Journal of Advances in Mathematics and Computer Science

33(4): 1-10, 2019; Article no.JAMCS.49867
ISSN: 2456-9968

(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

An Epidemic Model of Malware Virus with Quarantine

Aprillya Lanz'?", Daija Rogers' and T. L. Alford?

L Grand Canyon University, Phoeniz, AZ 85017, USA.
2 School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ
85287, USA.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors Lanz and Rogers designed
the study and performed the mathematical analysis. Author Lanz wrote the first draft and all the
revisions of the manuscript. Author Alford managed the literature searches. All authors read and

approved the final manuscript.

Article Information

DOI: 10.9734/JAMCS/2019/v33i430182

Editor(s):

(1) Dr. Raducanu Razvan, Assistant Professor, Department of Applied Mathematics, Al. 1. Cuza
University, Romania.

Reviewers:

(1) Pasupuleti Venkata Siva Kumar, VNR VJIET, India.

(2) Anthony Spiteri Staines, University of Malta, Malta.

(3) Robiah binti Yusof, Universiti Teknikal Malaysia Melaka, Malaysia.

Complete Peer review History: http://www.sdiarticle3.com/review-history /49867

Received: 25 March 2019
Accepted: 29 June 2019
’ Original Research Article Published: 05 August 2019

Abstract

In March of 2018, about 500,000 desktop computers were infected with cryptocurrency mining
malware in less than 24 hours. In addition to attacking desktop computers, malware also attacks
laptops, tablets, mobile phones. That is, any device connected via the Internet, or a network is
at risk of being attacked. In recent years, mobile phones have become extremely popular that
places them as a big target of malware infections. In this study, the effectiveness of treatment for
infected mobile devices is examined using compartmental modeling. Many studies have considered
malware infections which also include treatment effectiveness. However, in this study we examine
the treatment effectiveness of mobile devices based on the type of malware infections accrued
(hostile or malicious malware). This model considers six classes of mobile devices based on their
epidemiological status: susceptible, exposed, infected by hostile malware, infected by malicious
malware, quarantined, and recovered. The malware reproduction number, Zs, was identified to
discover the threshold values for the dynamics of malware infections to become both prevalent or
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absent among mobile devices. Numerical simulations of the model give insights of various
strategies that can be implemented to control malware epidemic in a mobile network.
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1 Introduction

From the transfer of funds to or from one’s financial institutions, utilities provider, home-security
devices, and devices in the home, the proliferation in the use of mobile applications has enabled
and enhanced everyday life across the globe. This has also spurred the rapid evolution of malicious
software (or malware) that range from pop-up advertisements to vicious encroachment of individual’s,
businesses’ and government’s cyber security systems [1, 2, 3, 4]. The Merriam-Webster defines
malware as a software designed to interfere with a computer’s normal functioning. As the capabilities
and use of mobile application use increase, the risk for breach of cyber security systems increases
as well.

In March of 2018, about 500,000 desktop computers were infected with a malicious cryptocurrency
mining software in less than 24 hours [5]. In addition to attacking desktop computers, malware
also attacks laptops, tablets, mobile phones. This act reveals the financial incentive that drives
the development of a new generation malware for the encroachment host-sites or devices through
susceptible webpages. Once in the host-site or device, the malicious software and deceptively gleans
confidential information. The consequence can result in compromised passwords, browsing history,
financial information, and etc.

In recent years, mobile phones have become extremely popular; thus, making them primary targets
of malware attacks. Hence, there is ever growing necessity to understand how the malware infections
propagates through the web, especially through social media. For example, Facebook is the common
venue for encroachment vectors and followed by spam links on social media websites [6].

Given the common characteristic spread of biological viruses and computer viruses, malware epide-
miology used the mathematical techniques developed in the epidemiology of infectious diseases to
describe the encroachment and propagation of malware viruses. Earlier models described the use of
electronic mails or removable storage devices as vectors that allow malware to encroach computer
systems and execute malicious act [7, 8]. Many of these earlier mathematical models were achieved
using a compartmental approach (such as SIRS,SIRA, SEIQR, etc.) [9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 4, 21, 22, 23] . Many of these models were able to describe migration of the
viruses and treatment effects; however, they did not consider the inclusion of isolation period of
those objects penetrated by malware [5].

In this paper, we propose a malware transmission model in a network of mobile devices by considering
the treatment effectiveness based on the type of malware infections accrued (hostile malware or
malicious malware). The proposed model considers six classes of mobile devices based on their
epidemiological status: susceptible, exposed, infected by hostile malware, infected by malicious
malware, quarantined, and recovered. Quarantine in this case implies an isolation of the device from
the network while going through a treatment process to remove the malware. It is also assumed
that once the malware is removed, mobile devices employ temporary immunity which allow them
to become susceptible again to the infection.
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2 Model Formulation

In this model, we consider the population as a network of mobile devices. The total population is
divided into six classes: susceptible S(t), exposed E(t), devices containing hostile malware I (t),
devices containing malicious malware I2(t), devices in quarantine Q(t), and devices recovered from
malware R(t). Thus, the total population at a given time ¢t is

N(t) = S(t) + E(t) + L(t) + I(t) + Q(t) + R(D).

It is assume that the incoming rate of new mobile devices is constant and denoted by A. Mobile
devices will be exposed to malware virus by effective contacts via electronic communications with
other devices containing malware virus. This effective contact rate is denoted by (3; this is the rate
where malware virus is successfully transmitted to a susceptible mobile device. The rates at which
mobile devices are infected with hostile malware and malicious malware are o and =y, respectively.
It is assumed that mobile devices with hostile virus are recovered at a rate of p. It is also assumed
that, while in class I; or I3, mobile devices may become nonfunctional at a rate of a. Some mobile
devices in I» are quarantined at a rate of v. The quarantine process may fail at a rate of  and
these mobile devices are assumed to return to I5 class at a rate of . The successful quarantine will
produced recovered mobile devices at a rate of ¥). The model is described by the following system
of equations

%ZA*,BS)\MerRf,uS,
dE
— =BS5S\ — X1 E
ar BSAn 1L,
%:O’E*lel,
d; (2.1)
G =B+ nQ ~ Xab,
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dt
where
Xi=0+7v+u, Xo=p+ta+tuy,
Xs=v+a+typu, Xa=n+vY+upu,
Xs =w+ p.

In system (2.1), Aps is the force of infection and is defined by,

. &L+ 1z

>\M N )

where ¢ is the relative infection ability of hostile virus when compared to malicious virus. The
values of £ ranges from 0 to 1.

The system of nonlinear differential equations model (2.1) is represented by
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Fig. 1. Systematic diagram of the malware transmission.

3 Model Analysis

3.1 Basic properties

It is assumed that all parameters and variables are greater than zero so that,

Q" >0,
R > 0.

S5(0) =5° >0, L(0)=1{ >0, Q(0)
E(0) = E° >0, I(0) = I9 > 0, R(0)

It should be noted that

dN

Thus, N(t) < N(0)e "+ (A/u)(1—e ") and sup,_,., N(t) < A/u. We can then study the system
(2.1) in the feasible region

7 = {(S(t%E(t),Il(t),lz(t),Q(t),R(t)) ERS O N(t) < %} .

The region 2 is positively invariant with respect to system (2.1) and all solutions of system (2.1)
with (S%, E°, I?,19,Q°, R°) € R} remain in 2 for all ¢t > 0.

3.2 Model Equilibria and Stability Analysis
3.2.1 Local Stability of Malware-free Equilibrium

The malware free equilibrium (M FE) of system (2.1) is a state where there is no malware virus
present in the network and is represented by the point

0 (8%, E° 1Y, 15,Q° RY) = (%,070,0,07()) )
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The linear stability of .#° can be determined following a method by van den Driessche and
Watmough [24]. Using the next generation operator method (NGO), we employ the next generation
matrices, F' and V| where F' is the Jacobian of the malware-generating terms and V' is the Jacobian
of the remaining transition terms. Both F and V are evaluated at the MFE, .#°,

0 B¢ B O X 0 0 0
o 0o 0 0 |- X2 0 0
F=10 0o 0o ol V_770X3777

0 0 0 0 0 0 —v X

Local stability of MFE, based on NGO, is determined by whether p(FV ™) < 1. Here, p(FV ™)
is the spectral radius of the matrix FVV~!. MFE is locally asymptotically stable given that the
linearized version of system (2.1) have eigenvalues with negative real parts.

We define the malware reproduction number %Zar = p(FV™'). Then,

B c 1 ~ X4
%M_ﬁg X1 X2+ﬁ X1 X3X47’I]I/'

It is noted that .#° is locally asymptotically stable whenever %5 < 1 and unstable when % > 1.

3.2.2 Interpretation of Reproduction Number

The system’s malware reproduction number, %), calculates the expected number of new malware
infected mobile devices generated by an infected mobile device in a completely susceptible network
during its duration of infection. The expression of Zy for system (2.1) consists of two terms. The
first term represents the malware infections by hostile malware in class I; and the second term by
malicious malware in class Is.

3.2.3 Stability of Malware-Free Equilibrium
The global stability of M F'E is established in the following theorem.

Theorem 3.1. The MFE of the system (2.1) given by .#° is globally asymptotically stable in 9
if B < 1.
Proof. Consider the Lyapunov function
V =aF + bl + cl2 4+ dQ,

where

a= (X3X4—nv)Xo,

b= BE(Xs Xy — ),

c = BX2Xy,

d = fnXo.
Taking the derivative of V' with respect to time, ¢, yields

w_ (X3X4 — ) X2(B8SAm — X1 E) + BE(X3Xy —nv)(cE — Xao1h)

dt
+ BX2 Xa(vE +nQ — Xsl2) + AnXa (vl — X5Q),
< {(X3X4 —nv)(B€o — X1 X2) + By X2 X4} E,
= X1X2(X3X4 — ny)(ﬁM — 1)E
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Thus, % < 0, when Zu < 1, and % = 0, when E(t) = 0. By the LaSalle’s Invariant Principle
[25], every solution of (2.1) with initial conditions in & approaches .#° as t — co. O

3.2.4 Existence of Malware-Presistent Equilibrium

The malware-persistent equilibrium (M PE) is identified by setting the equations in (2.1) to zero.
M PE is represented by

(%** . (S**7E**7[;*7I;*7Q**7R**).
We identify

* &L+ 1
—>17-2 1
A N (3.1)
as the force of infection at the steady state .#Z**. The elements of .#Z** are solved in terms of I; as

follows,

_ XiXe .

T BoXy, b

- 7X2Xy . x
I;" = J(X3X4—’r]1/)[1 ) QT = I (32)

R — po(Xs3Xs — ) + Yy Xs el
X5 (X3X4 — T]l/)

Substituting (3.2) into (3.1) with some algebraic manipulation, we obtain the following quadratic
polynomial in terms of A},

S**

Aar(ai Xy + ao) =0,

where
a1 = B[(X3Xs — ) (XoXs5 + 0 X5 + po) + 7 X2(XuXs + v X5 + Yv)],
ap = X1X2X5(X3X4 — 771/)(1 — %}v]).
Thus, the polynomial yields A}, = 0, which is the malware-free equilibrium, and A}, = —ao/a1,

which gives a unique malware-persistent equilibrium when %y > 1.

4 Numerical Analysis and Results

Several numerical simulations were performed using MATLAB 2019A to illustrate the dynamics of
the hostile and malicious malware virus in a mobile network. The parameter values used in the
simulations were estimated and listed in table 1. We assessed the effects of the duration of being
exposed to a virus and being quarantined. The observations are summarized in table 2.

Figures 2 show the trajectories of the number of infected mobile devices when the parameter values
reflect Zn < 1 and Zn > 1 with various initial conditions. These simulations show that when
Py < 1, the number of infected mobile devices reaches the malware-free equilibrium, while when
Py > 1, there exists a non-zero malware-persistent equilibrium. Furthermore, increasing the
number of mobile devices exposed to malware virus reduces the time when the epidemic occurs.

Figures 3 show the trajectories of the number of infected mobile devices when Z5s > 1 with varying
o, the infected rate of hostile malware, and -, the infected rate of malicious malware. As o decreases,
X decreases. Figure 3(a) shows as o decreases, the peak of the trajectory also decreases. It also
shows that decreasing o delays the occurrence of the epidemic. In Figure 3(b), the peak of the
trajectory decreases as 7 increases.
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Table 1. Description of parameters and estimated values

Parameter  Description Estimated value
A Recruitment rate 350
8 Effective contact rate 0.085
13 Relative infectious factor of hostile malware 0.8
o Infected rate of hostile malware 0.083
0% Infected rate of malicious malware 0.05
p Recovery rate from hostile malware 0.038
«@ Malware-related exit rate 0.001
v Isolation rate from malicious malware 0.083
n Re-infection rate from isolation 0.00083
P Recovery rate from isolation 0.017
w Temporary immunity rate 0.00069
5 Non-malware related exit rate 0.000057
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Fig. 2. Trajectories of infected classes for (a) Zu < 1 and (b) Zy > 1 with various
initial conditions.
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Figures 4 show the trajectories of the number of infected mobile devices when %y > 1 with
varying w, the temporary immunity rate from the recovered class, and v, the recovery rate from
the isolation class. The trajectories in Figure 4(a) show a decreasing pattern of the peaks when w
increases. Figure 4(a) also shows a noticeable delay in the epidemic as w increases. Lastly, as v
increases in Figure 4(b), the peaks of the epidemic also increases.
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Fig. 4. Trajectories of infected classes when %), > 1 with (a) varying w and (b)
varying .

Table 2. Summary of simulation results

Parameter

. . Not

(increasing) ore
o epidemic peak increases, multiple endemic peaks occur
¥ epidemic peak decreases, multiple endemic peaks disappear
w epidemic peak increases, multiple endemic peaks disappear
P epidemic peak increases, multiple endemic peaks occur

5 Conclusions

In this study, we investigated the transmission dynamics of malware virus in a network of mobile
devices. Within this dynamics, we considered classifying malware virus types as hostile and
malicious. We also considered the isolation of mobile devices infected with malicious malware in
a quarantine. We demonstrated the existence of malware-free equilibrium and malware-persistent
equilibrium both analytically and numerically. Furthermore, we obtained the malware reproduction
number, Zr, which determines the threshold value of the epidemic.

The numerical simulations of the system (2.1) show how the parameter values affect the occurrence
of the malware epidemic. As o increases, the malware reproduction number, Z)s, also increases.
The trajectories in Figure 3(a) show a shorter period of epidemic as Zs increases. Interestingly, as v
increases, Zn, decreases. The largest value of Zr used in the simulation generates the trajectory
with the highest peak in Figure 3(b). When w increases, there is a threshold where a cycle of
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epidemic occurs generating more malware infections in the network. In Figure 4(a), the trajectory
with the largest Zn appears on the bottom, showing multiple epidemic peaks. Finally, in Figure
4(b), the trajectories show a pattern that as v increases, Zn decreases, resulting in increasing
peaks.

From the different simulations with varying parameter values, we observe their effects on Zs.
Numerous strategies can be implemented in order to prevent or control a malware epidemic. For
example, longer duration in isolation for those mobile devices infected with malicious malware helps
minimize the duration time of the epidemic.

Acknowledgement

The authors would like to thank the School for Engineering of Matter, Transport and Energy at
Arizona State University(ASU) for allowing us to use their resources and facilities. The authors
would also like to acknowledge the support provided by the National Science Foundation HBCU-UP
Research Initiation Award (grant 074754805). Furthermore, the authors would also like to express
gratitude to the reviewers for their valuable time and input.

Competing Interests

The corresponding author confirms on behalf of all authors that there have been no involvements
that might raise the question of bias in the work reported or in the conclusions, implications, or
opinions stated.

References

[1] Gan C, Yang X, Zhu Q, Jin J, He L. The spread of computer virus under the effect of external
computers. Nonlinear Dynamics. 2013;73(3):1615-20.

[2] Weinberger S. Computer security: Is this the start of cyberwarfare?. Nature News.
2011;474(7350):142-5.

[3] Yang LX, Yang X. A new epidemic model of computer viruses. Communications in Nonlinear
Science and Numerical Simulation. 2014;19(6):1935-44.

[4] Gan C, Yang X, Liu W, Zhu Q, Zhang X. An epidemic model of computer viruses with
vaccination and generalized nonlinear incidence rate. Applied Mathematics and Computation.
2013;222:265-74.

[5] Liu W, Zhong S. Web malware spread modelling and optimal control strategies. Scientific
reports. 2017;7:42308.

[6] Marchal S, Franois J, State R, Engel T. Phishstorm: Detecting phishing with streaming
analytics. IEEE Transactions on Network and Service Management. 2014;11(4):458-71.

[7] Mishra BK, Jha N. SEIQRS model for the transmission of malicious objects in computer
network. Applied Mathematical Modelling. 2010;34(3):710-5.

[8] Yang LX, Yang X. The spread of computer viruses under the influence of removable storage
devices. Applied Mathematics and Computation. 2012;219(8):3914-22.

[9] Batistela CM, Piqueira JR. SIRA computer viruses propagation model: Mortality and
robustness. International Journal of Applied and Computational Mathematics. 2018;4(5):128.

[10] Chen L, Hattaf K, Sun J. Optimal control of a delayed SLBS computer virus model. Physica
A: Statistical Mechanics and its Applications. 2015;427:244-50.



Lanz et al.; JAMCS, 33(4): 1-10, 2019; Article no.JAMCS.49867

[11]

[12]

[13]
[14]
[15]
[16]
[17]
18]

[19]

[20]

21]

[22]
23]

[24]

[25]

Gan C, Yang X, Liu W, Zhu Q. A propagation model of computer virus with nonlinear
vaccination probability. Communications in Nonlinear Science and Numerical Simulation.
2014;19(1):92-100.

Gan C, Yang X, Liu W, Zhu Q, Zhang X. An epidemic model of computer viruses with
vaccination and generalized nonlinear incidence rate. Applied Mathematics and Computation.
2013;222:265-74.

Han X, Tan Q. Dynamical behavior of computer virus on Internet. Applied Mathematics and
Computation. 2010;217(6):2520-6.

Hu Z, Wang H, Liao F, Ma W. Stability analysis of a computer virus model in latent period.
Chaos, Solitons & Fractals. 2015;75:20-8.

Piqueira JR, De Vasconcelos AA, Gabriel CE, Araujo VO. Dynamic models for computer
viruses. computers & security. 2008;27(7-8):355-9.

Piqueira JR, Navarro BF, Monteiro LH. Epidemiological models applied to viruses in computer
networks. Journal of Computer Science. 2005;1(1):31-4.

Ren J, et al. A novel computer virus model and its dynamics. Nonlinear Analysis: Real World
Applications. 2012;13(1):376-384.

Ren J, Xu Y. A compartmental model for computer virus propagation with kill signals. Physica
A: Statistical Mechanics and its Applications. 2017;486:446-54.

Upadhyay RK, Kumari S, Misra AK. Modeling the virus dynamics in computer network with
SVEIR model and nonlinear incident rate. Journal of Applied Mathematics and Computing.
2017;54(1-2):485-5009.

Yang LX, Yang X. The impact of nonlinear infection rate on the spread of computer virus.

Nonlinear dynamics. 2015;82(1-2):85-95.

Yang LX, Draief M, Yang X. The optimal dynamic immunization under a controlled
heterogeneous node-based SIRS model. Physica A: Statistical Mechanics and its Applications.
2016;450:403-15.

Zhang Z, Yang H. Hopf bifurcation of an SIQR computer virus model with time delay. Discrete
Dynamics in Nature and Society; 2015.

Zhu Q, Yang X, Ren J. Modeling and analysis of the spread of computer virus. Communications
in Nonlinear Science and Numerical Simulation. 2012;17(12):5117-24.

Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission. Mathematical biosciences.
2002;180(1-2):29-48.

Hale JK. Ordinary differential equations. Jon Wiley and Sons, New York; 1969.

©2019 Lanz et al.; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)

http://www.sdiarticle3.com/review-history/4 9867

10


http://creativecommons.org/licenses/by/2.0

	Introduction
	Model Formulation
	Model Analysis
	Basic properties
	Model Equilibria and Stability Analysis
	Local Stability of Malware-free Equilibrium
	Interpretation of Reproduction Number 
	Stability of Malware-Free Equilibrium
	Existence of Malware-Presistent Equilibrium 


	Numerical Analysis and Results
	Conclusions

