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ABSTRACT 
 

The sustained interest in the design of potent antioxidants drugs over the years can be attributed to 
the indispensable roles antioxidants play in the mitigation of oxidative stress and its concomitant 
diseases. The high demand for exogenous antioxidants has been ascribed to the prevalence of 
oxidative stress-mediated diseases such as cancer, diabetes, stroke, cell aging, arteriosclerosis 
and central nervous system disorders occasioned by a biochemical disequilibrium between the 
production of free radicals and the body’s ability to eliminate these reactive species from the 
biological system. COVID-19 severity and death have been linked to a free radical generating 
process known as the cytokine storm. In an attempt to maintain optimal body function, antioxidant 
supplementation has increasingly become a wide spread practice because of antioxidants’ ability to 
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directly scavenge free radicals, inhibit oxidative chain reactions thereby increasing the antioxidant 
defenses of the body. Recent data showed that researchers had made significant efforts to 
demonstrate the importance and timeliness of antioxidant therapy based on drug design from 
natural and synthetic sources. Therefore this review presents antioxidant drug design 
methodologies, identifying the lead and hits to provide a historical and up-to-date collection of 
research briefs on antioxidant drug design into a single piece in order to ensure easy accessibility, 
motivate readership and inspire future researches. 
 

 
Keywords: Antioxidant; drug design; oxidative stress; free radicals; multipotent antioxidants. 
 

1. INTRODUCTION 
 
Historically, the word “antioxidant” was first used 
in the 19th century to describe any substance 
with the ability to hinder oxygen consumption. 
Antioxidants' applications were industrial, for 
vulcanization of rubber, corrosion inhibition, and 
polymerization [1]. Biologically, antioxidants were 
employed in the inhibition of rancidity of 
unsaturated fats [2]. In the early 20

th
 century, 

Moses Gombery, a chemistry professor 
discovered the first organic free radicals, 
triphenylmethyl and vitamin E and C were 
consequently identified as antioxidants. This 
discovery portrays antioxidants in good light and 
brought revolution to the field of biochemistry of 
living organisms [3,1] The mechanism of action 
of antioxidants was explored and they were 
identified as reducing agents [4-5]. Antioxidants 
are defined as compounds that inhibit free-
radical generating chemical reactions. They bind 
to free radicals so as to prevent them from 
damaging biological molecules [6] 
 
Research on the discovery of natural and 
synthetic antioxidants drugs design extensively 
carried out, but there is a lack of single papers 
with a collection of antioxidant drug design 
methodologies, design leads, and antioxidants' 
role in disease therapy. This review presents a 
collection of research briefs on the design of 
antioxidant drugs and transformational 
approaches that enable the modification of 
antioxidant leads to improved potency and 
therapeutic applications. 
 

2. ANTIOXIDANT FUNCTIONS 
 
Biochemically and physiologically, biological 
systems develop a balanced redox state as a 
defense mechanism in an aerobic environment 
[7]. This typically involve the micro-vascular, 
enzymatic or nonenzymatic systems of the 
organism. These systems work in synergy to 
protect the cells, tissue and organs from free 
radicals' destructive effects. Ideally, antioxidants 

eliminate reactive oxygen species (ROS), chelate 
redox metals, work effectively in the aqueous 
and membrane domain and positively affect 
organism's gene expression. Antioxidants 
neutralize and eliminate ROS by decreasing the 
oxygen level, transforming radicals to 
nonradicals or inhibit the initiation stage of 
hydroxyl radical (

.
OH) formation. Antioxidants 

exhibit three major defence systems. The first 
involves antioxidant enzymes. The second 
involves elemental ions binding proteins such as 
transferrin and albumin. These binding proteins 
suppress the formation of free radicals and 
hinder their adverse reaction with biochemical 
molecules. The third defense system involves the 
scavenging of free radicals even in low 
quantities. The endogenous enzymatic 
antioxidants such as catalase (CAT), glutathione 
peroxidase (GSH-Px) and superoxide dismutase 
(SOD) suppress adverse reactions of free 
radicals by metabolizing the free radicals into 
harmless substances [8]. Conversely, exogenous 
antioxidants such as polyphenols, carotenoids, 
vitamin A, C, E and xanthophylls function by 
directly participating in a redox reaction with the 
free radicals to prevent cell death and enhance 
DNA repair processes [9-10]. 
 

3. ANTIOXIDANT SUPPLEMENTATION 
 
The prevalence of oxidative stress-mediated 
diseases due to over-population, pollution, 
climatic change, changes in eating habits and 
other factors that over burden the biological 
system with free radicals have necessitated 
extensive research on the impact of antioxidant 
supplementation on health [11]. Though 
organisms are well equipped with some effective 
enzymatic and nonenzymatic endogenous 
antioxidants become inadequate for the 
maintenance of normal redox status in the case 
of increased free radicals, and this results in 
oxidative stress. In such cases, supplementation 
with exogenous antioxidants becomes               
inevitable for stable redox homeostasis in cells 
[12]. 
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Although the efficacy of antioxidant 
supplementation against oxidative stress and 
related diseases has been controversial, it has 
become a wide spread practice for the 
maintenance of optimal body function [13-15]. 
Several studies indicated that prolonged 
antioxidant supplementation could inhibit 
oxidative DNA damage in lymphocytes, cure 
non-alcoholic fatty liver disease and alleviate 
chemotherapies' side effects in cancer patients 
[16-18]. The antioxidant content is usually 
determined with the oxygen radical absorbance 
capacity (ORAC) scale. However, Kadosh et al. 
[19] advised against antioxidant-rich diet        
such as black tea, cocoa and blueberries for 
people with a history of colorectal cancer 
because this could be risky for them.  The United 
States Department of Agriculture estimated that 
men who live on an average of 2500 calories per 
day would require at least 11,000 ORAC units 
while women with 1800 calorie consumption per 
day would require at least 8,000 ORAC units 
[20]. 
 

4. HISTORICAL AND RECENT 
RESEARCH GLIMPSES ON THE 
EFFICACY OF ANTIOXIDANTS IN 
DISEASE THERAPY  

 

The application of antioxidant drugs in human 
disease treatment can be categorized into three 
main classes. Firstly, the administration of 
endogenous antioxidants such as glutathione, 
superoxide dismutase, α-tocopherol and many 
more. Secondly, the application of synthetic 
antioxidants or chelating agents. Thirdly, 
administration of tissue repairing drugs with 
additional physiological advantages due to their 
antioxidant nature. For instance, captopril was 
found to function as an antioxidant in addition to 
being an angiotensin-converting enzyme 
inhibitor, although its antioxidant activity was 
found to be limited In vivo [21-23]. Antioxidants 
drugs have proven efficient in suppressing and 
treating both neurologic and nonneurologic 
disorders [24-25]. Several antioxidants such as 
vitamin A, C and E, N-acetylcysteine, selegiline, 
tirilazad, lutein, ebselen, lycopene, idebenone 
and selenium have been tested in oxidative 
stress-related diseases [9-10]. Some of these 
diseases are Alzheimer’s diseases, amyotrophic 
lateral sclerosis (ALS) acute ischemic stroke, 
spinal cord injury, Parkinson’s disease, 
dementia, Huntington’s disease, epilepsy 
subarachnoid hemorrhage, cancer, 
cardiovascular diseases, and diabetics [26-27]. 
 

The efficacy of vitamin E a prototypic antioxidant 
has been widely studied in chronic 
neurodegenerative diseases and other oxidative 
stress-related diseases. The administration of 
vitamin E at 2000 IU/d delayed disease 
progression by about 7.4 months in Alzheimer 
disease during a treatment period of two years 
[28], while similar treatment with vitamin E, at 
3000 IU/d for 12 months did not yield any 
positive result in Huntington disease [29]. 
Ogunmekan and Hwang [30] reported an 
improved epilepsy seizure control in 10 out of 12 
children aged 5 to 18 years when they were 
treated with vitamin E at 4000 IU/d during three 
months while no improvement in seizure 
frequency was noticed in any of the 12 children 
given placebo in a randomized double-blind, 
placebo-controlled trial of vitamin E. Although 
treatment with vitamin E at 400 IU/d could not 
reduce the risk of cardiovascular disease in 
14,641 male physicians not less than 50 years in 
the united states during ten years period of 
treatment, to years period of treatment, a 
prolonged supplementation of vitamin E (400 
IU/d) decreased the risk of prostrate and total 
cancer cases amongst men [31-32]. Although a 
21-aminosteroid antioxidant known as tirilazad 
mesylate prevents lipid peroxidation [33], it did 
not improve acute ischemic stroke at a dosage of 
6mg/kg per day in 276 patients within 6hours of 
stroke onset as compared with 280 patients 
treated with placebo [34]. It reduced mortality at 
the same dosage when administered for 10 days 
in patients with subarachnoid hemorrhage [35]. 
Tirilazad mesylate at a dosage of 2.5mg/kg every 
6 hours for two days preceded by 
methylprednisolone was as effective as 
uninterrupted 24-hours methylprednisolone [36] 
in patients with traumatic central nervous system 
injury. Recently, Cahill and Hall [37], called for 
the resurrection of this class of drugs to treat 
stroke in men. However, pyrrolopyrimidines a 
more recent group of compounds are equally 
effective but preferred to tirilazad mesylate due 
to their greater blood brain barrier penetrance 
[38-39]. 
 
N-acetylcysteine at 50 mg/kg per day for one 
year did not reduce mortality, muscle decline and 
disability in 55 patients with amyotrophic lateral 
sclerosis as compared with 56 patients given 
placebo [40]. A notable antioxidant known as 
ebselen (PZ51: 2-Phenyl-1,2-benzisoselena-
zolin-3-(2H)-one) a glutathione peroxidase-mimic 
[41-42] considerably improved acute ischemic 
stroke in 300 patients when administered within 
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48 hours of stroke onset at 150 mg twice per day 
for 14 days [43]. 
 

In Parkinson’s diseases [44], administering 10 
mg of selegiline a neuroprotective antioxidant per 
day brought about nine months delay for the 
need of levodopa [45]. Moreover, Palhagen and 
co-workers [46] in a clinical trial confirmed that 
early treatment of Parkinson’s disease with 
selegiline delayed the need for levodopa in 157 
patients. Recently, Tabi and co-workers [47] also 
confirmed that selegiline is a potent antioxidant. 
Mercaptopropionylglycine (MPG), a thiol 
compound in several clinical studies has been 
found useful in the treatment of several oxidative 
stress-related diseases and its protective ability 
against perfusion injury after ischemia has been 
significant [48-49]. Allopurinol and oxypurinol, 
and xanthine oxidaze that can be injected or 
taken orally have been found effective against 
gastro-intestinal, cardiac and cerebral 
reoxygenation injury [50-51]. 
 

Over the years, several natural and synthetic 
drugs have been discovered and extensively 
studied for therapeutic applications. Some other 
antioxidants such as resveratrol, pyrrolidine 
dithio-carbamate, ascorbic acid, quercetin, 
ambroxol, catechins, iso-quercetin and 5,7,4-
trihydroxy-8-methoxy flavones as superoxide 
anion scavengers are also used to inhibit the 
proliferation of influenza virus [52]. 
 

5. DRUG DESIGN 
 

Drug is any substance, usually small organic 
molecule that exerts a therapeutic effect on a 
patient by activating or inhibiting a biomolecule's 
functions such as proteins or nucleic acid. 
Antioxidant drug design refers to the process of 
developing antioxidant medications based on the 
knowledge of the structures and functions of a 
biomolecular target [53]. The methodological 
approach in rational drug design (reverse 
pharmacology) eliminates the trial-and–error 
testing of hundreds of drug molecules on 
cultured cells or animals observed in the 
traditional method (forward pharmacology). It is 
based on the hypothesis that modulation of a 
specific druggable and disease-modifying 
biological target may have some therapeutic 
effects [54]; the shape and charge of a drug 
molecule must be complementary to the 
biological target with which they interact in order 
to be able to bind to it [55]. The antioxidant drug 
design involves the identification of a receptor 
that is relevant to an oxidative stress-mediated 
disease for which a drug is being designed, 

elucidation of the structure and function of the 
receptor or enzyme and the designing of the 
antioxidant drug molecule that exhibits some 
therapeutic benefits when it interacts with the 
receptor or enzyme [54]. The significant types of 
drug design are currently ligand-based and 
structure–based relying on the knowledge of the 
binding molecule and the three dimensional 
structure of the biological target [56]. The ligand-
based design also known as indirect drug design 
is dependent on the knowledge of other 
molecules that bind to specific biological targets 
[57]. The structure-based design referred to as 
direct drug design is based on three current 
methods, namely; virtual screening, de novo 
design of ligands and optimization of known 
ligands [58]. However, computer-aided drug 
design that enables the prediction of binding 
affinity before a compound is synthesized is 
usually utilized at various stages of drug design 
such as hit identification by virtual screening, hit 
and lead optimization of affinity/selectivity and 
lead optimization of other relevant 
pharmacological properties [59-60]. Moreover, 
other properties such as metabolic half–life, 
bioavailability and toxicity must be ascertained 
before a ligand is considered an efficacious and 
safe antioxidant drug [61]. 
 

Concerning natural antioxidant drugs, the earlier 
limitations experienced, such as the labor-
intensive purification process, lack of 
dereplication, and difficulty in modifying 
structurally complex natural products have been 
overcome by technological advancements and 
the discovery of new methods [62]. The recent 
advancement in sourcing, screening, synthesis, 
combinatorial biosynthesis, structure elucidation 
and microbial genomics of natural products have 
revolutionized natural antioxidant drug discovery 
[62]. The abundance of secondary metabolites of 
plants and microbes, and the advancement in 
genomics, cellular biology and molecular biology 
have also increased the number of hits, leads 
and targets thereby reducing the natural 
antioxidant drugs discovery timelines [62]. It has 
been observed that natural products are 
essential sources for novel antioxidant drugs and 
their secondary metabolites exhibit better drug-
likeness and biological friendliness than synthetic 
molecules thereby making them good candidates 
for antioxidant drug development [63-64]. 
 

6. RATIONAL DRUG DESIGN FOR 
ANTIOXIDANTS  

 

Rational drug design of novel antioxidants in 
addition to a selection from natural products and 



 
 
 
 

Egbujor et al.; JPRI, 32(41): 36-56, 2020; Article no.JPRI.63617 
 
 

 
40 

 

synthetic compounds have become special areas 
of research interest. In recent times, there has 
been a concentrated focus on the rational design 
of novel antioxidants due to several advantages 
attached to it. This method of drug design 
involves two types of strategies namely;                 
(1) modification of the existing antioxidants using 
QSAR for improved potency according to specific 
demands, (2) designing an utterly new 
antioxidant from a novel structure, popularly 
known as de novo design. 
 

7. QUANTITATIVE STRUCTURE-
ACTIVITY RELATIONSHIP (QSAR) FOR 
ANTIOXIDANTS  

 

The quantitative structure-activity relationship 
(QSAR) for antioxidants involves the correlation 
of the chemical structures with an antioxidant 
activity using statistical approaches [65]. 
Presently, QSAR models are employed to predict 
and classify antioxidant activities of several 
compounds, thereby making it a necessary tool 
in the pharmaceutical industry for lead discovery 
and optimization to lead development of 
antioxidant drugs [66-67]. It is usually employed 
early in antioxidant drug design to screen and 
eliminate compounds with low toxicity profile and 
compounds that lack drug-like properties. 
However, a quantitative structure-property 
relationship (QSPR) study is often added to 
envisage the various physical and chemical 
properties of the compounds under consideration 
[68]. 
 

There are three essential steps involved in 
quantitative structure-activity relationship (QSAR) 
study for antioxidant drug design namely; (1) 
collection or design of a training set of chemicals, 
(2) selection of descriptors that can correlate 
chemical structure with antioxidant activity, and 
(3) application of statistical methods that relate 
changes in structure to changes in antioxidant 
activities. Statistical correlation of the 
experimental activity with structural factors and 
representing them by numerical values has over 
the years been accepted as the standard method 
to obtain QSAR [69]. There are two basic 
physicochemical parameters, namely; homolytic 
bond dissociation enthalpy (HBDE) and 
ionization potential (IP), that are essentially 
required in the elucidation of the quantitative 
structure-activity relationship (QSAR) of 
antioxidants [70]. This is because bond 
dissociation enthalpy (BDE) and ionization 
potential (IP) represent the radical-scavenging 
activity to a great extent and therefore 

characterize the antioxidant activity of a 
molecule. The role of BDE in the determination of 
QSAR equation underscores the importance of 
H-atom transfer in radical-scavenging [70]. The 
value of IP is required to characterize the 
electron-donating ability of antioxidants [70]. The 
QASR study avails an easy, inexpensive and 
non-destructive method of identifying and 
designing new antioxidants before synthesis. 
Chemical structural features known as molecular 
descriptors are used for heterogeneous and 
homogeneous groups and all of them have a 
correlation with antioxidant activity. It was 
observed that when classical two-dimensional (2-
D) QSAR study was compared with three-
dimensional (3-D) QSAR method particularly 
comparative molecular field analysis (CoMFA), 2-
D QSAR result was better than that of 3-D QSAR 
for antioxidant compounds [71]. In recent times, 
flavonoids have become a rich source for 
modelling leads with targeted pharmacological 
properties due to their structural diversity and 
multiple activities. The disparity in their 
physiological activities is attributed to different 
substituent groups' presence on the carbon atom 
of the fundamental flavonoid structure and the 
difference in lipid solubility [72]. 
 
Ahmad and co-workers [73] recently developed a 
QSAR model that was used to describe the 
relationship between some flavonoids obtained 
from Chinese herbs and their corresponding 
antioxidant activities. They confirmed the QSAR 
model's significance using leave-one-out cross-
validation, external validation, and Y-
randomisation/scrambling techniques in which 
two–dimensional (2D) block of descriptors PW5 
and JG14 were used. It was observed that the 
low value of specific topological indices of 
molecules (PW5) and the high value of the mean 
topological charge index (JG14) increased and 
enhanced the flavonoids' antioxidant activity 
value. It has been confirmed that the antioxidant 
activity of a flavonoid depends on its chemical 
structure and it is influenced by the number and 
position of hydroxyl groups on the B and A rings 
and the degree of conjugation experienced 
between the B and C rings (Fig. 1) [74-75]. 
 
The QSAR study of flavonoids for antioxidant 
activity appears exciting. The structural 
requirements for efficient radical-scavenging and 
antioxidant potentials of flavonoids is governed 
by Bors' criteria [76] as follows: (a) an orth-
dihydroxy (catechol: 3,4-diOH) structure in ring B 
confers much stability to flavonoid phenoxyl 
radical through hydrogen bonding or 
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delocalization of election; (b) the (C2-C3), 2,3- 
double bond in conjugation with a 4-oxo 
functional group (1,4-pyrone) in ring C which is 
responsible for the coplanarity of the hetero ring 
and radical stabilization through the 
delocalization of  electron over the three-ring 
system; (c) availability of both 3- and 5-hydroxyl 
groups that ensure effective radical scavenging 
and absorption. Moreover, when the O-
dihydroxyl structure is not available   in ring B, 
there is compensation by the hydroxyl 
substituent in a catechol structure on ring A 
which will largely determine the antiradical 
activity of the flavonoids [77-79]. Van Acker and 

co-workers [80] reported that the basic flavonoid 
skeleton does not seem to be essential for 
efficient antioxidant activity but becomes 
necessary only in the absence of the catechol 
moiety. The antioxidant properties of flavonoids 
can be decreased by removing the 3-OH group 
or blocking the OH group at the C-3 position. 
 
The catechol enhances the radical-scavenging 
activity of flavonoids and phenolics and this 
accounts for quercetin being much more active 
than morin though the only difference between 
them is the OH positions in ring B (Fig. 2)                 
[81-82].  

 

 
 

Fig. 1. Flavonoid antioxidant structural factors [72] 
 

 
 

Fig. 2. Molecular structure of quercetin, morin and EGCG [72] 
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Moreover, pyrogallol structure also raises the 
antioxidant potential of compounds therefore 
catechol and pyrogallol are essential 
pharmacophore of antioxidants [82-84]. In 
addition to catechol pyrogallol and 1,4-pyrone, 
the effect of 3,5-OH on the bond dissociation 
enthalpies and ionization potentials are required 
to elucidate the QSARs of antioxidant    
flavonoids [72] fully. The antioxidant potential of 
pyrogallol structure is seen in the fact that 
amongst all the green tea polyphenols, (-)-
epigallocatechin gallate (EGCG) (Fig. 3)                
is the most potent antioxidant [85]. Flavones                  
having both 7-OH substitution and catechol or 
pyrogallol moiety on the ring B was recognized 
as the strongest inhibitors of xanthine oxidase 
[86]. 
 

 
 

Fig. 3. Structure of (-)- epigallocatechin 
gallate (EGCG) [85] 

 
It was recently proposed that the fused 
heterocyclic ring is responsible for the great 
antioxidant activities of tocopherols. The π-type 
lone pair of oxygen in the fused heterocyclic ring 
perpendicular to the aromatic ring overlaps with 
the π-system in the singly occupied molecular 
orbital (SOMO) of the tocopherol derived radical 
[87]. The overlap helps to stabilize the radical by 
resonance and this accounts for higher activity in 
α-tocopherol when compared with tetramethyl-p-
methoxy–phenol (TMMP). Furthermore, this can 
be attributed to the steric hindrance observed 
between the m-methyl groups and p-methoxy 
group; the TMMP radical cannot be stabilized 
since the π-type lone pair orbital of oxygen in the 
TMMP lies on the plane of the aromatic ring. The 
comparative study of the radical scavenging rate 
constants of α, ß, ϒ and δ-tocopherol revealed 
that an increase in the number of methyl groups 
resulted in an increase in the antioxidant activity 
of tocopherols and this is because electron-
donating groups help to stabilize phenoxy 
radicals (Fig. 4) [88]. 

On the other hand, an increase in the OH-BDEs 
of α-, ß-, ϒ- and δ- tocopherol is observed with a 
decrease of the methyl groups on the phenyl 
rings. The five-member analogy of α-tocopherol 
was more active than the six-member analog 
because the five-membered ring analog is more 
planar and enable ʎ-type lone pairs that exert a 
stabilizing effect on the radical. This discovery is 
the basis on which 2,3-dihydro-5-hydroxy-2,2–
diphenyl-4,6-ditertbutyl benzofuran was designed 
and improved [88]. Zhang [72] enlisted the 
significant improvements as follows, (a)   
reduction of OH-BDE and hindrance of the attack 
of the free radical of BO-653 on other 
biomolecular targets as a result of the 
substitution of two moieties of O-tertbutyl; (b) 
improvement of cellular mobility of BO-653 in 
membranes and lipoprotein and (c) an opened-7-
position that enables peroxy radical addition to 
the phenoxy radical of BO-653 (Fig. 5). 
 
Mukai and co-workers with the help of QSAR 
study, reported the relative antioxidant activities 
of α-tocopherol and abiquinol-10 based on their 
Ks values and concentration in several tissues 
and serum [89]. Baj et al. [87] in a new approach 
to QSAR study of α-tocopherol aligned with 
Burton and lngold concept that the stereo 
electronic effects exerted by an oxygen atom in 
dihydropyranyl ring were responsible for the high 
antioxidant activity of α-tocopherol. They 
assessed the influence of the O1 atom on the 
antioxidant activity of chroman-6-OLS through 
quantitative estimation [87-88]. 

 
The antioxidant activities of 22 pinoline 
derivatives (1,2,3,4-tetrahydro-ß-carbolines) 
were predicted using two-dimensional 
quantitative structure-activity relationships (2-D 
QSARs) analysis with the aid of a predictive 
model. The structural insight into the main 
features responsible for the strong antioxidant 
activity of compounds derived from pinoline 
scaffold was given before they were   
synthesized. It was observed that the    
antioxidant activity of compounds could be 
governed by other parameters such as molecular 
properties, topological properties and functional 
groups [90]. 

 
Filipovic et al. [91] reported the antioxidant 
activities of 21 selected hydroxybenzoic acids 
and simple phenols using QSAR analysis. Based 
on this study, it was recommended that fair 
antiradical QSAR models would facilitate the 
design of antioxidants with improved antiradical 
potency. The QSAR analysis compounds by 
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Hoelz and co-workers [92] showed that the best 
phenolic antioxidants are those containing 
electron donor groups directly attached to the 
aromatic ring. The study revealed that the 
disparity in the solubility of the aqueous and 
hydrophobic phases does not affect the 
antioxidant activity of series of phenolic 
compounds [92]. The QSAR study of series of 
synthetic chromone derivatives showed that the 
electronegative group on benzoyl ring and the 
electropositive group on phenyl ring account for 
their antioxidant activity because these groups 
enable radical stabilization throughout the 
chromone nucleus. It was observed that bulky      
substituent groups near position five and 
chromone carbonyl were disfavoured. The 

radical delocalization was affected by steric 
hindrance interference with the planarity between 
ring A and the carbonyl group of the chromone 
nucleus (Fig. 6) [93]. 
 
Recently, Chen et al [94], reported a QSAR study 
on 91 antioxidant tripeptides and concluded that 
established QSAR models are required to 
identify and screen novel antioxidant tripeptides 
with high antioxidant activity. It was 
recommended that a thorough quantitative 
structure-activity relationship (QSARs) analysis 
for enzyme inhibitors should be conducted  
before a rational drug design for antioxidant 
drugs through an integrating strategy is initiated 
[72]. 

 

 
 

α-tocopherol 
O-H BDE = 75.78Kcal/mol 

Rate constant = 
320(10

-4
M

-1
S

-1
) 

 
 

ß-tocopherol 
O-H BDE = 79.35Kcal/mol 

Rate constant = 
130(10-4M-1S-1) 

 
 
 

ϒ-tocopherol 
O-H BDE = 81.43Kcal/mol 

Rate constant = 
44(10

-4
M

-1
S

-1
) 

 

 
 

δ-tocopherol 
O-H BDE = 81.43Kcal/mol 

Rate constant = 44(10
-4

M
-1

S
-

1) 

 

 
 

TMMP 
O-H BDE = 79.34Kcal/mol 

Rate constant = 
39(10-4M-1S1) 

 

 

 
Fig. 4. Structures, O-H BDE and rate constants of tocopherols and TMMP [88] 

 

 
 

Fig. 5. The structure of BO-653 [72] 
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These strategies were carried out on the basis of 
the structural requirements of an effective 
antioxidant which could be derived from 
quantitative and qualitative SARs of antioxidants 
[95]. QSAR studies of antioxidants showed that 
excellent radical-scavenging antioxidants must 
possess three essential features. (i) The 
X(O,S,N,C)-H bond dissociation enthalpy (BDE) 
or ionization potential (IP) should be suitable. It 
was observed that low BDE and IP favour direct 
radical-scavenging activity in polar or non-polar 
solvents. Polar solvents and very low ionization 
potential enhance pro-oxidant danger due to 
direct electron transfer to oxygen [96-98]. (ii) The 
solubility must be appropriate in the applied 
environments. It was pointed out that 
hydrophobic antioxidants perform better in an 
emulsion system while hydrophilic antioxidant 
exhibit better activity in bulk lipids [99-100]. 
Hydrophobicity is preferred to hydrophilicity due 
to the heterogeneous nature of biological and 
chemical systems and some degree of 
lipophilicity is required for antioxidants to 
penetrate the bio-membrane. (iii) The toxicity 
profile of antioxidants and their metabolites in 
addition to antioxidant derived radicals should be 
at the barest minimum [101-102]. These 

prerequisites should be considered for a 
successful design of novel antioxidants of high 
activity and low toxicity.  
 

8. De novo DESIGN OF ANTIOXIDANT 
DRUGS 

 

This method of drug design employs two 
successful strategies. (1) Good features of two or 
more antioxidants are assembled into a single 
molecule. (2) New structures are discovered by 
computer–aided methodologies [95]. Several 
illustrations are given below.  
 

The combination of an antioxidant moiety of α-
tocopherol and uric acid yielded 
hydroxylphenylurea a lead structure that 
exhibited about ten times higher antioxidant 
activity than individual α-tocopherol or uric acid 
moiety (Fig. 7) [103]. 
 

The better stabilization of the odd electron by the 
–OCH3 and urea functionalities accounts for the 
higher radical-scavenging activity observed in 
hydroxyphenyl urea [103]. Similarly, the design of 
FeAOX-6, an antioxidant of higher activity was 
achieved by the combination of α tocopherol and 
lycopene (Fig. 8) [104].  

 

 
 

Fig. 6. Mapping the best MFA model and interaction points for synthetic antioxidant chromone 
derivatives [93] 

 

 
 

Fig. 7. Synthesis of hydroxyphenylurea [103] 



 
 
 
 

Egbujor et al.; JPRI, 32(41): 36-56, 2020; Article no.JPRI.63617 
 
 

 
45 

 

 
 

Fig. 8. FeAOX-6 structure 
 
For computer-aided antioxidant drug design, 
there is a need to find a promising lead with 
appropriate BDE and IP, proper solubility and low 
toxicity profile. A “design window concept” 
proposed that the BDE of a lead should be 
higher than BDE of ascorbate ion (±65.5kcal/mol) 
and lower than that of α-tocopherol 
(±77kcal/mol). This strategy guarantees a 
successful design of antioxidants more active 
than α-tocopherol which can also be regenerated 
by ascorbate ion. It is believed that the first 
antioxidant lead successfully designed by 
computer-aided methodology was 5-
hydroxypyrimidine (Fig. 9). Its O-H BDE was 
found to be comparable with phenol and its 
ionization potential (IP) at 24kcal/mol is higher 
than that of phenol [105-106]. 
 

 
 

Fig. 9. 5-hydroxypyrimidine 
 
Based on the design window concept and 
quantum chemical calculations, several analogs 
such as 2,3-naphthalenediol, 3-pyridinol, N-
tertbutyl-N-hydroxylaminophenyl derivatives and 
1,4-bis(benzimidazole-2-yl-methyl)-1,4,7-
triazacyclone an SOD mimetic was designed as 
potent antioxidant leads [72]. Using a similar 
method, a planar catechin analog was 
successfully designed and synthesized. It 
exhibited less toxicity and higher antioxidant 
activity than catechin against galvinoxyl radical in 
deaerated MeCN solution (Fig. 10i) [107-108]. 
Karmaker et al. [109] reported the design of a 
series of benzimidazoles with nitro substituents 
which exhibited higher antioxidant than BHT. 
Watanabe and co-workers reported a rational 
design and clinical trials of novel antioxidant 
edaravone (3-methyl-1-phenyl-2- pyrazolin-5-
one) (Fig. 10ii) used in the treatment of acute 
cerebral infarction [110].Martincic et al. [111] 

reported a rational design of some novel 
antioxidants on the basis of pulvinic acid and 
coumarine derivatives (Fig. 10iii) based on 
QSAR and pharmacophore models. Egbujor et al 
[112] reported a design and synthesis of α-amino 
acid-based sulphonamide derivative, 3-hydoxy-2-
[(phenylsulfonyl)amino]propanoic acid (Fig. 10iv) 
having antioxidant activity comparable with 
ascorbic acid. Serine was utilized in this design 
and several amino acids were also explored 
[113]. Several sulphonamide analogs have been 
identified as antioxidant leads [114-120]. 
Recently, Wang et al. [121] reported the design 
of chalcone analog with high antioxidant activity 
known as (E)-1-(3,4-dihydroxyphenyl)-3-(2,5-
dimethoxyphenyl)prop-2-en-1-one (Fig. 10v) and 
several antioxidant chalcones have been 
reported [122]. This novel compound conferred 
cytoprotection of H2O2-induced oxidative damage 
in PCI2 cells by simultaneously scavenging free 
radicals and activating NRF2/ARE. It also helped 
against ischemia/reperfusion-related brain 
damage in animals [121]. 
 

9. DESIGN OF MULTIFUNCTIONAL 
ANTIOXIDANTS 

 

Bifunctional and multipotent antioxidants seem to 
be more effective than single-functional 
antioxidants in combating diseases such as 
Parkinson disease, Alzheimer’s disease, 
amyotrophic lateral sclerosis, and many more 
[123-124]. The incorporation of the antioxidant’s 
active center with other pharmacophores paves a 
new way for the rational design of novel drugs. 
The most recent rational drug design strategy for 
bifunctional and multipotent antioxidants involves 
connecting an antioxidant group and other 
pharmacophores using a linker. In addition to the 
combination of several antioxidant properties 
such as radical–scavenging and metal-chelating 
abilities, other pharmacophores could be 
incorporated to afford hybrid compounds with 
multiple pharmacological activities through a 
single structure [72,123]. Several antioxidants 
obtained by the replacement of the furoyl moiety 
of prazosin, an α-adrenoreceptor antagonist 
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possessing lipoyl fragment of lipoic acid. Its lower 
homologs or 1,4-naphthoquinone exhibited 
potent α-adrenoreceptor antagonism, and anti-
proliferative activities (Fig. 11) [125]. 
 
Antioxidants with acetylcholinesterase (AChE) 
inhibitory activity were reported. Lipocrine (Fig. 
12i) a multipotent antioxidant with 
acetylcholinesterase (AChE) inhibitory ability was 
designed by the incorporation of lipoic acid into a 
tacrine structure [126]. Similarly, a pineal 
neurohormone and a preventive antioxidant was 
produced by the coupling of tacrine to melatonin 
(Fig. 12ii) [127]. The antioxidant and AChE 
activities of lipocirne and the later were higher 
than that of the prototypic molecules constituting 
the hybrid structure [126-127]. Adewusi et al 
[128] reported some excellent antioxidant and 
acetylcholinesterase inhibitory activities of C. 
mimosociles, B. salviifolia and S. brachypetala, 
selected Southern African medicinal plants. 
Recently, Reza et al [129] reported that 
Elatostema papillosum has excellent cholinergic 
inhibitory and antioxidant activities. Multipotent 
antioxidants with cholinesterase inhibitory 
activities are recommended for the treatment of 

Alzheimer’s disease due to its complex pathology 
[128-129]. 
 
Antioxidant with anti-inflammatory activities was 
designed by combining naproxen or 
indomethacin (nonsteroidal anti-inflammatory 
drugs) with cystemain or cystein ethylester 
(antioxidants) into a proline-based framework 
(Fig. 13i) [130]. Yehye et al [131] reported a 
rational design of multipotent Schiff-base-1,2,4-
triazole antioxidant bearing butylated 
hydroxytoluene moiety (Fig. 13ii) by attaching 
Schiff base 1,2,4-trazoles to the oxygen derived 
free radical scavenging moiety, butylated 
hydroxytoluene (BHT). It was observed that the 
Schff base-1,2,4-triazoles improved the 
antioxidant capacity of BHT. Several antioxidant 
morpholine derivatives with multifunctional 
activities were previously designed against 
atherosclerosis and diabetes [132-133]. 
Recently, Matralis and Kourounakis [133], based 
on a rational drug design accompanied by                  
QSAR analysis reported a novel multifunctional 
morpholine derivative (Fig. 13iii) with                    
improved antioxidant and antihyperlipidemic 
activity. 

 

 
 

Fig. 10. Structures of recently designed antioxidants 
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Fig. 11. Active antioxidant prazosin derivative [125] 
 

 
 

Fig. 12. Designed multifunctional antioxidants with acetylcholinestrase (AChE) inhibitory 
activities 

 

It has been reported that multifunctional 
antioxidants with Ca

2+
 channel blocking 

pharmacophores could improve ischemic heart 
disease due to the fact that cardiomyocyte 
damage and heart tissue damage are attributed 
to oxidative stress and Ca

2+
 overload [134]. 

Several years ago, antioxidant/Ca
2+ 

antagonist 
(thiazolidinone derivative CP-060) (Fig. 14i) was 
designed and synthesized [134]. Recently, 
Santa-Helena et al. [135] reported novel calcium 
channel blocker, dihydropyridine derivative (Fig. 
14ii) that showed better inhibition of lipid 
peroxidation than original nifedipine drug. This 
nifedipine analog possesses two molecules of 
oleic acid and chlorine in the position 2  
 
Although some significant advances have been 
made in the rational design of 
multipotent/multifunctional synthetic antioxidants, 
the structural characteristics of their conjugates 
are different from those of natural origin. The 
framework of the natural product is seamless and 
the pharmacophores for different targets are 
thoroughly merged [72,136]. This could be 
responsible for their lower toxicity and easy 

development. Owing to the fact that quercetin is 
a typical multipotent antioxidant possessing the 
significant radical-scavenging ability and 
inhibitory activity against extra 10 separate 
enzymes, it is therefore recommended as a 
prototype for detailed assessment and 
elucidation of some elements of natural 
antioxidant. In addition to the radical-scavenging 
ability revealed by QSARs as discussed above, 
quercetin analogues are also enzyme inhibitors 
[136]. The diverse pharmacological properties of 
quercetin is due to the functional group 
substitutions of flavonol molecule [137]. 
Recently, Simanjuntak et al. [138] reported a 
structure based drug design of a quercetin 
derivative against high mobility group box 1 
(HMGBI). It was observed that in addition to 
radical-scavenging ability, quercetin, 3-sodium 
sulphate (Fig. 15i) could act as an anticancer 
agent. The polyphenol curcumin 
(diferulolmethane) derived from Curcuma longa 
is an established antioxidant. In recent times, 
interest has been shifted to the rational design of 
antioxidant curcumin nanoparticles, several 
researchers have recently reported some 
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improved antioxidant, anti-cancer and 
antimicrobial activity of curcumin nanoparticules 
when compared with original curcumin [139-140]. 
Myricetin is an excellent multifunctional 
antioxidant that has been extensively studied. 
Barzegar [141] observed that intracellular ROS 
inactivation, and ferric ion reduction are 
important properties of myricetin. Ruan et al. 
[142] reported a rational design of novel 
myricetin derivatives bearing amide, thioether 

and 1,3,4-thiadiazole functionalities (Fig. 15ii). It 
was reported that apart from the antioxidant 
activities, these myricetin derivatives exhibited 
good antibacterial activities [142]. Other 
multifunctional natural antioxidants such as (-)-
Epicatechin-3-gallate, gossypetin, rutin, 
Quercitrin, and isoquercitrin that can scavenge 
free radicals and sequester metal ions are also 
designed based on the knowledge of the QSAR 
analysis of quercetin [72,124]. 

 

 
 

Fig. 13. Designed multifunctional antioxidants with anti-inflammatory, antihyperlipidemic 
activities 

 

 
 

Fig. 14. Designed multipotent antioxidants with Ca
2+ 

channel blocking ability 
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Fig. 15. Designed multipotent natural antioxidants 
 

10. CONCLUSION 
 
The therapeutic effects of antioxidant drugs 
against oxidative stress-mediated diseases such 
as cancer, neurodegenerative diseases, 
cardiovascular diseases and many other 
prevalent diseases have been established over 
the years. Based on this fact, concerted efforts 
have been engaged in frontier researches for the 
design of antioxidant drugs with improved 
potency for the last few decades. This review 
therefore provides a historical and up-to-date 
collection of research briefs on antioxidant drug 
design reported in different journals and articles 
into one piece. Useful insights on future 
researches on antioxidant drug discovery and 
design were also projected herein. This work 
should provide relevant information on 
antioxidant drug design, increase readership and 
stimulate interest for the discovery and 
development of more potent antioxidant drugs. 
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