
*Corresponding author: E-mail: fuaad.abdulrazzak@gmail.com;

Current Journal of Applied Science and Technology

27(2): 1-12, 2018; Article no.CJAST.37079
ISSN: 2457-1024
(Past name: British Journal of Applied Science & Technology, Past ISSN: 2231-0843,
NLM ID: 101664541)

A Survey on Distributed Databases Fragmentation,
Allocation and Replication Algorithms

H. A. Fuaad1*, A. A. Ibrahim1, A. Majed1 and A. Asem1

1
Thamar University, Yemen.

Authors’ contributions

This work was carried out in collaboration between all authors. All authors read and approved the final

manuscript.

Article Information

DOI: 10.9734/CJAST/2018/37079
Editor(s):

(1) Robert Nowak, Professor, Head of Artificial Intelligence Division, Institute of Computer Science, Warsaw University of
Technology, Poland.

Reviewers:
(1) Iroju Olaronke, Adeyemi College of Education, Nigeria.

(2) K. Jayakumar, Information Technology, VPMM Engineering College for women, India.
(3) Manish Mahajan, CGC College of Engineering, India.

Complete Peer review History: http://www.sciencedomain.org/review-history/24551

Received 29th September 2017
Accepted 22

nd
 March 2018

Published 9th May 2018

ABSTRACT

Due to the huge amount of computer data stored in databases, one centralized database cannot
support and provide good performance and availability when contains huge data which used by
large number of users. Thus, the distributed database is a good technique to overcome this problem
by fragmenting the database and allocating the right database fragmentation in the right site. Many
researches present static optimized algorithms of distributed database fragmentation, allocation and
replication (Horizontal/ Vertical) at the initial stage of the distributed database design using different
or similar techniques, which affect the performance of database system. Therefore, this study aims
at reviewing and comparing the best-presented algorithms from the design perspective, with the aim
of identifying the strength and weakness points of each algorithm. Furthermore, this study could be
considered as the first study that attempts to identify the most critical criteria that were used for
comparing the optimized algorithms that have been proposed and used in distributed database
fragmentation and allocation.

Keywords: Distributed database; vertical partitioning; horizontal fragmentation; attribute usage

matrix; frequency matrix; attribute affinity matrix; Crud matrix.

Review Article

Fuaad et al.; CJAST, 27(2): 1-12, 2018; Article no.CJAST.37079

2

1. INTRODUCTION

Regarding the big growth of databases that
cause tables to contain the very big size of data,
distributed databases promise to solve the most
problem related to centralized databases. For
instance, centralized database suffers from
adequate reliability, autonomy, less accessibility
and limited scalability support. These issues
motivate the argent emergence of the distributed
database as a response to the rapid growth of
users’ needs.

Distributed databases depend on splitting the
relations of the logical schema to smaller
fragments among different sites. There are three
types of relation fragmentation including
horizontal, vertical and hybrid (mixed)
fragmentation. In horizontal fragmentation, the
relation fragmented based on tuples, this means
each fragment holds all attributes of the relation
but an instance of tuples. The main intuition
behind horizontal fragmentation (HF) is that
every site should hold all data or information that
used by queries belong to the applications used
in that site to enable them to run faster [1]. HF is
defined by using the selection operation σ(R) of
a relational algebra.

On the other hand, vertical fragmentation (VF) is
used to split the relation vertically to two or more
fragments this means the attributes are divided
between the fragments, each attribute shall
belong to one fragment. The main reason for
using (VF) is that, distributing the application
among different sites where each site is
responsible for processing different functions [1].
Consequently, performing VF is considered to be
more complex than horizontal fragmentation. In
VF, the primary key is duplicated in each
fragment to identify the complete record (tuple) in
all fragments, but for good performance, we can
use a record identifier in case of using many
attributes as a primary key. Projection operation
(π) is used to represent the vertical
fragmentation, for example, the relation employ
(EMP) with A1, A2, A3, A4 is divided into two
fragments, fragment EMP1 includes A1 and A2,
whereas fragment EMP2 includes A3 and A4.

EMP = π A1, A2, A3, A4(R)
EMP1 = π A1, A2(EMP)
EMP2 = π A3, A4(EMP)

The last type of fragmentation is called hybrid or
mixed fragmentation, which fragments relations

horizontally and vertically at the same time, yet it
is considered to be the most complex approach
among others.

The largest problem during designing the
distributed database is the fragmentation and
allocation of relations, which in fact be one of the
main challenges facing the design of distributed
database. Thus, the main goal of distributed
database design is to limit queries to access data
relevant to their respective transaction [2],
meanwhile, satisfying good locality and reducing
remote access to other sites during query
processing. To fragment the relation horizontally,
min-term (predicate) is used to fragment the data
with up to 2^n choices are available. Whereas in
VF, fragmentation depends on grouping the
attributes to different fragments and a lot of
choices can be generated, which is used to
obtain an approximation result B(m)=m^m, for
example, if m=15 we have B(m)=〖10〗^9 choices
[2]. It is worthy to point out that, there is a lack of
a clear and an optimal solution that can be used
for fragmentation [3]; consequently a heuristic
approach is used instead. The main issues of
distributed database design are how to fragment
relation and where to allocate or duplicate these
fragments [4]. Many algorithms are designed for
fragmenting the database; most of these
algorithms depend on analyzing the queries that
used within the applications running in all sites.
In HF, queries min-term are used to obtain the
nature of data used by different sites, while in
VF, the queries are used to obtain the affinity
between the attributes. Many algorithms collect
the information about query executions
empirically from the database statistics after
implementing the system and this gives good
result, whereas other algorithms consider waiting
until system's implementation is not a good idea,
instead, this information can be provided by the
designers at the initial stage of system design
during requirements analysis phase. In both
scenarios, most of these algorithms use common
matrices in their modules like: attribute usage
matrix (AUM), frequency matrix (FM), attribute
affinity matrix (AAM), and CRUD (Create, Read,
Update, Delete) matrix. AUM is used to reflect
the usage of attributes within queries. FM is used
to obtain frequencies of queries. AAM is used
reflect the affinity between the attributes used in
the same query. From a different perspective,
CRUD is useful to determine different SQL
operations used in each site and various weights
can be given to calculate the cost of each
operation.

Fuaad et al.; CJAST, 27(2): 1-12, 2018; Article no.CJAST.37079

3

It is obvious that fragmentation algorithms could
be divided into static and dynamic. The static
algorithms fragment the relations manually and
can be done once during the design phase.
While, on the other hand, dynamic algorithms
consider the changes in access pattern of
queries and re-fragment the relations according
to the new situations.

However, this study aims at comparing
between many static algorithms designed
originally for (Horizontal/Vertical) fragmentation,
allocation and replication of distributed
database (DDB). Furthermore, this study collects
different criteria, which are used later in this
study as a base for comparing the most known
and used algorithms. Therefore, these collected
criteria would be used by other researchers to
compare many different algorithms in the field of
DDB.

The reset of this paper is organized as follow:
section 2 describes the different algorithms
used in fragmenting, allocating and
replicating fragments in DDB, section 3 contains
the comparison results between these
algorithms, and finally, the conclusion will be in
section 4.

2. RELATED WORK

A survey study was conducted by [5], which
covers the concepts of distributed systems and
different related techniques. Meanwhile, the
concepts of fragmentation, allocation, and
replication were neglected. A systematic survey
study conducted by [6], which focused on the
dynamic data allocation algorithms.

Fragmenting distributed database based on
attributes and queries predicates have been
studied earlier by many researchers. The HF
partitions the database by using min-term which
is proposed by [7]. HF is a technique that allows
the database to be partitioned into instances or
tupules [8]. VF algorithm is proposed by [9] using
AUM and bond energy algorithm (BEA). Many
algorithms have been proposed later with aim of
optimizing the algorithms, for example, [10]
improved the previous work on VF by proposing
an algorithm using a graphical technique. From
another point of view, [11] used AAM to generate
groups based on affinity values [12]. Marwa et al.
in their work reported in [13] used the instance
request matrix to horizontally fragment object-
oriented database. A static VF algorithm that
works at the initial stage of database design

based on using the number of occurrences of an
attribute in a set of queries rather than the
frequent of query (FOQ) accessing these
attributes [14]. Most researchers like [15, Abdel
Raouf et al. [16] and [2] after that adapt the idea
proposed in [14] which fragments the relations at
the initial stage of database design. The reported
work in [17] developed an HF algorithm using
allocation locality precedence (ALP) to determine
the most important attribute that will be used to
fragment the relation. Another algorithm called
"An Apriori-Based Vertical Fragmentation was
proposed in [15]. The aim of this algorithm is to
fragment relations vertically by clustering the
more mutually coupled attributes together based
on AUM [15]. In contrast, [12] developed a
technique for horizontal fragmentation based on
CRUD matrix and AUM in addition to
communication and space constraints. Another
algorithm called valley based vertical partitioning
algorithm (VBVPA) which is proposed in [16].
This algorithm adapted clustered affinity matrix
(CAM) based on AUM and AAM [16].

Abdel Raouf et al. [16] proposed an algorithm
that vertically fragments, allocates and replicates
scheme of a distributed database called (VFAR),
it allocates and replicates the fragments to the
site using manipulation and reading operations
[18]. It can be seen from the literature that, many
algorithms have been proposed to optimize the
process of DDB fragmentation, allocation and
replication such as [17]. Therefore, this study
selected the most known and used algorithms
including algorithms proposed in [10,14,17,
15,12,16,18].

3. THE SURVEYED ALGORITHMS

3.1 Static Vertical Partitioning of a
Distributed Database

Abuelyaman [14] proposed a vertical partitioning
algorithm for improving the performance of DBS.
The algorithm uses the number of occurrences of
an attribute in a set of queries rather than the
FOQ accessing these attributes. This makes the
fragmentation of a DB schema even before its
tables are populated. Thus the DB designer will
be able to perform partitioning and consequent
distribution of fragments before the database
enters operation. A simulator for the algorithm
has been developed which will be explained
bellow [14]. Results of simulations were
consistent with those obtained using frequency
based partitioning algorithms. The significant
advantage of the suggested algorithm is that the

Fuaad et al.; CJAST, 27(2): 1-12, 2018; Article no.CJAST.37079

4

database designer doesn’t have to wait for
empirical data on query frequencies before
partitioning a database. The work [14] provided a
solution called StatPart for initial fragmentation of
relations, fragmentation can be decided even
before database tables are populated.
Abuelyaman classified his algorithm as a static
partitioning because it does not depend on
(FOQ) and he used a randomly generated
reflexivity matrix, a symmetry matrix and a
transitivity module to produce vertical fragments
of the relations.

According to Abuelyaman [14], the only way for a
partition to be independent of FOQ is when it is
based on a database schema. The DB Designer
must gain sufficient knowledge on the business
requirements, and gets sufficient information
about the intended usage of the database to
determine the sets which called the Set of Kickoff
Queries (SKQ) and the Set of Future Queries
(SFQ). According to [14], the proposed simulator
has three modules which are reflexivity,
symmetry and transitivity.

3.1.1 Reflexivity module

Reflexivity of an attribute X represents the
number of queries that reference X. In Reflexivity
Matrix (RM), the number of 1’s on the column of
attribute X represents the degree of reflexivity of
X.

As an input, the module prompts a user to enter
values for each of the first three parameters (Na,
Nk, Nf) which each stands for

Na : the total number of attributes.
Nk : the number of queries in the set SKQ.
Nf : the number of queries in the set SFQ.

The output is the general matrix that relates
attributes to queries that will be called the
Reflexivity Matrix (RM). In an RM matrix, the total
number of 1's on a column gives the degree of
reflexivity of the column header’s attribute.
Abuelyaman assumed that each attribute is
included in at least one query. Consequently,
each must have a reflexivity degree of at least
one.

3.1.2 Symmetry module

Two attributes can be called symmetric when
there is at least one query that includes both
attributes in SM graph symmetry between any
two vertices U and W is represented by an edge
connecting U to W. The Degree of Symmetry

(DS) between U and W is represented by the
label on their edge, and corresponds to the
number of queries that include both. Abuelyaman
used two equations to compute the Symmetry
Matrix (SM) that defines the desired relationships
between attributes. The first equation adds up
column entries for each attribute j in RM matrix to
determine its reflexivity, the diagonal entries on
an SM matrix give the reflexivity degrees of
attributes. The second Equation finds the
intersection between each pair of attributes
i and j.

3.1.3 Transitivity module

The transitivity module receives the SM matrix as
input and produces the required partition as
output. The presented tactic of the algorithm is to
look for the most loosely coupled attribute in the
partition and move it to a different subset. The
new hit ratio is then computed and checked
against the threshold. The process is continued
till it achieved. The acceptable hit ratio according
to the researcher, the hit ratio t occurs when all
attribute is in a single set. The only time this is
true is when the schema cannot be partitioned.
The DB designer is responsible for setting up a
partition's hit ratio threshold.

3.2 A New Technique for Database
Fragmentation in Distributed Systems

Khan and Hoque (2010) proposed a technique
that depends on the use of Attribute Locality
Precedence (ALP) which means fragmenting a
relation horizontally based on the locality of
precedence of its attributes. ALP represents the
value of importance of an attribute with respect to
sites of distributed database. Database
designers are responsible for building an ALP
table for each relation of a DDBMS during
database design stage. CRUD (Create, Read,
Update, and Delete) matrix and cost functions
are used in combination with the ALP table.
Results showed that for relational databases in
distributed systems, this proposed technique can
solve initial fragmentation problems properly.

3.2.1 CRUD matrix (data-to-location)

It is used by the Database analysts and
designers in the requirement analysis phase of
system development. A CRUD matrix is a table
(e.g. Table 1) of which rows show the attributes
of the entities of a relation and columns show the
different locations of the applications calculating
precedence.

Fuaad et al.; CJAST, 27(2): 1-12, 2018; Article no.CJAST.37079

5

3.2.2 Attribute locality precedence (ALP)

ALP used to fragment a relation horizontally
according to the locality of precedence of its
attributes. It can be defined as the value of
importance of an attribute with respect to sites of
distributed database of an attribute of a
relationship we take the MCRUD matrix of the
relation. Khan and Hoque proposed a model as
depicted in Fig. 1, this model does some
processes. First, Construction of MCRUD Matrix,
calculation of ALP, construction ALP table,
generation of predicate set, finally, fragmentation
of the relation.

3.2.3 Constricting of MCRUD matrix

Modified CRUD (MCRUD) is used by Khan and
Hoque as shown in Table (1). It is a table
constructed by placing predicates of attributes of
a relation as the rows and applications of the
sites of a DDBMS as the columns. It different on
the normal CRUD because it gives a different
weight for each operation (Create, Read, Update,
Delete). For example, Khan and Hoque Calculate
the cost for each predicate as the sum of all
applications” cost of predicate j of attribute i at
site k. Then find out at which site cost of
predicate j is the maximum. To calculate
ALP, researchers assumed that frequency of fC,
fR, fU and fD=1 because the designer will not
know the actual frequencies, also they assumed
the weight of operations of as C=2, R=1, U=3
and D=2.

3.2.4 Construction of ALP table

ALP table contains the values of the entire
attribute, the attribute that have the highest
precedence value which will be treated as the
most important attribute for fragmentation.
According to the researcher’s table, the attribute
“Branch” had the highest precedence value, so
predicate set was generated for Branch, the
attribute with highest locality precedence of the
relation. Finally, According to the predicate set P,

the relation was fragmented and allocated to the
sites.

3.2.5 Calculating of predicate set

After constructing the ALP table the predicate set
is chosen based on the predicate which has the
maximum cost, so the fragmentation process will
depend on that predicate to fragment the
relation.

3.2.6 Fragmentation of relation

After determining the predicate which the
relationship will be fragmented based on it,
fragments will be allocated to the sites based on
queries used by each site for that predicate.

3.3 An apriori-based Vertical Fragmen-

tation Technique for Heterogeneous
Distributed Database Transactions

Dharavath et al. [15] proposed an algorithm that
is capable of taking proper fragmentation
decision from the empirical data (i.e., queries)
available at the initial stage. It fragments a
relation vertically according to the generation of
frequent itemsets of its attributes. Frequent item
means the attributes or items, which are being
called together "very often" as an item sets. Item
sets can contain two or more items (attributes) in
each set; this depends on the required ratio of
jointness that provided to the algorithm.

The main idea of this algorithm is obtaining these
attributes that are used together very often.
Initially, it uses the AUM from the empirical data
at the requirement analysis phase, in addition to
the frequency of each query in each site. After
that it composes a file called "trasfile.txt" contains
the provided queries, but each query will be
repeated in the file by the number of its
frequencies. This file will be the input of the
apriori algorithm which will generate the frequent
item sets for a prescribed support.

Table 1. Example of MCRUD matrix (obtained from [17])

 Site & Application
Site 1 Site 2

APP1 APP2 APP1 APP2

E
n

ti
ty

,
A

tt
ri

b
u

te
.

P
re

d
ic

a
te

 Proj Budget<10000 $ CRUD RU RU R
Proj Budget=10000 $ CRUD RU R R
Proj Budget>10000 $ CRUD R
Branch Name=A CRUD RU RU R
Branch Name=B CRU RU CRUD RU
Branch Name=C CRUD RU R R

Fuaad et al.; CJAST, 27(2): 1-12, 2018; Article no.CJAST.37079

6

Fig. 1. Block diagram of the system (obtained from [9])

The apriori algorithm will take its inputs from
transfile.txt that composed from AUM, and it has
minimum support ratio to determine the required
satisfaction ratio for the affinity between the
attributes, larger min support value results less
mutually coupled attribute and vice versa. This
algorithm produces item sets each one contains
the same number of items (attributes) like 2, 3 or
four attributes, the attributes within item sets are
jointness, which means same attribute can
belong to different item set. The authors tested
their algorithm on a relation that has 20 attributes
[A0 – A19] and 16 transactions on three sites.
The result gave big ratio reached to 60% when
the adjacent attributes were two only, but this
ratio decreased when more adjacent attributes
were required like 3 in that case the ratio
decreased to 30%, also when 4 adjacent
attributes were required the ration decreased
less than 30%.

3.4 A Synchronized Design Technique for
Efficient Data Distribution

Hassan I. Abdalla [12] proposed a new optimal
fragmentation, allocation, and replication
algorithm to perform horizontal fragmentation
(HF) in a synchronized fashion using a cost
model. This algorithm takes into consideration
the communication and storage cost in addition
to the other criteria like AUM and CRUD
matrices. The intended relation is divided
horizontally according to the principle of
CRUD matrix for queries used in each site,
but the author here divided the operations into
two sets one for the read operation and another
one for the reset operations (Create, update,
delete) in addition to using a frequency of
queries. The proposed algorithm in [12] called
attribute retrieval and update frequency (ARUM)
matrix. From ARUM matrix and by using the
provided distance cost matrix between the
different sites a new matrix can be obtained
which represents the total cost for each attributes
in different sites, the matrix called attribute read
update frequency (ARUF). Then the relation is
divided based on the attribute having the largest
cost as we will see in the next section.

3.4.1 The heuristic approach

As it has been mentioned above, this algorithm
will fragment, allocate and replicate relations to
different sites. First, it fragments the relation
based on candidate attribute after calculating the
ARUF matrix form ARUM and distance matrix,
hence, the fragments will be produced based on
the predicates of the candidate attribute. After
that this algorithm will allocate the fragments to
the sites based on a heuristic model, this model
allocates the fragment to the site that performs
the highest query cost for the fragment and it has
two phases for allocations the fragments, first
one it allocates the fragments based on the
update operations which means fragments will
be allocated to sites sustains the largest cost of
update operation, in the second phase if any site
constraints can prevent this fragment to be
allocated, then it shall be replicated to all other
sites required it.

3.4.2 The proposed fragmentation model

Fig. 2 shows the proposed model for Hassan I.
Abdalla's technique, which takes the relation as
an input and by using the ARUM matrix that
provided by the designers at the initial phase of
database design it will provide the ARUF matrix,
then from this matrix CA (candidate attributes)
will be produced.

Fig. 2. The proposed system phases
(obtained from [12])

Candidate attributes mean the attributes having
the highest cost and it will be used to fragment
the relation. Fragmentation and allocation
depend on CA matrix. The fragmentation model
in this algorithm is based on a set of simple
predicates Pr [P1, . . . ,Pn] which have been
assigned to the relation attributes A[A1, . . . ,An].
Attributes with a numeric value will comprise a

Fuaad et al.; CJAST, 27(2): 1-12, 2018; Article no.CJAST.37079

7

predicates Pr that have one of three states: (Pri>
V), (Pri< V) or (Pri = V). However, attributes with
alphabetical value will comprise a predicates Pr
that have only one state: (Pri= V). In addition,
each site has a capacity C (C1, C2, . . . ,Cm) and
fragment limit FL (FL1, FL2, . . . ,FLm) which
indicates how many fragments the site can
handle. Also this model uses the communication
cost matrix table that represents communication
between network sites and used to obtain the
distance cost matrix which in its turn is used to
calculate the average retrieval cost and the
average update cost for candidate attribute
predicates individually.

Now to determine the CA we have for each
predicate there is a predicate attribute read cost
and a predicate attribute update cost, and each
query predicate has a frequency value
represents the uses of that query in different site.
So to compute the cost of using each attribute in
the site uses the predicate of that attribute we
shall multiply the cost of reading and update by
the frequency of each query and a new matrix
called Sum of attributes Frequency Table (SAFT)
will be produced.

Finally, a distance matrix (DM) which is obtained
by minimizing communication cost matrix
(Whitten et al., 2004) will be multiplied by SAFT
matrix to compose ARUF matrix. Thus, the
candidate attribute (CA) can be obtained as the
attribute with maximum cost value in this
example the salary attribute is considered as a
key factor for fragmentation and allocation
process. After that three fragments will be
generated according to the provided predicates
by the designer (>, <, =).

After determining the CA a heuristic model will be
used to allocate the fragments to sites, the model
will perform the following: First, calculate the
Average Retrieval Cost (ARC) and the Average
Update Cost (AUC) for candidate attribute
predicates individually. Second, for each attribute
predicate, it checks if ARC > AUC. If this is the
case then replication of the concerned fragments
will be performed over the sites that require
retrieval, update or both. However, if ARC <
AUC, then the concerned fragments will be
allocated to the site having the maximum value
for update cost. This is the first phase of the
algorithm where site constraints are relaxed. In
either case, if site constraints are forced and this
called second phase, find site with the next
maximum update cost value in ARUM table to be
the targeted site for the fragment allocation and
replication.

3.5 An Optimized Scheme for Vertical
Fragmentation, Allocation and
Replication of a Distributed Database

Raouf et al. [16] proposed a vertical
fragmentation, allocation and replication scheme
of a distributed database called (VFAR) that used
at initial stage of database design during the
requirements analysis phase, this approach uses
CRUD matrix and partitions the distribute
database relations using the enhanced minimum
spanning tree (MST) Prim's algorithm, and it
allocates and replicates the fragments to the site
that performs high data manipulation for that
fragments than other sites to enhance system
performance, increase availability and minimize
the communication cost. In addition to it also
replicates the fragment to the site that performs
more read operations for that fragment than
other sites. VFAR scheme uses three modules
as shown in Fig. 3. These modules are: attribute
site usage and similarity matrix, vertical
fragmentation and fragment allocation and
replication.

3.5.1 Attribute site usage and similarity

matrix module

First module uses an enhanced CRUD matrix
places the attributes of a relation as the row and
application sites as the columns. The output of
this matrix is the attribute site usage matrix
(ASUM) which reflected the usage of the
attributes according to the sites, in this matrix the
occurrence of an attribute is represented by one
or zero if else. The output of this matrix is the
attribute similarity matrix (ASM), It is used to
represent the relationships among attributes sites
and gives the number of queries referencing both
attributes based on ECRUD matrix. After
constructing ASM matrix it is transformed into a
graph and a vertex with the name of the attribute
presents each attribute and the edge represents
the similarity between two attributes.

3.5.2 Vertical fragmentation module

This module is used to vertically partition the
relations using the enhanced minimum spanning
tree Prim's algorithm which is special case of the
generic minimum spanning tree algorithm and
used by the authors to find the shortest paths in
a graph, it starts from an arbitrary root vertex and
grows until the tree spans all the vertices in the
tree, each vertex should be connected with two
branches that have the largest similarity values.
If the required fragments are two, then Prim's

Fuaad et al.; CJAST, 27(2): 1-12, 2018; Article no.CJAST.37079

8

algorithm will divide the graph to two sub-graphs
at the edges with lowest weight in case of two
partitions required. In case of three fragments
are required the graph should be split at the edge
with the minimum value to a new branch, and so
on for each new fragment required the graph
should be split at the minimum edge value to a
new branch.

3.5.3 Fragment allocation and replication

To allocate the fragments to the sites VFAR
scheme generates two matrixes from the
ECRUD matrix, first one is the attribute
manipulate matrix (AMM) which represents the
number of manipulation operations (Create,
Update, Delete) that access the attribute
according to each site, here frequency
of queries does not use, just the occurrence
of the attribute is represented by one,
also each operation given the same weight
(one) by the authors. Another matrix is an
attribute read matrix (ARM) which uses the
read operation only and has the same logic of
the (AMM). The authors suggested that
allocation of fragments to the sites depends
preliminary on the number of manipulation
operations then on the number of reading
operations, as an example on Table 2 fragment 1
will be replicated to site 5 and fragment 2 will be
replicated to site 3.

3.6 Efficient Fragmentation and
Allocation in Distributed Databases

M Sumti and K Akhilesh (2015) proposed a new
algorithm for Vertical Partitioning in Distributed
Database. The proposed algorithm is named as

Valley Based Vertical Partitioning Algorithm
(VBVPA). The objective of this algorithm is to
search the set of frequently accessed attributes
by a distinct set of queries. Using the Valley
Based Vertical Partitioning Algorithm, user
fragments a relation based on Clustered Affinity
Matrix (CAM), calculated from Attribute Usage
Matrix (AUM) and Frequency Matrix (FM). In this
algorithm, the first row of the Clustered Affinity
Matrix (CAM) is taken as input to find the clusters
of attributes in a relation. Further, we calculate
the difference between neighboring attribute
values of the first row of Clustered Affinity Matrix
(CAM) and the point at which the current
differentiated value is less than the previous and
the next differentiated value is considered as split
point.

3.6.1 Clustered Affinity Matrix (CAM)

Bond Energy Algorithm (BEA) will be used for
clustering the attribute which has high Attribute
Affinity value, BEA is used to get the position of
attributes in CAM. The attribute is placed to a
position where the contribution of attribute
placement is highest. BEA has been
implemented in three steps which are
initialization, iteration and row order.

3.6.2 Placement of attributes in CAM

In the initialization step first and second columns
of Attribute Affinity Matrix (AAM) are placed in
the first and second columns of Clustered Affinity
Matrix (CAM) respectively. VBVPA algorithm
mainly involves around three steps. The first step
is initialization, in this step the variables and
arrays are initialized as required by algorithm.

Fig. 3. VFAR module (obtained from [16])

Fuaad et al.; CJAST, 27(2): 1-12, 2018; Article no.CJAST.37079

9

The second step is processing, in this step first
row of Clustered Affinity Matrix (CAM) are taken
as input for finding the clusters of attributes in a
relation. The user keeps the first value of row as
it is in Y[i] and then finds the difference of
remaining CAM(1,i) values and stores it in Y[i].
The third step is comparison, in this step the user
compares each value of array Y[i] with the
immediate previous and next values of Y[i],
wherever the current value is found less than
previous and next values that point is considered
as split-point. The following calculation is
performed with referenced to CAM.

Fig. 4 shows the valley formed between the
values X [2] =2 and X [4] =4 i.e. at point X [3]
=3.So the split point is recorded between second
and third attribute of CAM. Hence the Clustered
Affinity Matrix is divided into two fragments. The
first fragment contains the attributes {A1, A3}
while the second fragment contains the attributes
{A4, A2}.

Fig. 4. The graph below shows the Valley
value Y[i] at point i (obtained from [18])

4. COMPARISON

In this section we will define the criteria that will
be used for comparison between the surveyed
algorithms. We designed our comparison based
on the criteria that are widely used in the
distributed database design and having the most
effect on the behavior, performance and results
of the used algorithm. We divided these criteria
into two different groups. First one (shown in
Table 3) contains the inputs matrices and
constraints that used by the algorithms to start its
work in addition to the clustering techniques used
by the algorithms for obtaining its results. While
the second group (shown in Table 4) containing

the outputs of these algorithms besides its
complexity and accuracy. We can describe these
criteria as the following:

1 Type: represents the approach of
fragmentation (Horizontal or Vertical).

2 CRUD (Create, Read, Update, Delete): A
matrix used to give different weights to
query's operations.

3 AUM (Attribute Usage Matrix): A matrix
used to represent the usage of specific
attribute in the specific query.

4 AAM (Attribute Affinity Matrix): A matrix
used to represent usage of attributes in the
same query to determine the affinity
between two attributes that are mutually
coupled.

5 FOQ (Frequent of query): Represent the
frequency of each query used in AUM to
reflect the weight of this query regarding
the other ones.

6 CAM (Clustering Affinity Matrix): A
matrix used to cluster the attributes in
disjoint group, each group represents one
fragment. These criteria represent the
main idea that is provided by the surveyed
algorithms.

7 Communication cost: The cost of
accessing a fragment from a site different
than its local site.

8 Site Constraints: represent any
constraints in any site that allow or prevent
allocating the fragments to that site like
(space capacity).

9 Number of Fragments: represents how
many fragments can be produced by the
algorithm.

10 Allocation: Represents how the algorithm
allocates the fragments to the target sites.

11 Replication: does the algorithm include
replicating fragments to different sites in
order to reduce the communication cost.

12 Difficulty: does the algorithm uses easy
procedures and steps to complete its work
or it uses more complicated steps and
requirements.

13 Accuracy: represents the accuracy of the
resulted fragments in addition to allocating
and replicating these fragments to the
required sites with minimum duplicates and
lowest communication cost.

14 Time Complexity: represents the number
of steps used by the algorithm to complete
its work.

Fuaad et al.; CJAST, 27(2): 1-12, 2018; Article no.CJAST.37079

10

Table 2. The number of manipulating and read operation of each site to each fragment
(obtained from Raouf et al. [16])

Site Number of manipulate operation Number of read operation

Fragment 1
(A, B, C, E, G, H, I)

Fragment 2
(D, F, J)

Fragment 1
(A, B, C, E, G, H, I)

Fragment 2
(D, F, J)

Site 1 6 0 3 0
Site 2 10 0 5 0
Site 3 0 6 0 3
Site 4 9 0 2 0
Site 5 17 0 9 0
Site 6 3 0 3 0
Site 7 6 0 5 0
Site 8 2 7 4 2

Table 3. Inputs and technique used by the algorithms being compared

Algorithm Type CRUD AUM AAM FOQ CA Comm.

Cost
Site
constraints

(Abuelyaman, 2008)
[14]

VF No Yes Yes No Graph
Theory [1]

No No

(Khan and Hoque,
2010) [17]

HF MCRUD No No Yes [2] Yes/ALP [3] No No

(Dharavath et al.,
2014) [15]

VF No Yes No Yes Priori No No

(Abdalla, 2014) [12] HF MCRUD No No Yes No Yes Yes
(Raouf et al., 2015)
[16]

VF ECRUD Yes Yes Yes Spanning
Tree

No No

(Medhavi, 2015) [18] VF No Yes Yes Yes VBVPA No No
[1] Graph theory is used first, and then hit ratio is used to improve the clustering of attributes (tactic operation)

[2] In the study the authors [17] used FOQ=1, but it can be given any value during the execution of the algorithm.
[3] ALP used to determine the most significant attribute and if more fragments are required the second attribute will be

used

Table 4. Results and technique used by the algorithms being compared

Algorithm No. of

Fragments
Allocation Replication Difficulty Accuracy Time

complexity
(Abuelyaman,
2008) [14]

Two Fragments No No High High O(n2)

(Khan and Hoque,
2010) [17]

Many Fragments Yes No Low High O(i*j*k*r*)[4]

(Dharavath et al.,
2014) [15]

Many
Fragments[5]

No No High Medium O(n3)

(Abdalla, 2014)
[12]

Three Fragments
or more[6]

Yes Yes Medium High O(j*h*i*p)[7]

(Raouf et al.,
2015) [16]

Many Fragments Yes Yes Low High O (E log N)[8]

(Medhavi, 2015)
[18]

Many Fragments No No Low Low O(n)

[4] i=number of attributes, j=number of predicates, k=number of sites, r=number of applications.
[5] Depending on the hit ratio, smaller hit ratio can produce more fragments.

[6] In case if the candidate attribute has an integer then it will produce three fragments (>, <, =).
[7] j=number of sites, h=number of site queries, i=number of attributes, p=number of predicates.

[8] E=number of edges, N=number of vertices

5. DISCUSSION

To distribute data across many sites that are
connected via computer networks, an algorithm

that involves making a proper fragmentation and
placement decisions is needed. Besides,
allocation of the generated fragments should be
placed using the appropriate placement

Fuaad et al.; CJAST, 27(2): 1-12, 2018; Article no.CJAST.37079

11

algorithm when it is necessary. Query Operation
Cost is considered as one of the main factors
that make an algorithm more efficient by using
CURD model, Clustering, Communication cost
and FOQ are also main factors. According to the
comparison between the reviewed algorithms for
database distribution that is shown in Table 3
and 4, the algorithms [12] covered all main
factors in distributing data including
fragmentation, allocation and replication, it has
good accuracy and low complexity however
algorithms ([17] and [16] covered the query
operation cost and FOQ besides fragmentation
,and allocation but did not include the cost of
communication which is a dominant cost. The
three algorithms above have low complexity
producers. None of query operation cost and
communication cost was used in algorithms [14],
[15] and [18], besides not presenting any
allocation or replication solution, even though an
algorithm [14] has good clustering method to
create fragments.

6. CONCLUSION

Many factors shall be considered when
implementing fragmentation and allocation in the
distributed database environment, Therefore, this
study surveyed and compared algorithms that
introduce different techniques for distributing
fragments over the distributed database. This
study aimed also to define the best design for the
distribution of fragments, many factors shall be
taken in consideration before designing the
databases CRUD matrix where each SQL
operation shall be given different weights, FOQ
factor also has an important effect and shall be
considered to get good results, the most
important factor is the technique used in
clustering the attributes on (VF) or fragmenting
the data in (HF). Good algorithms shall consider
fragmenting, allocating and replicating fragments
to different sites, to reduce the communication
cost.

Most algorithms use the provided query
at the initial stage of database design,
but we think it is better to use dynamic
algorithms on the empirical data after
implementing the database to refragment the
relations and getting new fragments related to
the new situation.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Suganya A, Kalaiselvi R. Efficient

fragmentation and allocation in distributed
databases International Journal of
Engineering Research and Technology.
2013;2.

2. Özsu MT, Patrick Valduriez. Principles of
distributed database systems. 3rd ed.:
Springer Science & Business Media; 2011.

3. Huang YF, Chen JH. Fragment allocation
in distributed database design. Journal of
International Science and Engineering.
2001;17 491-506.

4. Singh A, Kahlon KS, Virk RS.
Nonreplicated static data allocation in
distributed databases using biogeography-
based optimization. Chinese Journal of
Engineering, 2014.

5. Joshi H, Bamnote GR. Distributed
database: A survey. International Journal
of Computer Science and Applications.
2013;6(2):289-292.

6. Kumar R, Gupat N. Dynamic data
allocation in distributed database systems:
a systematic survey. International Review
on Computers and Software. 2013;8(2):
660-667.

7. Ceri S, Negri M, Pelagatti G. Horizontal
data partitioning in database design.
Proceedings of the 1982 ACM SIGMOD
international conference on Management
of data. ACM. 1982;128-136.

8. Bhuyar PR, Gawande AD, Deshmukh AB.
Horizontal fragmentation technique in
distributed database. International Journal
of Scientific and Research Publications.
2012;2(5):1-7.

9. Navathe S, Ceri S, Wiederhold G, Dou J.
Vertical partitioning algorithms for
database design. ACM Transactions on
Database Systems (TODS). 1984;9:680-
710.

10. Navathe SB, Ra M. Vertical partitioning for
database design: A graphical algorithm.
ACM Sigmod Record, ACM. 1989;440-
450.

11. AlFaress MY, Abdalla HI, Marir F, Najjar Y.
Vertical partitioning for database design:
A grouping algorithm. SEDE. 2007;218-
223.

12. Abdalla HI. A synchronized design
technique for efficient data distribution.
Computers in Human Behavior. 2014;
30:427-435.

13. Marwa F, Ali I, Hesham A. A heuristic
approach for horizontal fragmentation and

Fuaad et al.; CJAST, 27(2): 1-12, 2018; Article no.CJAST.37079

12

allocation in DOODB Proc. INFOS2008.
2008.9-16.

14. Abuelyaman ES. An optimized scheme for
vertical partitioning of a distributed
database. IJCSNS International Journal of
Computer Science and Network Security.
2008;8:310-316.

15. Dharavath R, Kumar V, Kumar C, Kumar
A. An apriori-based vertical fragmentation
technique for heterogeneous distributed
database transactions. Intelligent
Computing, Networking, and Informatics,
Springer. 2014;687-695.

16. Raouf AEA, Badr NL, Tolba M. An
optimized scheme for vertical

fragmentation, allocation and replication
of a distributed database.
Intelligent Computing and Information
Systems (ICICIS), 2015 IEEE Seventh
International Conference on, IEEE.
2015;506-513.

17. Khan SI, Hoque A. A new technique
for database fragmentation in
distributed systems. International
Journal of Computer Applications.
2010;5:20-24.

18. Medhavi SK, Akhilesh. Valley based
vertical fragmentation in distributed
database. e-Journal of Science &
Technology. 2015;10:31-40.

© 2018 Fuaad et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sciencedomain.org/review-history/24551

