN models 
 

Applications Task Values in task Model Evaluation methods 

 RCGAN (Estemban et al., 2017) Generation Medical data GAN and RNN TSTR and TRTS 

Grid-GAN [26] Generation Smart grid data CGAN and CNN TSTR and TRTS 

EEG-GAN (Hartmann et al., 
2018) 

Generation EEG brain signals WGAN and CNN IS, FID, and ED 

StockGAN (Zhou et al., 2018) Generation Stock data GAN, CNN and 
LSTM 

RMSRE, DPA 

GRU-GAN [27] Imputation Medical records, 
meteorologic data 

GAN and GRU Imputation accuracy 

ForGAN (Koochali et al., 2019) Generation Synthetic series and 
internet traffic 

CGAN and 
LSTM 

KL divergence 

TimeGAN (Yoon et al., 2019) Generation Sines, stocks, energy and 
events data 

GAN Diversity, fidelity (e.g., RMSRE, DPA) 

E2GAN (Luo et al., 2019) Imputation Medical records, 
meteorologic data 

GAN and GRU Imputation accuracy 

SimGAN (Golany et al., 2020) Generation Heart rate ECG signals GAN Prediction accuracy  

Ad-Attack (Dang-Nhu et al., 
2020) 

Generation Stock prices and electricity 
data 

GAN Domain metrics (e.g., attack success rate, returned of 
perturbed portfolio) 
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2.2 Theoretical Background 
 
In time series forecasting, conventional deep 
learning approaches such as Convolutional 
Neural Networks (CNN), Recurrent Neural 
Networks (RNN), Gated Recurrent Units (GRU), 
and Long Short-Term Memory (LSTM) models 
have been widely applied. This section compares 
these methods with Generative Adversarial 
Networks (GANs) for various time series 
applications. 
 
Convolutional Neural Network (CNN): CNNs 
are deep, feed-forward neural networks 
commonly used for analyzing visual imagery. A 
CNN typically consists of an input layer, output 
layer, and multiple hidden layers. Unlike 
traditional Multilayer Perceptron (MLP) models, 
CNNs can develop internal representations of 
two-dimensional image data, making them 
effective for tasks involving spatial correlations. 
Though originally designed for image analysis, 
CNNs have been successfully adapted for time 
series forecasting by LeCun et al. (2015), proving 
effective in capturing temporal patterns in 
sequential data. 
 
Recurrent Neural Network (RNN): RNNs are a 
type of neural network where previous outputs 
are fed as inputs to the current step. The key 
advantage of RNNs is their ability to capture 
sequential dependencies through hidden states, 
which serve as internal memory. Despite their 
success across various domains, RNNs suffer 
from the vanishing gradient problem [28], making 
it difficult to learn long-term dependencies in time 
series data. To address this issue, two variants 
of RNNs were developed: Long Short-Term 

Memory (LSTM) by Hochreiter and Schmidhuber 
(1997) and Gated Recurrent Units (GRU) by 
Kyunghyun et al. (2014). These models offer 
improved performance in learning temporal 
correlations in time series and spatio-temporal 
(ST) data. 
 
Gated Recurrent Unit (GRU): GRU is a variant 
of RNN that incorporates gating mechanisms to 
control the flow of information. It was introduced 
in 2014 by Kyunghyun Cho et al. GRUs simplify 
the LSTM architecture by combining the forget 
and input gates into a single "update gate" and 
removing the cell state, storing both long- and 
short-term memory in the hidden state. GRUs 
address the vanishing and exploding gradient 
problems inherent in RNNs, and due to fewer 
parameters, they tend to perform better on 
smaller datasets compared to LSTMs. The 
internal structure of a GRU unit is shown in         
Fig. 1. 
 
Long Short-Term Memory (LSTM): LSTM, 
introduced by Hochreiter et al. (1997), is a 
specific RNN architecture designed to address 
the vanishing gradient problem. LSTMs 
incorporate feedback connections and can 
handle both single-point and sequential data. 
LSTM units consist of three gates: input, output, 
and forget gates, which regulate the flow of 
information through the network. This enables 
LSTMs to remove or add information to the cell 
state, making them highly effective at learning 
long-term dependencies in time series data. 
LSTMs have become a powerful tool for 
processing, classifying, and forecasting time 
series data. The structure of an LSTM unit is 
shown in Fig. 2. 

 

 
 

Fig. 1. Architecture of the GRU 
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Fig. 2. Architecture of the LSTM 
 
Bidirectional LSTM (Bi-LSTM): The 
Bidirectional LSTM (Bi-LSTM) model, as shown 
in Fig. 3, includes both a forward and a backward 
LSTM layer. The forward LSTM layer processes 
the input sequence from left to right, while the 
backward layer processes it from right to left. The 

hidden vectors of both layers, denoted as ℎ⃗ 𝑡  and 

ℎ⃖⃗𝑡 are independent of each other and only relate 
to their respective layers. The final output of Bi-
LSTM is obtained by combining the outputs of 
these two hidden layers through a weighted 
connection, as described by the following 
equations: 

 

ℎ⃗ 𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ⃗ 𝑡−1) 

ℎ⃖⃗𝑡=LSTM (𝑥𝑡 , ℎ⃖⃗𝑡+1) 

𝑦𝑡 = 𝛿 (𝑊ℎ⃗⃗ 𝑦
ℎ⃗ 𝑡 + 𝑊ℎ⃗⃗⃖𝑡

ℎ⃖⃗𝑡 + 𝑏𝑦) 

2.3 Generative Adversarial Networks 
(GANs) 

 

2.3.1 Basic idea/principles of GANs 
 

GANs, introduced by Goodfellow et al. [9], 
operate on a framework that involves training two 
models in a zero-sum game setting. In this 
adversarial process, the generator (G) acts as 
the "cheater" by generating data that mimics real 
data, while the discriminator (D) serves as the 
"judge," distinguishing between real and 
generated data. The goal is to reach a point 
where the discriminator can no longer 
differentiate between the two, indicating that the 
generator has successfully captured the true 
data distribution. This principle underlies the 
proposed GAN architecture for predicting stock 
closing prices. 

 

 
 

Fig. 3. Architecture of the Bi-LSTM 
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2.3.2 The architecture of GAN 
 
“The adversarial modeling framework is most 
straightforward to apply when the models are 
both multilayer perceptron. To learn the 
generator’s distribution pg over data x, we define 
a prior on input noise variables pz(z), then 
represent a mapping to data space as G (z; θg), 
where G is a differentiable function represented 
by a multilayer                    perceptron with 
parameters θg. We also define a second 
multilayer perceptron D (x; θd) that outputs a 
single scalar. D(x) represents the probability that 
x came from the data rather than pg. We train D 
to maximize the probability of assigning the 
correct label to both training examples and 
samples from G . We simultaneously train G to 
minimize log (1− D(G(z)))”. In other words, D and 
G play the following two-player minimax game 
with value function V (G, D): 
 

min
G

max
D

V(D, G) = Ex~p
data(x)

[log D (x)] 

+ Ez~p
z(z)

[log(1 − D (G(z)))] 

 
In practice, adversarial networks aim to optimize 
the discriminator and generator iteratively. While 
this game-theoretic approach ensures that the 
generator eventually learns the data distribution, 
implementing this game requires an iterative 
numerical method. Optimizing the discriminator 
fully within each training step is computationally 
expensive and can lead to overfitting, especially 

on finite datasets. Instead, we alternate between 
several steps of optimizing the discriminator and 
a single step of optimizing the generator. This 
maintains the discriminator near its optimal state 
while allowing the generator to evolve gradually 
as shown in Fig. 4 with Algorithm 1. 
 

𝐿𝐷 = − 𝐸𝑥~𝑃
𝑑𝑎𝑡𝑎(𝑥)

[log𝐷 (𝑥)] − 𝐸𝑍~𝑃
𝑧(𝑍)

[log(1 −

𝐷(𝐺(𝑧)))] and 𝐿𝐺 = 𝐸𝑍~𝑃
𝑧(𝑍)

[log(1 − 𝐷(𝐺(𝑧)))]     

 

In practice, above equation may not provide 
sufficient gradient for G to learn well. Early in 
learning, when G is poor, D can reject samples 
with high confidence because they are clearly 
different from the training data. In this case, log 
(1 − D(G(z))) saturates. Rather than training G to 
minimize log (1 − D(G(z))) we can train G to 
maximize log D(G(z)). This objective function 
results in the same fixed point of the dynamics of 
G and D but provides much stronger gradients 
early in learning. The generator G implicitly 
defines a probability distribution pg as the 
distribution of the samples G(z) obtained when z 
∼ pz. Therefore, we would like Algorithm 1 to 
converge to a good estimator of pdata, if given 
enough capacity and training time and finally this 
minimax game has a global optimum for pg = 
pdata. Ultimately, the generator and discriminator 
are trained iteratively, continuously improving 
until the generated data is indistinguishable from 
the actual data, achieving the goal of accurate 
data prediction. 

 

 
 

Fig. 4. Architecture of the GAN [29] 
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Algorithm 1 This algorithm outlines the training procedure for GANs using minibatch stochastic 
gradient descent. In this process, the generator (G) and discriminator (D) are updated iteratively to 
improve their performance in generating and distinguishing data, respectively. The number of steps 
applied to the discriminator, denoted by k, is a hyperparameter. In the experiments conducted, we 
used k=1, the least computationally expensive option, which still yields effective results. 

for number of training iterations do 
      for k steps do 
           • Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z). 
           • Sample minibatch of m examples {x(1), . . . , x(m)} from data generating distribution pdata(x). 
           • Update the discriminator by ascending its stochastic gradient: 

 𝛁𝜃𝑑

1

𝑚
∑[log𝐷(𝑥(𝑖)) + log(1 − 𝐷(𝐺(𝑧(𝑖)))

𝑚

𝑖=1

)] 

    end for 
    • Sample minibatch of m noise samples {z(1), . . . , z(m)}  from noise prior pg(z). 
    • Update the generator by descending its stochastic gradient: 

 𝛁𝜃𝑔

1

𝑚
∑log(1 − 𝐷(𝐺(𝑧(𝑖)))

𝑚

𝑖=1

)] 

    end for 
   The gradient-based updates can use any standard gradient-based learning rule.  

 

3. RESULTS AND DISCUSSION 
 

3.1 Empirical Study 
 

Data description: The dataset used in this study 
comprises daily prices of soya oil (in INR) from 
July 30, 2010, to June 30, 2020, sourced from 
Yahoo Finance. The descriptive statistics of the 
soya stock price series, shown in Table 2, 
indicate that prices ranged from ₹4,306 to 
₹14,105, with a standard deviation of ₹3,580.47, 
reflecting significant variability. The data also 
show a positive skewness of 0.8619 and a 
platykurtic value of 2.6052, suggesting a non-
normal distribution, confirmed by the Jarque-
Bera test [30]. A time plot of the series, shown in           
Fig. 5, further validates the non-stationarity and 
nonlinearity of the data. The dataset consists of 
2,498 observations, divided into a training set 
(80%) with 1,998 observations and a testing set 
(20%) with 500 observations used for post-
sample predictions. 
 

The study aimed to develop a GAN model for 
forecasting agricultural commodity prices and 
compare its performance with models like LSTM, 
Bi-LSTM, and GRU. The experiments were 
conducted on a system with an Intel Core i5-

10500 CPU, 2.50 GHz, 8 GB RAM, and Intel 
UHD Graphics 10 GB. 

 
Table 2. Descriptive statistics of Soya stock 

price series (in INR) 

 
Descriptive statistics Price (in INR) 

Minimum 17.00 
Mean 4306.00 
Maximum 14105.00 
Standard deviation 3580.47 
CV (%) 83.15 
Skewness 0.88 
Kurtosis 2.60 
Jarque-Bera 339.95** 

 
3.2 Test for Stationarity 
 
To check the stationarity of the soya price series, 
the Augmented Dickey-Fuller (ADF), Phillip-
Perron (PP), and Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) tests were applied. As shown in 
Table 3, the ADF test failed to reject the null 
hypothesis, indicating non-stationarity. Similarly, 
the PP test confirmed non-stationarity. The 
KPSS test also supported the non-stationarity of 
the series. 

 
Table 3. ADF, PP and KPSS test results of daily price series of soya stock 

 

Price series ADF test PP test KPSS test 

Statistic p-value Statistic value Statistic p-value 

Soya stock price series -2.2800 0.2260 -3.42 0.28 9.05 0.01 
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Fig. 5 (a). GRU model on test data Fig. 5 (b). LSTM model on test data 
 

  
Fig. 5 (c). Bi-LSTM model on test data Fig. 5 (d). GAN model on test data 
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3.3 Brock-Dechert- Scheinkman (BDS) 
Test for Nonlinearity 

 
The BDS test was applied to assess the 
nonlinearity of the time series. The test results, 
summarized in Table 4, confirmed significant 
nonlinearity in the soya stock market price data, 
particularly at embedding dimensions of 2 and 3. 
The p-values were calculated for different levels 
of proximity and indicated nonlinearity for the 
dataset. 
 

Table 4. BDS test for non-linearity 
 

Epsilon for 
close points 

Embedding 
dimensions 

p- 
value 

2 3  

0.5 σ 208.08 344.99 <0.0001 
1.0 σ 154.16 186.64 <0.0001 
1.5 σ 146.38 160.76 <0.0001 
2.0 σ 131.97 132.33 <0.0001 

 

3.4 Data Pre-processing and 
Normalization 

 
The data contained no missing values, so 
imputation was unnecessary. However, 
normalization was performed to ensure effective 
model fitting. The data were normalized using the 
MinMaxScaler function from Scikit-learn, which 
scaled the values between 0 and 1, facilitating 
smoother training for the neural network models. 
 

3.5 Implementation of Forecasting 
Models 

 
Given the confirmed non-stationarity and 
nonlinearity, various forecasting models were 
developed using Python's TensorFlow and Keras 
libraries. The GRU model, tuned using grid 
search, was structured with 128 input neurons, 
64 hidden neurons in the first layer, and 32 
neurons in the second hidden layer. This model, 
trained with the Adam optimizer, batch size of 
128, and 50 epochs, achieved an RMSE of 
741.63 (Fig. 5(a)). 
 
The LSTM model, also optimized through grid 
search, yielded an RMSE of 449.72 on the test 
data (Fig. 5(b)). The Bi-LSTM model 
outperformed both GRU and LSTM, achieving an 
RMSE of 388.04 on the test data (Fig. 5(c)). 

 
Building on the strengths of these models, a 
GAN model was designed to incorporate 
elements from both GRU and Bi-LSTM. The 

generator in the GAN utilized three layers of 
GRU with 1024, 512, and 256 neurons, while the 
discriminator employed a Convolutional Neural 
Network (CNN) with three 1D convolution layers 
containing 32, 64, and 128 neurons. The 
discriminator also featured three dense layers 
with 220, 220, and 1 neuron. The Leaky ReLU 
activation function was used throughout, except 
in the output layer, which employed the Sigmoid 
function. 
 

Table 5. Optimized results obtained by 
different models for the Soya price series 

data 
 

Models RMSE 

GRU 741.63 
LSTM 449.72 
Bi-LSTM 388.04 
GAN 251.60 

 
The GAN model significantly outperformed the 
other models, achieving an RMSE of 251.60  
(Fig. 5(d)), making it the best-performing model 
in the study. As presented in Table 5, the model 
was further fine-tuned using Bayesian 
Optimization, which helped to minimize forecast 
error and direction prediction loss. This combined 
architecture, termed GAN-FD (GAN for 
minimizing forecast error and direction prediction 
loss), demonstrated superior predictive accuracy. 
 

4. CONCLUSIONS 
 

This paper presents a novel GAN model 
designed specifically for predicting soya stock 
prices by generating time series data through the 
generator component of the network. This is a 
pioneering application of GANs in agricultural 
time series forecasting. The model successfully 
integrates the inherent uncertainties of soya 
stock prices by utilizing a deep neural network-
based generator that captures noise sequences 
in the latent space. Through adversarial training, 
the GAN model demonstrates superior prediction 
accuracy over traditional forecasting methods, 
highlighting its potential in agricultural stock price 
prediction. However, tuning hyperparameters, 
especially in GAN models involving RNNs, 
remains a challenge, as improper adjustments 
can lead to model instability. Future research 
should focus on developing advanced 
hyperparameter optimization techniques, such as 
reinforcement learning, to enhance the predictive 
performance of GAN models in this context and 
further improve the accuracy and robustness of 
predictions in agricultural stock price forecasting. 
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