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ABSTRACT 
 
Due to the huge amount of computer data stored in databases, one centralized database cannot 
support and provide good performance and availability when contains huge data which used by 
large number of users. Thus, the distributed database is a good technique to overcome this problem 
by fragmenting the database and allocating the right database fragmentation in the right site. Many 
researches present static optimized algorithms of distributed database fragmentation, allocation and 
replication (Horizontal/ Vertical) at the initial stage of the distributed database design using different 
or similar techniques, which affect the performance of database system. Therefore, this study aims 
at reviewing and comparing the best-presented algorithms from the design perspective, with the aim 
of identifying the strength and weakness points of each algorithm.  Furthermore, this study could be 
considered as the first study that attempts to identify the most critical criteria that were used for 
comparing the optimized algorithms that have been proposed and used in distributed database 
fragmentation and allocation.  
 

 
Keywords: Distributed database; vertical partitioning; horizontal fragmentation; attribute usage 

matrix; frequency matrix; attribute affinity matrix; Crud matrix. 
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1. INTRODUCTION 
 
Regarding the big growth of databases that 
cause tables to contain the very big size of data, 
distributed databases promise to solve the most 
problem related to centralized databases. For 
instance, centralized database suffers from 
adequate reliability, autonomy, less accessibility 
and limited scalability support. These issues 
motivate the argent emergence of the distributed 
database as a response to the rapid growth of 
users’ needs.  
 

Distributed databases depend on splitting the 
relations of the logical schema to smaller 
fragments among different sites. There are three 
types of relation fragmentation including 
horizontal, vertical and hybrid (mixed) 
fragmentation. In horizontal fragmentation, the 
relation fragmented based on tuples, this means 
each fragment holds all attributes of the relation 
but an instance of tuples. The main intuition 
behind horizontal fragmentation (HF) is that 
every site should hold all data or information that 
used by queries belong to the applications used 
in that site to enable them to run faster [1]. HF is 
defined by using the selection operation σ(R) of 
a relational algebra.  
 
On the other hand, vertical fragmentation (VF) is 
used to split the relation vertically to two or more 
fragments this means the attributes are divided 
between the fragments, each attribute shall 
belong to one fragment. The main reason for 
using (VF) is that, distributing the application 
among different sites where each site is 
responsible for processing different functions [1]. 
Consequently, performing VF is considered to be 
more complex than horizontal fragmentation. In 
VF, the primary key is duplicated in each 
fragment to identify the complete record (tuple) in 
all fragments, but for good performance, we can 
use a record identifier in case of using many 
attributes as a primary key. Projection operation 
(π) is used to represent the vertical 
fragmentation, for example, the relation employ 
(EMP) with A1, A2, A3, A4 is divided into two 
fragments, fragment EMP1 includes A1 and A2, 
whereas fragment EMP2 includes A3 and A4. 
 

EMP = π A1, A2, A3, A4(R) 
EMP1 = π A1, A2(EMP) 
EMP2 = π A3, A4(EMP) 

 
The last type of fragmentation is called hybrid or 
mixed fragmentation, which fragments relations 

horizontally and vertically at the same time, yet it 
is considered to be the most complex approach 
among others.  
 

The largest problem during designing the 
distributed database is the fragmentation and 
allocation of relations, which in fact be one of the 
main challenges facing the design of distributed 
database. Thus, the main goal of distributed 
database design is to limit queries to access data 
relevant to their respective transaction [2], 
meanwhile, satisfying good locality and reducing 
remote access to other sites during query 
processing. To fragment the relation horizontally, 
min-term (predicate) is used to fragment the data 
with up to 2^n choices are available. Whereas in 
VF, fragmentation depends on grouping the 
attributes to different fragments and a lot of 
choices can be generated, which is used to 
obtain an approximation result B(m)=m^m, for 
example, if m=15 we have B(m)=〖10〗^9 choices 
[2]. It is worthy to point out that, there is a lack of 
a clear and an optimal solution that can be used 
for fragmentation [3]; consequently a heuristic 
approach is used instead. The main issues of 
distributed database design are how to fragment 
relation and where to allocate or duplicate these 
fragments [4]. Many algorithms are designed for 
fragmenting the database; most of these 
algorithms depend on analyzing the queries that 
used within the applications running in all sites. 
In HF, queries min-term are used to obtain the 
nature of data used by different sites, while in 
VF, the queries are used to obtain the affinity 
between the attributes. Many algorithms collect 
the information about query executions 
empirically from the database statistics after 
implementing the system and this gives good 
result, whereas other algorithms consider waiting 
until system's implementation is not a good idea, 
instead, this information can be provided by the 
designers at the initial stage of system design 
during requirements analysis phase. In both 
scenarios, most of these algorithms use common 
matrices in their modules like: attribute usage 
matrix (AUM), frequency matrix (FM), attribute 
affinity matrix (AAM), and CRUD (Create, Read, 
Update, Delete) matrix. AUM is used to reflect 
the usage of attributes within queries. FM is used 
to obtain frequencies of queries. AAM is used 
reflect the affinity between the attributes used in 
the same query. From a different perspective, 
CRUD is useful to determine different SQL 
operations used in each site and various weights 
can be given to calculate the cost of each 
operation.  
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It is obvious that fragmentation algorithms could 
be divided into static and dynamic. The static 
algorithms fragment the relations manually and 
can be done once during the design phase. 
While, on the other hand, dynamic algorithms 
consider the changes in access pattern of 
queries and re-fragment the relations according 
to the new situations. 
 
However, this study aims at comparing              
between many static algorithms designed 
originally for (Horizontal/Vertical) fragmentation, 
allocation and replication of distributed            
database (DDB). Furthermore, this study collects 
different criteria, which are used later in this 
study as a base for comparing the most known 
and used algorithms. Therefore, these collected 
criteria would be used by other researchers to 
compare many different algorithms in the field of 
DDB. 
 
The reset of this paper is organized as follow: 
section 2 describes the different algorithms               
used in fragmenting, allocating and                 
replicating fragments in DDB, section 3 contains 
the comparison results between these 
algorithms, and finally, the conclusion will be in 
section 4.  
 

2. RELATED WORK   
 
A survey study was conducted by [5], which 
covers the concepts of distributed systems and 
different related techniques. Meanwhile, the 
concepts of fragmentation, allocation, and 
replication were neglected. A systematic survey 
study conducted by [6], which focused on the 
dynamic data allocation algorithms.  
 
Fragmenting distributed database based on 
attributes and queries predicates have been 
studied earlier by many researchers. The HF 
partitions the database by using min-term which 
is proposed by [7]. HF is a technique that allows 
the database to be partitioned into instances or 
tupules [8]. VF algorithm is proposed by [9] using 
AUM and bond energy algorithm (BEA). Many 
algorithms have been proposed later with aim of 
optimizing the algorithms, for example, [10] 
improved the previous work on VF by proposing 
an algorithm using a graphical technique. From 
another point of view, [11] used AAM to generate 
groups based on affinity values [12]. Marwa et al. 
in their work reported in [13] used the instance 
request matrix to horizontally fragment object-
oriented database. A static VF algorithm that 
works at the initial stage of database design 

based on using the number of occurrences of an 
attribute in a set of queries rather than the 
frequent of query (FOQ) accessing these 
attributes [14]. Most researchers like [15, Abdel 
Raouf et al. [16] and [2] after that adapt the idea 
proposed in [14] which fragments the relations at 
the initial stage of database design. The reported 
work in [17] developed an HF algorithm using 
allocation locality precedence (ALP) to determine 
the most important attribute that will be used to 
fragment the relation. Another algorithm called 
"An Apriori-Based Vertical Fragmentation was 
proposed in [15]. The aim of this algorithm is to 
fragment relations vertically by clustering the 
more mutually coupled attributes together based 
on AUM [15]. In contrast, [12] developed a 
technique for horizontal fragmentation based on 
CRUD matrix and AUM in addition to 
communication and space constraints. Another 
algorithm called valley based vertical partitioning 
algorithm (VBVPA) which is proposed in [16]. 
This algorithm adapted clustered affinity matrix 
(CAM) based on AUM and AAM [16]. 
 
Abdel Raouf et al. [16] proposed an algorithm 
that vertically fragments, allocates and replicates 
scheme of a distributed database called (VFAR), 
it allocates and replicates the fragments to the 
site using manipulation and reading operations 
[18]. It can be seen from the literature that, many 
algorithms have been proposed to optimize the 
process of DDB fragmentation, allocation and 
replication such as [17]. Therefore, this study 
selected the most known and used algorithms 
including algorithms proposed in [10,14,17, 
15,12,16,18]. 
 

3. THE SURVEYED ALGORITHMS 
 

3.1 Static Vertical Partitioning of a 
Distributed Database   

 

Abuelyaman [14] proposed a vertical partitioning 
algorithm for improving the performance of DBS. 
The algorithm uses the number of occurrences of 
an attribute in a set of queries rather than the 
FOQ accessing these attributes. This makes the 
fragmentation of a DB schema even before its 
tables are populated. Thus the DB designer will 
be able to perform partitioning and consequent 
distribution of fragments before the database 
enters operation. A simulator for the algorithm 
has been developed which will be explained 
bellow [14]. Results of simulations were 
consistent with those obtained using frequency 
based partitioning algorithms. The significant 
advantage of the suggested algorithm is that the 
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database designer doesn’t have to wait for 
empirical data on query frequencies before 
partitioning a database. The work [14] provided a 
solution called StatPart for initial fragmentation of 
relations, fragmentation can be decided even 
before database tables are populated. 
Abuelyaman classified his algorithm as a static 
partitioning because it does not depend on 
(FOQ) and he used a randomly generated 
reflexivity matrix, a symmetry matrix and a 
transitivity module to produce vertical fragments 
of the relations. 
 

According to Abuelyaman [14], the only way for a 
partition to be independent of FOQ is when it is 
based on a database schema. The DB Designer 
must gain sufficient knowledge on the business 
requirements, and gets sufficient information 
about the intended usage of the database to 
determine the sets which called the Set of Kickoff 
Queries (SKQ) and the Set of Future Queries 
(SFQ). According to [14], the proposed simulator 
has three modules which are reflexivity, 
symmetry and transitivity. 
 

3.1.1 Reflexivity module 
 
Reflexivity of an attribute X represents the 
number of queries that reference X. In Reflexivity 
Matrix (RM), the number of 1’s on the column of 
attribute X represents the degree of reflexivity of 
X. 
 

As an input, the module prompts a user to enter 
values for each of the first three parameters (Na, 
Nk, Nf) which each stands for 
 

Na : the total number of attributes. 
Nk : the number of queries in the set SKQ. 
Nf : the number of queries in the set SFQ. 

 
The output is the general matrix that relates 
attributes to queries that will be called the 
Reflexivity Matrix (RM). In an RM matrix, the total 
number of 1's on a column gives the degree of 
reflexivity of the column header’s attribute. 
Abuelyaman assumed that each attribute is 
included in at least one query. Consequently, 
each must have a reflexivity degree of at least 
one. 
 
3.1.2 Symmetry module 
 
Two attributes can be called symmetric when 
there is at least one query that includes both 
attributes in SM graph symmetry between any 
two vertices U and W is represented by an edge 
connecting U to W. The Degree of Symmetry 

(DS) between U and W is represented by the 
label on their edge, and corresponds to the 
number of queries that include both. Abuelyaman 
used two equations to compute the Symmetry 
Matrix (SM) that defines the desired relationships 
between attributes. The first equation adds up 
column entries for each attribute j in RM matrix to 
determine its reflexivity, the diagonal entries on 
an SM matrix give the reflexivity degrees of 
attributes. The second Equation finds the 
intersection between each pair of attributes              
i and j. 
 
3.1.3  Transitivity module 
 
The transitivity module receives the SM matrix as 
input and produces the required partition as 
output. The presented tactic of the algorithm is to 
look for the most loosely coupled attribute in the 
partition and move it to a different subset. The 
new hit ratio is then computed and checked 
against the threshold. The process is continued 
till it achieved. The acceptable hit ratio according 
to the researcher, the hit ratio t occurs when all 
attribute is in a single set. The only time this is 
true is when the schema cannot be partitioned. 
The DB designer is responsible for setting up a 
partition's hit ratio threshold.  
 

3.2 A New Technique for Database 
Fragmentation in Distributed Systems 

 
Khan and Hoque (2010) proposed a technique 
that depends on the use of Attribute Locality 
Precedence (ALP) which means fragmenting a 
relation horizontally based on the locality of 
precedence of its attributes. ALP represents the 
value of importance of an attribute with respect to 
sites of distributed database. Database 
designers are responsible for building an ALP 
table for each relation of a DDBMS during 
database design stage. CRUD (Create, Read, 
Update, and Delete) matrix and cost functions 
are used in combination with the ALP table. 
Results showed that for relational databases in 
distributed systems, this proposed technique can 
solve initial fragmentation problems properly. 
 
3.2.1 CRUD matrix (data-to-location) 
 
It is used by the Database analysts and 
designers in the requirement analysis phase of 
system development. A CRUD matrix is a table 
(e.g. Table 1) of which rows show the attributes 
of the entities of a relation and columns show the 
different locations of the applications calculating 
precedence. 
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3.2.2 Attribute locality precedence (ALP) 
 
ALP used to fragment a relation horizontally 
according to the locality of precedence of its 
attributes. It can be defined as the value of 
importance of an attribute with respect to sites of 
distributed database of an attribute of a 
relationship we take the MCRUD matrix of the 
relation. Khan and Hoque proposed a model as 
depicted in Fig. 1, this model does some 
processes. First, Construction of MCRUD Matrix, 
calculation of ALP, construction ALP table, 
generation of predicate set, finally, fragmentation 
of the relation. 
 

3.2.3 Constricting of MCRUD matrix 
 

Modified CRUD (MCRUD) is used by Khan and 
Hoque as shown in Table (1). It is a table 
constructed by placing predicates of attributes of 
a relation as the rows and applications of the 
sites of a DDBMS as the columns. It different on 
the normal CRUD because it gives a different 
weight for each operation (Create, Read, Update, 
Delete). For example, Khan and Hoque Calculate 
the cost for each predicate as the sum of all 
applications” cost of predicate j of attribute i at 
site k. Then find out at which site cost of 
predicate j is the maximum. To calculate                      
ALP, researchers assumed that frequency of fC, 
fR, fU and fD=1 because the designer will not 
know the actual frequencies, also they assumed 
the weight of operations of as C=2, R=1, U=3 
and D=2. 
 

3.2.4 Construction of ALP table 
 

ALP table contains the values of the entire 
attribute, the attribute that have the highest 
precedence value which will be treated as the 
most important attribute for fragmentation. 
According to the researcher’s table, the attribute 
“Branch” had the highest precedence value, so 
predicate set was generated for Branch, the 
attribute with highest locality precedence of the 
relation. Finally, According to the predicate set P, 

the relation was fragmented and allocated to the 
sites. 
 
3.2.5 Calculating of predicate set 
 
After constructing the ALP table the predicate set 
is chosen based on the predicate which has the 
maximum cost, so the fragmentation process will 
depend on that predicate to fragment the 
relation.  
 

3.2.6  Fragmentation of relation 
 
After determining the predicate which the 
relationship will be fragmented based on it,  
fragments will be allocated to the sites based on 
queries used by each site for that predicate. 
 
3.3 An apriori-based Vertical Fragmen-

tation Technique for Heterogeneous 
Distributed Database Transactions 

 
Dharavath et al. [15] proposed an algorithm that 
is capable of taking proper fragmentation 
decision from the empirical data (i.e., queries) 
available at the initial stage. It fragments a 
relation vertically according to the generation of 
frequent itemsets of its attributes. Frequent item 
means the attributes or items, which are being 
called together "very often" as an item sets. Item 
sets can contain two or more items (attributes) in 
each set; this depends on the required ratio of 
jointness that provided to the algorithm.   
 
The main idea of this algorithm is obtaining these 
attributes that are used together very often. 
Initially, it uses the AUM from the empirical data 
at the requirement analysis phase, in addition to 
the frequency of each query in each site. After 
that it composes a file called "trasfile.txt" contains 
the provided queries, but each query will be 
repeated in the file by the number of its 
frequencies. This file will be the input of the 
apriori algorithm which will generate the frequent 
item sets for a prescribed support. 

 

Table 1. Example of MCRUD matrix (obtained from [17]) 
 

  Site  & Application 
Site 1 Site 2 

APP1 APP2 APP1 APP2 

E
n

ti
ty

, 
A

tt
ri

b
u

te
. 

P
re

d
ic

a
te

 Proj Budget<10000 $ CRUD RU RU R 
Proj Budget=10000 $ CRUD RU R R 
Proj Budget>10000 $ CRUD R   
Branch Name=A CRUD RU RU R 
Branch Name=B CRU RU CRUD RU 
Branch Name=C CRUD RU R R 
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Fig. 1. Block diagram of the system (obtained from [9]) 
 
The apriori algorithm will take its inputs from 
transfile.txt that composed from AUM, and it has 
minimum support ratio to determine the required 
satisfaction ratio for the affinity between the 
attributes, larger min support value results less 
mutually coupled attribute and vice versa. This 
algorithm produces item sets each one contains 
the same number of items (attributes) like 2, 3 or 
four attributes, the attributes within item sets are 
jointness, which means same attribute can 
belong to different item set. The authors tested 
their algorithm on a relation that has 20 attributes 
[A0 – A19] and 16 transactions on three sites. 
The result gave big ratio reached to 60% when 
the adjacent attributes were two only, but this 
ratio decreased when more adjacent attributes 
were required like 3 in that case the ratio 
decreased to 30%, also when 4 adjacent 
attributes were required the ration decreased 
less than 30%. 
 

3.4 A Synchronized Design Technique for 
Efficient Data Distribution 

 

Hassan I. Abdalla [12] proposed a new optimal 
fragmentation, allocation, and replication 
algorithm to perform horizontal fragmentation 
(HF) in a synchronized fashion using a cost 
model. This algorithm takes into consideration 
the communication and storage cost in addition 
to the other criteria like AUM and CRUD 
matrices. The intended relation is divided 
horizontally according to the principle of               
CRUD matrix for queries used in each site,                
but the author here divided the operations into 
two sets one for the read operation and another 
one for the reset operations (Create, update, 
delete) in addition to using a frequency of 
queries. The proposed algorithm in [12] called 
attribute retrieval and update frequency (ARUM) 
matrix. From ARUM matrix and by using the 
provided distance cost matrix between the 
different sites a new matrix can be obtained 
which represents the total cost for each attributes 
in different sites, the matrix called attribute read 
update frequency (ARUF). Then the relation is 
divided based on the attribute having the largest 
cost as we will see in the next section.  

3.4.1 The heuristic approach 
 

As it has been mentioned above, this algorithm 
will fragment, allocate and replicate relations to 
different sites. First, it fragments the relation 
based on candidate attribute after calculating the 
ARUF matrix form ARUM and distance matrix, 
hence, the fragments will be produced based on 
the predicates of the candidate attribute. After 
that this algorithm will allocate the fragments to 
the sites based on a heuristic model, this model 
allocates the fragment to the site that performs 
the highest query cost for the fragment and it has 
two phases for allocations the fragments, first 
one it allocates the fragments based on the 
update operations which means fragments will 
be allocated to sites sustains the largest cost of 
update operation, in the second phase if any site 
constraints can prevent this fragment to be 
allocated, then it shall be replicated to all other 
sites required it. 
 
3.4.2 The proposed fragmentation model 
 

Fig. 2 shows the proposed model for Hassan I. 
Abdalla's technique, which takes the relation as 
an input and by using the ARUM matrix that 
provided by the designers at the initial phase of 
database design it will provide the ARUF matrix, 
then from this matrix CA (candidate attributes) 
will be produced. 
 

 
 

Fig. 2. The proposed system phases 
(obtained from [12]) 

 

Candidate attributes mean the attributes having 
the highest cost and it will be used to fragment 
the relation. Fragmentation and allocation 
depend on CA matrix. The fragmentation model 
in this algorithm is based on a set of simple 
predicates Pr [P1, . . . ,Pn] which have been 
assigned to the relation attributes A[A1, . . . ,An]. 
Attributes with a numeric value will comprise a 
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predicates Pr that have one of three states: (Pri> 
V), (Pri< V) or (Pri = V). However, attributes with 
alphabetical value will comprise a predicates Pr 
that have only one state: (Pri= V). In addition, 
each site has a capacity C (C1, C2, . . . ,Cm) and 
fragment limit FL (FL1, FL2, . . . ,FLm) which 
indicates how many fragments the site can 
handle. Also this model uses the communication 
cost matrix table that represents communication 
between network sites and used to obtain the 
distance cost matrix which in its turn is used to 
calculate the average retrieval cost and the 
average update cost for candidate attribute 
predicates individually.  
 

Now to determine the CA we have for each 
predicate there is a predicate attribute read cost 
and a predicate attribute update cost, and each 
query predicate has a frequency value 
represents the uses of that query in different site. 
So to compute the cost of using each attribute in 
the site uses the predicate of that attribute we 
shall multiply the cost of reading and update by 
the frequency of each query and a new matrix 
called Sum of attributes Frequency Table (SAFT) 
will be produced.  
 

Finally, a distance matrix (DM) which is obtained 
by minimizing communication cost matrix 
(Whitten et al., 2004) will be multiplied by SAFT 
matrix to compose ARUF matrix. Thus, the 
candidate attribute (CA) can be obtained as the 
attribute with maximum cost value in this 
example the salary attribute is considered as a 
key factor for fragmentation and allocation 
process. After that three fragments will be 
generated according to the provided predicates 
by the designer (>, <, =).  
 

After determining the CA a heuristic model will be 
used to allocate the fragments to sites, the model 
will perform the following: First, calculate the 
Average Retrieval Cost (ARC) and the Average 
Update Cost (AUC) for candidate attribute 
predicates individually. Second, for each attribute 
predicate, it checks if ARC > AUC. If this is the 
case then replication of the concerned fragments 
will be performed over the sites that require 
retrieval, update or both. However, if ARC < 
AUC, then the concerned fragments will be 
allocated to the site having the maximum value 
for update cost. This is the first phase of the 
algorithm where site constraints are relaxed. In 
either case, if site constraints are forced and this 
called second phase, find site with the next 
maximum update cost value in ARUM table to be 
the targeted site for the fragment allocation and 
replication. 

3.5 An Optimized Scheme for Vertical 
Fragmentation, Allocation and 
Replication of a Distributed Database 

 
Raouf et al. [16] proposed a vertical 
fragmentation, allocation and replication scheme 
of a distributed database called (VFAR) that used 
at initial stage of database design during the 
requirements analysis phase, this approach uses 
CRUD matrix and partitions the distribute 
database relations using the enhanced minimum 
spanning tree (MST) Prim's algorithm, and it 
allocates and replicates the fragments to the site 
that performs high data manipulation for that 
fragments than other sites to enhance system 
performance, increase availability and minimize 
the communication cost. In addition to it also 
replicates the fragment to the site that performs 
more read operations for that fragment than 
other sites. VFAR scheme uses three modules 
as shown in Fig. 3. These modules are: attribute 
site usage and similarity matrix, vertical 
fragmentation and fragment allocation and 
replication. 
 
3.5.1  Attribute site usage and similarity 

matrix module 
 

First module uses an enhanced CRUD matrix 
places the attributes of a relation as the row and 
application sites as the columns. The output of 
this matrix is the attribute site usage matrix 
(ASUM) which reflected the usage of the 
attributes according to the sites, in this matrix the 
occurrence of an attribute is represented by one 
or zero if else. The output of this matrix is the 
attribute similarity matrix (ASM), It is used to 
represent the relationships among attributes sites 
and gives the number of queries referencing both 
attributes based on ECRUD matrix. After 
constructing ASM matrix it is transformed into a 
graph and a vertex with the name of the attribute 
presents each attribute and the edge represents 
the similarity between two attributes. 
 

3.5.2 Vertical fragmentation module 
 

This module is used to vertically partition the 
relations using the enhanced minimum spanning 
tree Prim's algorithm which is special case of the 
generic minimum spanning tree algorithm and 
used by the authors to find the shortest paths in 
a graph, it starts from an arbitrary root vertex and 
grows until the tree spans all the vertices in the 
tree, each vertex should be connected with two 
branches that have the largest similarity values. 
If the required fragments are two, then Prim's 
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algorithm will divide the graph to two sub-graphs 
at the edges with lowest weight in case of two 
partitions required. In case of three fragments 
are required the graph should be split at the edge 
with the minimum value to a new branch, and so 
on for each new fragment required the graph 
should be split at the minimum edge value to a 
new branch. 
 
3.5.3 Fragment allocation and replication 
 
To allocate the fragments to the sites VFAR 
scheme generates two matrixes from the 
ECRUD matrix, first one is the attribute 
manipulate matrix (AMM) which represents the 
number of manipulation operations (Create, 
Update, Delete) that access the attribute 
according to each site, here frequency                       
of queries does not use, just the occurrence                   
of the attribute is represented by one,                            
also each operation given the same weight                  
(one) by the authors. Another matrix is an 
attribute read matrix (ARM) which uses the                   
read operation only and has the same logic of 
the (AMM). The authors suggested that 
allocation of fragments to the sites depends 
preliminary on the number of manipulation 
operations then on the number of reading 
operations, as an example on Table 2 fragment 1 
will be replicated to site 5 and fragment 2 will be 
replicated to site 3. 
 

3.6 Efficient Fragmentation and 
Allocation in Distributed Databases 

 
M Sumti and K Akhilesh (2015) proposed a new 
algorithm for Vertical Partitioning in Distributed 
Database. The proposed algorithm is named as 

Valley Based Vertical Partitioning Algorithm 
(VBVPA). The objective of this algorithm is to 
search the set of frequently accessed attributes 
by a distinct set of queries. Using the Valley 
Based Vertical Partitioning Algorithm, user 
fragments a relation based on Clustered Affinity 
Matrix (CAM), calculated from Attribute Usage 
Matrix (AUM) and Frequency Matrix (FM). In this 
algorithm, the first row of the Clustered Affinity 
Matrix (CAM) is taken as input to find the clusters 
of attributes in a relation. Further, we calculate 
the difference between neighboring attribute 
values of the first row of Clustered Affinity Matrix 
(CAM) and the point at which the current 
differentiated value is less than the previous and 
the next differentiated value is considered as split 
point. 
 
3.6.1 Clustered Affinity Matrix (CAM) 
 
Bond Energy Algorithm (BEA) will be used for 
clustering the attribute which has high Attribute 
Affinity value, BEA is used to get the position of 
attributes in CAM. The attribute is placed to a 
position where the contribution of attribute 
placement is highest. BEA has been 
implemented in three steps which are 
initialization, iteration and row order. 
 
3.6.2 Placement of attributes in CAM 
 
In the initialization step first and second columns 
of Attribute Affinity Matrix (AAM) are placed in 
the first and second columns of Clustered Affinity 
Matrix (CAM) respectively. VBVPA algorithm 
mainly involves around three steps. The first step 
is initialization, in this step the variables and 
arrays are initialized as required by algorithm. 

 

 
 

Fig. 3. VFAR module (obtained from [16]) 
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The second step is processing, in this step first 
row of Clustered Affinity Matrix (CAM) are taken 
as input for finding the clusters of attributes in a 
relation. The user keeps the first value of row as 
it is in Y[i] and then finds the difference of 
remaining CAM(1,i) values and stores it in Y[i]. 
The third step is comparison, in this step the user 
compares each value of array Y[i] with the 
immediate previous and next values of Y[i], 
wherever the current value is found less than 
previous and next values that point is considered 
as split-point. The following calculation is 
performed with referenced to CAM. 
 
Fig. 4 shows the valley formed between the 
values X [2] =2 and X [4] =4 i.e. at point X [3] 
=3.So the split point is recorded between second 
and third attribute of CAM. Hence the Clustered 
Affinity Matrix is divided into two fragments. The 
first fragment contains the attributes {A1, A3} 
while the second fragment contains the attributes 
{A4, A2}. 
 

 
 

Fig. 4. The graph below shows the Valley 
value Y[i] at point i (obtained from [18]) 

 
4. COMPARISON 
 
In this section we will define the criteria that will 
be used for comparison between the surveyed 
algorithms. We designed our comparison based 
on the criteria that are widely used in the 
distributed database design and having the most 
effect on the behavior, performance and results 
of the used algorithm. We divided these criteria 
into two different groups. First one (shown in 
Table 3) contains the inputs matrices and 
constraints that used by the algorithms to start its 
work in addition to the clustering techniques used 
by the algorithms for obtaining its results. While 
the second group (shown in Table 4) containing 

the outputs of these algorithms besides its 
complexity and accuracy. We can describe these 
criteria as the following: 
 

1 Type: represents the approach of 
fragmentation (Horizontal or Vertical). 

2 CRUD (Create, Read, Update, Delete): A 
matrix used to give different weights to 
query's operations. 

3 AUM (Attribute Usage Matrix): A matrix 
used to represent the usage of specific 
attribute in the specific query.  

4 AAM (Attribute Affinity Matrix): A matrix 
used to represent usage of attributes in the 
same query to determine the affinity 
between two attributes that are mutually 
coupled. 

5 FOQ (Frequent of query): Represent the 
frequency of each query used in AUM to 
reflect the weight of this query regarding 
the other ones.  

6 CAM (Clustering Affinity Matrix): A 
matrix used to cluster the attributes in 
disjoint group, each group represents one 
fragment. These criteria represent the 
main idea that is provided by the surveyed 
algorithms. 

7 Communication cost: The cost of 
accessing a fragment from a site different 
than its local site. 

8 Site Constraints:  represent any 
constraints in any site that allow or prevent 
allocating the fragments to that site like 
(space capacity). 

9 Number of Fragments: represents how 
many fragments can be produced by the 
algorithm. 

10 Allocation: Represents how the algorithm 
allocates the fragments to the target sites. 

11 Replication: does the algorithm include 
replicating fragments to different sites in 
order to reduce the communication cost.  

12 Difficulty: does the algorithm uses easy 
procedures and steps to complete its work 
or it uses more complicated steps and 
requirements. 

13 Accuracy: represents the accuracy of the 
resulted fragments in addition to allocating 
and replicating these fragments to the 
required sites with minimum duplicates and 
lowest communication cost. 

14 Time Complexity: represents the number 
of steps used by the algorithm to complete 
its work. 
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Table 2. The number of manipulating and read operation of each site to each fragment 
(obtained from Raouf et al. [16]) 

 
Site Number of manipulate operation Number of read operation 

Fragment 1 
(A, B, C, E, G, H, I) 

Fragment 2 
(D, F, J) 

Fragment 1 
(A, B, C, E, G, H, I) 

Fragment 2 
(D, F, J) 

Site 1 6 0 3 0 
Site 2 10 0 5 0 
Site 3 0 6 0 3 
Site 4 9 0 2 0 
Site 5 17 0 9 0 
Site 6 3 0 3 0 
Site 7 6 0 5 0 
Site 8 2 7 4 2 

 
Table 3. Inputs and technique used by the algorithms being compared 

 
Algorithm Type CRUD AUM AAM FOQ CA Comm. 

Cost 
Site 
constraints 

(Abuelyaman, 2008) 
[14] 

VF No Yes Yes No Graph 
Theory [1] 

No No 

(Khan and Hoque, 
2010) [17] 

HF MCRUD No No Yes [2] Yes/ALP [3] No No 

(Dharavath et al., 
2014) [15] 

VF No Yes No Yes Priori No No 

(Abdalla, 2014) [12] HF MCRUD No No Yes No Yes Yes 
(Raouf et al., 2015) 
[16] 

VF ECRUD Yes Yes Yes Spanning 
Tree 

No No 

(Medhavi, 2015) [18] VF No Yes Yes Yes VBVPA No No 
[1] Graph theory is used first, and then hit ratio is used to improve the clustering of attributes (tactic operation) 

[2] In the study the authors [17] used FOQ=1, but it can be given any value during the execution of the algorithm. 
[3] ALP used to determine the most significant attribute and if more fragments are required the second attribute will be 

used 

 
Table 4. Results and technique used by the algorithms being compared 

 
Algorithm No. of 

Fragments 
Allocation Replication Difficulty Accuracy Time 

complexity 
(Abuelyaman, 
2008) [14] 

Two Fragments No No High High O(n2) 

(Khan and Hoque, 
2010) [17] 

Many Fragments Yes No Low High O(i*j*k*r*)[4] 

(Dharavath et al., 
2014) [15] 

Many 
Fragments[5] 

No No High Medium O(n3) 

(Abdalla, 2014) 
[12] 

Three Fragments 
or more[6] 

Yes Yes Medium High O(j*h*i*p)[7] 

(Raouf et al., 
2015) [16] 

Many Fragments Yes Yes Low High O (E log N)[8] 

(Medhavi, 2015) 
[18] 

Many Fragments No No Low Low O(n) 

[4] i=number of attributes, j=number of predicates, k=number of sites, r=number of applications. 
[5] Depending on the hit ratio, smaller hit ratio can produce more fragments. 

[6] In case if the candidate attribute has an integer then it will produce three fragments (>, <, =). 
[7] j=number of sites, h=number of site queries, i=number of attributes, p=number of predicates. 

[8] E=number of edges, N=number of vertices 

 

5. DISCUSSION 
 
To distribute data across many sites that are 
connected via computer networks, an algorithm 

that involves making a proper fragmentation and 
placement decisions is needed. Besides, 
allocation of the generated fragments should be 
placed using the appropriate placement 
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algorithm when it is necessary. Query Operation 
Cost is considered as one of the main factors 
that make an algorithm more efficient by using 
CURD model, Clustering, Communication cost 
and FOQ are also main factors. According to the 
comparison between the reviewed algorithms for 
database distribution that is shown in Table 3 
and 4, the algorithms [12] covered all main 
factors in  distributing data including 
fragmentation, allocation and replication, it has 
good accuracy and low complexity  however 
algorithms ([17] and [16]  covered the query 
operation cost and FOQ besides fragmentation 
,and allocation but did not include the cost of 
communication which is a dominant cost. The 
three algorithms above have low complexity 
producers. None of query operation cost and 
communication cost was used in algorithms [14], 
[15] and [18], besides not presenting any 
allocation or replication solution, even though an 
algorithm [14] has good clustering method to 
create fragments.  
 
6. CONCLUSION 
 
Many factors shall be considered when 
implementing fragmentation and allocation in the 
distributed database environment, Therefore, this 
study surveyed and compared algorithms that 
introduce different techniques for distributing 
fragments over the distributed database. This 
study aimed also to define the best design for the 
distribution of fragments, many factors shall be 
taken in consideration before designing the 
databases CRUD matrix where each SQL 
operation shall be given different weights, FOQ 
factor also has an important effect and shall be 
considered to get good results, the most 
important factor is the technique used in 
clustering the attributes on (VF) or fragmenting 
the data in (HF).  Good algorithms shall consider 
fragmenting, allocating and replicating fragments 
to different sites, to reduce the communication 
cost.  
 
Most algorithms use the provided query                         
at the initial stage of database design,                         
but we think it is better to use dynamic       
algorithms on the empirical data after 
implementing the database to refragment the 
relations and getting new fragments related to 
the new situation. 
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