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ABSTRACT 
 

The present study states the synthesis of a novel series of pyrimidinone linked 1,2,3-triazole 
scaffolds by click chemistry method. Further, the synthesized compounds were evaluated for their 
antimicrobial studies against S. aureus and S. pneumoniae. Among the synthesized compounds, 
almost all compounds demonstrated significant antimicrobial activity against S. aureus, S. 
pneumoniae, E.coli and P. aeruginosa, as evident from the zone of inhibition resulted. In addition, 

Original Research Article 



 
 
 
 

Maddali et al.; JPRI, 33(59A): 477-491, 2021; Article no.JPRI.79023 
 
 

 
478 

 

synthesised compounds were screened for their antioxidant activity by the 2,2-diphenyl-1-
picrylhydrazyl (DPPH) assay method. Furthermore, computational study was performed to 
understand the interactions between synthesised compounds with dehydrosqualene synthase of 
Staphylococcus aureus (PDB ID: 2ZCS) and few Compound revealed the highest binding energies 
ΔG = -9.5, -9.8, and -10.1 Kcal/mol.  
 

 
Keywords: Pyrimidinone; click chemistry; antimicrobial; DPPH; antioxidant; zone of Inhibition. 
 

1. INTRODUCTION 
 
Microbial infections have become a major 
problem for the world's population and have a 
significant impact on mortality. These diseases 
pose a challenge to the scientific community to 
discover new drugs (antibiotics) to kill 
microorganisms. The development of broad-
spectrum antibiotics plays an important role in 
the treatment and prevention of infectious 
diseases. With the use of antibiotics, microbial 
resistance increased exponentially. Currently, 
microbial resistance is evolving to multidrug 
resistance (MDR) due to the abuse of broad-
spectrum antibiotics. Antibiotic MDR  is a serious 
public health problem of concern around the 
world [1-3]. Antibiotic-resistant bacteria continue 
to develop and spread, dying each year due to a 
lack of  effective antibiotics [4]. Half of the 
infections caused by bacteria are common to 
penicillin, methicillin, tetracycline, erythromycin 
and other antibiotics MDR [5,6]. Therefore, there 
is a strong need to develop new antibacterial 
agents to combat MDR.  
 
1,2,3 triazole and its derivatives have received a 
great deal of attention in recent years due to their 

wide range of biological uses, including anti-
tuberculosis [7], antibacterial, anti-allergic, anti-
HIV [8], antifungal activity [9], and α-glycosidase 
inhibitor activity [10]. Collected. Available 
literature shows a wide range of antibacterial 
activity of 1,2,3 triazole derivatives [11-15]. Also, 
some containing 1,2,3-triazole moieties such as 
cefatridin, tazobactam, 8 rufinamide [16]. Drugs 
are  in clinical trials [15], some of which are 
future drugs such as carboxylamidotriazole and 
CAI [17] tert-butyldimethylsilyl-
spyroaminooxathiodeoxide (TSAO), HIV reverse 
transcriptase inhibitor [18]. Based on the results 
of, this study describes the uptake of 
dihydropyrimidinone [19] and 1,2,3 triazole rings 
into a compact structure for synergistic effects 
[20,21]. We also have internal molecules. We are 
also focusing on docking research. Half of this 
biologically important class of substances is 
available for in vitro research, identifying 
potential research directions for optimizing 
synthetic lead structures. It has been extended to 
identify the best candidate among the 
compounds. In this regard, the integration of the 
dihydropyrimidinone group with the substituted 
1,2,3-triazole unit produces a hybrid molecule 
(Fig. 1). 

 

 
 

Fig. 1. Design of new pyrimidinone hybrid molecules 
 

2. METHODOLOGY 
 

2.1 Materials 
 
Sigma Aldrich and Merck, both based in India, provided all chemicals and solvents. In the open 
capillary, the melting point is examined but not corrected. On a TLC plate covered with Kieselgel 60 
F254, the reaction was monitored, and spots were spotted using iodine vapor or UV light as a 
visualizer. The NMR spectra was recorded on a BRUKER Avance DRX400-FT NMR spectrometer at 
400 MHz for 

1
H-NMR and 100 MHz for 

13
C-NMR, the chemical shift (δ) is in ppm (s=singlet, d=double, 

t=triplet, q=quartet, quint=quintet, m=multiplet) and the coupling constant (J) is in Hz (s=singlet, 
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d=double, t= triplet, q=quartet, quint=quintet, m=multiplet). The solvents utilized were deuterated 
chloroform (CDCl3) and deuterated dimethyl sulfoxide (d6-DMSO) from Sigma Aldrich. The FTIR 
spectrum was recorded on a Shimadzu spectrophotometer at 4000-400 cm. We utilized Merck silica 
gel 60F254 coated aluminum foil for thin-layer chromatography (TLC). A glass column packed with 60 
m silica gel was used for column chromatography. The PerkinElmer Series II CHNS 2400 elemental 
analyzer was used to conduct the analysis. 
 

2.2 Synthesis 
 
Synthesis of 3-(prop-2-yn-1-yloxy) 
Benzaldehyde: In acetonitrile (15-20 ml), a 
combination of 3-hydroxybenzaldehyde (1.0 
mmol), propargyl bromide (1.2 mmol), and 
K2CO3 (1 mmol) were dissolved and agitated at 
reflux temperature for 5 hours under N2 
atmosphere. TLC is used to track the reaction's 
progress. Compound 3 was obtained as a yellow 
liquid in 80-90 percent yield after the solvent was 
evaporated in vacuo and the residue was purified 
using silica gel column chromatography eluting 
with gradient ethyl acetate and n-hexane. 
 
1
H NMR (400 MHz, CDCl3): δ ppm: 9.9 (s, 1H, -

CHO),7.53–7.45 (comp, 3H, ArH), 7.28–7.24 (m, 
1H, ArH), 4.76 (d, J =2.4 Hz, 2H, OCH2), 2.56 
ppm (t, J =2.4 Hz, -CH, 1H); 

13
C NMR (100 MHz, 

DMSO-d6): δ ppm: 192.1, 158.3, 137.8, 130.2, 
124.1, 122.4,113.4, 78.2, 76.1, 56.3. 

 
Synthesis of Pyrimidinone Derivative (6):  3-
(prop-2-yn-1-yloxy)benzaldehyde (1 mmol), 
methyl acetoester (4) (1 mmol), and urea (5) (1.4 
mmol) were refluxed for 3 hours in 5-10 ml of 
ethanol. TLC is used to monitor the reaction 
process. The solvent is evaporated in a vacuum, 
15 ml of water is added, the product is extracted 
to ethyl acetate, the generated emulsion is 
passed through a Celite pad, and ethyl acetate 
and mixed ethyl acetate are added and washed. 
The layers were concentrated in vacuo, and the 
residue was purified using silica gel column 
chromatography and eluted with gradient ethyl 
acetate and n-hexane to produce 6 in a yield of 
85-90 percent. 

 
1
H NMR (400 MHz, CDCl3): δ ppm: 2.24 (s, 3H); 

3.34 (s, 1H); 3.53 (s, 3H); 4.75 (s, 2H); 5.09 (s, 
1H); 6.91-6.93 (m, 2H); 7.14-7.16 (m, 2H); 7.68 
(s, 1H); 9.18 (s, 1H); 

13
C NMR (100 MHz, DMSO 

-d6): δ ppm :17.9, 50.8, 53.0, 55.5, 78.2, 79.1, 
101.6, 114.2, 114.5, 127.4, 127.8, 137.4, 145.6, 
152.3, 165.8, 167.3. 
 
General procedure for the synthesis of final 
1,2,3-triazole compounds (8a-i): 2 mmol 
substituted azide 7a-i (made by reacting each 

diazonium salt with sodium azide according to 
known procedures), appropriate pyrimidinone 
derivative 6 (2 mmol), copper sulfate (0.5 mmol), 
and sodium ascorbate (0.5 mmol). The mixture 
was briskly mixed at room temperature in dry 
DMF (8 ml). TLC kept track of the reaction's 
progress on a frequent basis. It was poured into 
crushed ice after the reaction was finished (40 g). 
To isolate the pure desired product, the 
separated particles were filtered off, dried, and 
purified by column chromatography on silica gel 
(100-200 mesh) using a gradient combination of 
ethyl acetate and n-hexane. 
 
Methyl-6-methyl-2-oxo-4-(3-((1-(p-tolyl)-1H-
1,2,3-triazol-4-yl)methoxy)phenyl)-1,2,3,4-
tetrahydropyrimidine -5-carboxylate(8a)Pale 
yellow solid, Yield: 78%; mp: 168-170ºC; IR νmax 
cm

-1
: 3229  (NH str), 2945 (CH str), 1696 (CO 

str), 1554, 1512 (C=C str), 1459 (C=N str), 1245 
(N=N str), 1139 (COC str); 

1
H NMR (400 MHz, 

CDCl3): δ ppmppm 8.50 (s, 1H, NH), 8.15 (s, 1H, 
=CH), 7.81 (s, 1H, ArH), 7.58 (d, 2H, J = 8.2 Hz, 
ArH), 7.51 (d, 2H, J = 8.0 Hz, ArH), 7.25 (m, 2H, 
ArH), 6.99 (d, 1H, J = 8.0 Hz, ArH), 5.40 (s, 2H, 
OCH2), 4.52 (m, 1H, CH), 4.51 (s, 1H, NH), 3.95 
(s, 3H, CH3), 2.76 (s, 3H, CH3), 2.27 (s, 3H, 
CH3). 13C NMR (100 MHz, CDCl3 ): δ ppm 
165.4, 160.1, 153.7, 148.6, 145.4, 140.2, 133.5, 
131.9, 131.4, 130.4, 129.5, 128.6, 123.6, 122.3, 
118.6, 114.8, 98.9, 60.9, 59.4, 55.4, 20.8, 19.2.; 
ESI-MS (m/z): 434(M+H)

+
; Elemental analysis 

calcd (%) for C23H23N5O4: C 63.73, H 5.35, N 
16.16; found: C 63.78, H 5.39, N 16.18.  
 

Methyl-4-(3-((1-(4-methoxy-2-nitrophenyl)-1H-
1,2,3-triazol-4-yl)methoxy)phenyl)-6-methyl-2-
oxo-1,2,3,4-tet rahydropyrimidine-5-
carboxylate(8b) Off white solid, Yield: 75-80%; 
mp: 128-130ºC; IR νmax/cm

-1
: 3245br (NH str), 

2928w (CH str), 2851w (CH str), 1691s (CO str), 
1672s (CO str), 1561, 1512s (C=C str), 1461m 
(C=N str), 1231m (N=N str), 1085s (COC str); 

1
H 

NMR (400 MHz, DMSO-d6): δδ 9.16 (s, 1H, NH), 
8.71 (s, 1H, =CH), 7.80 (d, 1H, J = 8.8 Hz, ArH), 
7.75 (d, 1H, J = 2.7 Hz, ArH), 7.72 (s, 1H, ArH), 
7.47 (d, 1H, J = 8.8,  ArH), 7.26 (t, 1H, J = 7.8 
Hz, ArH), 6.98 (d, 1H, J = 8.0, ArH), 6.83 (m, 1H, 
NH), 5.17 (s, 2H, OCH2), 5.11 (d, 1H, J = 3.0 Hz, 
NH), 3.92 (s, 3H, OCH3), 2.84 (d, 1H, J = 6.5 Hz, 
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CH), 2.22 (s, 3H, CH3), 1.08 (s, 3H, CH3).
13

C 
NMR (100 MHz, CDCl3): δ ppm 165.9, 160.1, 
157.9, 144.7, 144.0, 129.4, 128.9, 119.1, 118.7, 
114.4, 113.2, 110.1, 100.4, 59.1, 55.6, 54.3, 
17.8, 13.2.; ESI-MS (m/z): 495 (M+H)

+
; 

Elemental analysis calcd (%) for C23H22N6O7: C 
55.87, H 4.48, N 17.00; found: C 55.94, H 4.54, 
N 17.28.  
 
Methyl-4-(3-((1-(3-methoxyphenyl)-1H-1,2,3-
triazol-4-yl)methoxy)phenyl)-6-methyl-2-oxo-
1,2,3,4-tetrahydro pyrimidine-5-
carboxylate(8c) Off white solid, Yield: 72-78%, 
mp: 171-173ºC; IR (KBr) νmax/cm

-1
: 3231br (NH 

str), 3130br (=CH str), 2941w (CH str), 1699s 
(CO str), 1598, 1522s (C=C str), 1425m (C=N 
str), 1231m (N=N str), 1135s (COC str); 

1
H NMR 

(400 MHz, CDCl3):δ ppm8.50 (s, 1H, NH), 8.01 
(s, 1H, =CH), 7.62 (s, 1H, ArH), 7.41 (dd, 1H, J = 
8.4, 2.5 Hz, ArH), 7.35 (d, 1H, J = 7.5 Hz, ArH), 
7.26 (m, 3H, ArH), 7.02 (m, 2H, ArH), 5.40 (s, 
2H, OCH2), 4.52 (d, 1H, J = 6.5 Hz, CH), 3.85 (s, 
3H, OCH3),2.71 (s, 3H, CH3), 2.10 (s, 3H, CH3). 
13

C NMR (100 MHz, CDCl3): δ ppm 164.3, 161.2, 
159.6, 153.8, 148.2, 147.5, 142.1, 133.2, 131.9, 
131.1, 130.4, 123.8, 121.6, 115.3, 113.4, 110.0, 
72.1, 65.6, 53.7, 49.3, 27.1; ESI-MS (m/z): 450.0 
(M+H)

+
; Elemental analysis calcd (%) for 

C23H23N5O5: C 61.46, H 5.16, N 15.58; found: C 
61.54, H 5.29, N 15.65.  
 
Methyl-6-methyl-2-oxo-4-(3-((1-(m-tolyl)-1H-
1,2,3-triazol-4-yl)methoxy)phenyl)-1,2,3,4-
tetrahydropyrimidi ne-5-carboxylate (8d)Pale 
yellow solid,Yield: 79-85%; mp: 158-160ºC; IR 
νmax/cm

-1
: 3241br (NH str), 3139br (=CH str), 

2939w (CH str), 1705s (CO str), 1631s (CO str), 
1511m (C=C str), 1447m (C=N str), 1238m (N=N 
str), 1140s (COC str); 

1
H NMR (400 MHz, 

CDCl3): δ ppm ppm 9.12 (s, 1H, NH), 8.62 (s, 
1H, ArH), 8.31 (d, 1H, J = 8.5 Hz, ArH), 7.95 (s, 
1H, ArH), 7.86 (s, 1H, ArH), 7.31(dd, 1H, J = 8.5, 
2.3 Hz, ArH), 7.28-7.25 (m, 1H, ArH), 7.18 (s, 
1H, ArH), 6.91 (d, 2H, J = 8.5 Hz, ArH), 5.63 (bs, 
1H, NH), 5.18 (s, 2H, OCH2), 3.79 (s, 3H, OCH3), 
2.98 (d, 1H, J = 6.5 Hz, CH), 2.28 (s, 3H, CH3), 
1.11 (s, 3H, CH3). 

13
C NMR (100 MHz, CDCl3): δ 

ppm165.8, 159.9, 158.6, 152.5, 149.1, 145.6, 
130.5, 129.5, 121.4, 119.6, 114.9, 113.5, 112.6, 
106.1, 101.1, 62.1, 60.1, 55.5, 53.1, 18.6.; ESI-
MS (m/z): 434 (M+H)

+
; Elemental analysis calcd 

(%) for C23H23N5O4: C 63.73, H 5.35, N 16.16; 
found: C 63.85, H 5.43, N 16.27.  
 
Methyl-4-(3-((1-(2,5-dimethoxyphenyl)-1H-
1,2,3-triazol-4-yl)methoxy)phenyl)-6-methyl-2-
oxo-1,2,3,4-tetrah ydropyrimidine-5-

carboxylate(8e) Off white solid, Yield: 75-81%; 
mp: 180-182ºC; IR (KBr) νmax/cm

-1
: 3236(br) (NH 

str), 3138w (=CH str), 2935w (CH str), 1709s 
(CO str), 1560, 1511s (C=C str), 1466m (C=N 
str), 1419m (N=N str), 1231s (COC str), 1139s 
(COC str); 

1
H NMR (400 MHz, DMSO-d6): δ 

ppm9.08 (s, 1H, NH), 8.70 (s, 1H, =CH), 7.77 (d, 
1H, J = 7.3 Hz, ArH), 7.70 (s, 1H, ArH), 7.63 (d, 
1H, J = 7.7 Hz, ArH), 7.26-7.24 (m, 1H, ArH), 
7.12 (d, 1H, J = 7.7 Hz, ArH), 6.97 (d, 1H, J = 7.3 
Hz, ArH), 6.60 (d, 1H, J = 7.8 Hz, ArH), 5.15 (s, 
2H, OCH2), 5.07 (s, 1H, NH), 3.80 (s, 3H, OCH3), 
3.48 (d, 1H, J = 6.5 Hz, CH), 3.36 (s, 3H, OCH3), 
2.21 (s, 3H, CH3), 1.12 (s, 3H, CH3). 

13
C NMR 

(100 MHz, CDCl3): δ ppm165.9, 160.4, 158.2, 
145.5, 144.6, 129.5, 129.3, 119.4, 119.1, 113.6, 
110.7, 100.9, 59.8, 56.6, 55.3, 53.4, 18.9; ESI-
MS (m/z): 480 (M+H)

+
; Elemental analysis calcd 

(%) for C24H25N5O6: C 60.12, H 5.26, N 14.61; 
found: C 60.24, H 5.35, N 14.73.  
 
Methyl-6-methyl-4-(3-((1-(3-nitrophenyl)-1H-
1,2,3-triazol-4-yl)methoxy)phenyl)-2-oxo-
1,2,3,4-tetrahydropyri midine-5-
carboxylate(8f)White solid, Yield: 65-73%; mp: 
150-152ºC; IR νmax/cm

-1
: 3148br (NH str), 2925w 

(CH str), 1707s (CO str), 1689s (CO str), 1586, 
1512s (C=C str), 1463m (C=N str), 1267m (N=N 
str), 1153s (COC str); 

1
H NMR (400 MHz, 

CDCl3): δ ppm 9.17 (s, 1H, NH), 8.75 (s, 1H, 
=CH), 7.78 (t, 1H, J = 8.3 Hz, ArH), 7.63 (d, 1H, J 
= 7.3 Hz, ArH), 7.58 (s, 1H, ArH), 7.46 (d, 1H, J = 
7.0 Hz, ArH), 7.17 (m, 2H, ArH), 7.01 (m, 2H, 
ArH), 5.18 (s, 2H, OCH2), 5.13 (d, 1H, J = 6.5 Hz, 
CH), 4.61 (s, 1H, NH), 3.95 (s, 3H, CH3), 2.20 (s, 
3H, CH3). 

13
C NMR (100 MHz, DMSO-d6): δ 

ppm166.7, 160.1, 158.2, 152.5, 148.2, 147.6, 
144.3, 130.1, 123.5, 122.4, 119.3, 116.4, 114.7, 
100.0, 68.6, 59.8, 55.6, 18.2; ESI-MS (m/z): 465 
(M+H)

+
; Elemental analysis calcd (%) for 

C22H20N6O6: C 56.90, H 4.34, N 18.10; found: C 
56.99, H 4.41, N 18.23.  
 
Methyl-4-(4-((1-(4-methoxyphenyl)-1H-1,2,3-
triazol-4-yl)methoxy)phenyl)-6-methyl-2-oxo-
1,2,3,4-tetrahydro pyrimidine-5-
carboxylate(8g) Off white solid, Yield: 78-82%; 
mp: 184-186ºC; IR (νmax/cm

-1
): 3221br (NH str), 

3104w (=CH str), 2931w (CH str), 1699s (CO 
str), 1631s (CO str), 1521s (C=C str), 1457m 
(C=N str), 1241m (N=N str), 1136s (COC str); 

1
H 

NMR (400 MHz, CDCl3): δ δ ppm8.60 (s, 1H, 
NH),8.51 (s, 1H, NH), 8.29 (s, 1H, =CH), 8.17 
(m, 2H, ArH), 8.11 (s, 1H, ArH), 7.72 (m, 2H, 
ArH), 7.38 (d, 1H, J = 9.0 Hz, ArH), 7.12 (d, 1H, J 
= 9.0 Hz, ArH), 6.91 (d, 1H, J = 9.0 Hz, ArH), 
5.05 (s, 2H, OCH2), 3.87 (s, 3H, OCH3), 2.98 (d, 
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1H, J = 6.5 Hz, CH), 2.33 (s, 3H, CH3), 1.16 (s, 
3H, CH3). 

13
C NMR (100 MHz, DMSO-d6): δ 

ppm166.0, 160.1, 158.3, 152.8, 149.7, 146.7, 
144.8, 131.1, 130.2, 123.9, 122.4, 119.1, 115.9, 
113.8, 99.5, 60.6, 58.5, 56.1, 53.5, 18.5; ESI-MS 
(m/z): 450 (M+H)

+
; Elemental analysis calcd (%) 

for C23H23N5O5: C 61.46, H 5.16, N 15.58; found: 
C 61.50, H 5.22, N 15.63.  
 

Methyl-6-methyl-4-(4-((1-(2-nitrophenyl)-1H-
1,2,3-triazol-4-yl)methoxy)phenyl)-2-oxo-
1,2,3,4-tetrahydropyri midine-5-
carboxylate(8h) White solid, Yield: 65-75%; mp: 
180-182ºC; IR νmax/cm

-1
: 3242br (NH str), 3104br 

(=CH str), 2934w (CH str), 1692s (CO str), 1631s 
(CO str), 1523s (C=C str), 1456m (C=N str), 
1243m (N=N str), 1137s (COC str); 

1
H NMR (400 

MHz, CDCl3) δ 9.10 (s, 1H, NH),8.12 (s, 1H, 
=CH),  8.04 (s, 1H, ArH), 7.83 (t, 1H, J = 7.3 Hz, 
ArH), 7.72 (t, 1H, J  =7.3 Hz, ArH), 7.63 (d, 1H, J 
= 6.3 Hz, ArH), 7.52 (s, 1H, ArH), 7.20 (d, 1H, J = 
7.7 Hz, ArH), 6.97 (m, 2H, ArH), 5.96 (s, 1H, 
NH), 5.30 (s, 2H, OCH2), 3.45 (d, 1H, J = 6.5 Hz, 
CH), 2.33 (s, 3H, CH3), 1.63 (s, 3H, CH3); 

13
C 

NMR (100 MHz, CDCl3): δ ppm166.3, 158.0, 
145.4, 144.6, 137.3, 129.9, 120.3, 119.1, 114.2, 
110.8, 99.3, 56.1, 55.3, 53.1, 18.3; ESI-MS (m/z): 
465 (M+H)

+
; Elemental analysis calcd (%) for 

C22H20N6O6: C 56.90, H 4.34, N 18.10; found: C 
57.21, H 4.41, N 18.29.  
 

Methyl-4-(4-((1-(4-chlorophenyl)-1H-1,2,3-
triazol-4-yl)methoxy)phenyl)-6-methyl-2-oxo-
1,2,3,4-tetrahydropy rimidine-5-carboxylate 
(8i) Pale yellow solid, Yield: 70-80%;  mp: 145-
147ºC; IR (KBr) νmax/cm

-1
: 3239br (NH str), 

2922w (CH str), 2845w (CH str), 1715s (CO str), 
1681s (CO str), 1589, 1515s (C=C str), 1460m 
(C=N str), 1261m (N=N str), 1155s (COC str), 
826s (CCl str); 

1
H NMR (400 MHz, CDCl3): δ 

8.28 (s, 1H, NH), 7.80 (s, 1H,=CH), 7.46 (d, 1H, 
J = 6.5 Hz, ArH), 7.25 (d, 2H, J = 7.6 Hz, ArH), 
6.98 (m, 3H, ArH), 6.97 (d, 2H, J = 7.6 Hz, ArH), 
5.22 (s, 2H, OCH2), 5.15 (d, 1H, J = 5.5 Hz, CH), 
3.95 (s, 3H, CH3), 2.39 (s, 3H, CH3). 

13
C NMR 

(100 MHz, CDCl3): δ ppm166.1, 162.2, 161.1, 
158.2, 152.3, 151.0, 145.3, 131.6, 130.8, 121.9, 
120.5, 115.6, 114.1, 113.8, 106.7, 69.2, 56.5, 
54.2, 18.5; ESI-MS (m/z): 455(M+H)

+
; Elemental 

analysis calcd (%) for C22H20ClN5O4: C 58.22, H 
4.44, N 15.43; found: C 58.29, H 4.51, N 15.46. 
 

2.3 Biological Studies 
 

2.3.1 Antibacterial activity 
  

The antibacterial activity of synthesized 
substances was tested using the disc diffusion 

method against the pathogens listed below [22]. 
Staphylococcus aureus and Streptococcus 
pneumonia were the Gram-positive bacteria 
tested, whereas Escherichia coli and 
Pseudomonas aeruginosa were the Gram-
negative bacteria. DMSO was employed as the 
solvent and the produced chemical was used at 
doses of 50, 100, and 250 g / ml. As a 
benchmark, ciprofloxacin is employed. At 45°C, a 
suspension of Staphylococcus aureus (SA) was 
added to a sterile nutritional agar medium, which 
was then transferred to a sterile Petri dish and 
solidified to a depth of 3-4 mm. The homogenous 
layer of medium on the plate has been seen to 
be reduced by preparations. Untreated control 
samples were stored for comparison after 
dipping a 5 mm diameter sterile disc (made of 
Whatman filter paper) in a solution of the 
produced chemical (250 g / ml). To reduce 
variability at other times, leave the plate at room 
temperature for 1 hour as a pre-incubation 
diffusion time. After that, the plate was incubated 
for 24 hours at 37°C to test its antibacterial 
activity. For each plate, the diameter of the 
inhibitory zone was measured. The standard 
zone and the mean zone of inhibition were 
determined and compared. Antibacterial activity 
against different organisms was studied using a 
similar method. 
 
2.3.2 Antioxidant activity methodology 
 
Sigma Aldrich provided chemicals for in-vitro 
antioxidant activity of 2,2-Diphenyl-1-Picryl 
hydroxyl (DPPH) (Bangalore, India). All other 
reagents and chemicals were analytical reagent 
quality, except dimethylsulfoxide (DMSO) and 
methanol, which were HPLC grade. Based on 
the stable DPPH free radical scavenging activity, 
[23,24] the antioxidant activity of the finished 
product and the standard (ascorbic acid) were 
assessed. The following is a list of the ten liters 
of each test substance or standard (0.0-1000 
M/mL). In a 96-well microtiter plate, 90 L was 
added to a 100 M methanol solution of DPPH. An 
ELISA microplate reader was used to measure 
the decrease in absorbance of each solution at 
517 nm after 30 minutes of incubation at 37°C in 
the dark. Blank samples containing the same 
amount of DMSO and DPPH solutions were also 
made and tested for absorbance. All of the 
experiments were repeated three times. The 
scavenging potential was compared to solvent 
control (no radical scavenger) and reference 
compounds. The following equation was used to 
compute the radical scavenging activity: 
 



 
 
 
 

Maddali et al.; JPRI, 33(59A): 477-491, 2021; Article no.JPRI.79023 
 
 

 
482 

 

% Reduction of absorbance = [(AB - AA) / 
AB] X 100 

 
AB – absorbance of blank sample and AA – 
absorbance of tested compound (t = 30 min). 
 

2.4 Computational Studies 
 
2.4.1 Docking methodology  
 
Identification of Active Site Pockets: The 
internet service tool PdbSum [25] was used to 
make active site predictions. Two hydrogen bond 
interactions are found in the active site, and the 
amino acids His18 and Tyr41 are present. The 
ligand tripotassium-(1r)-4-biphenyl-4-yl-1-
phosphonatobutane sulfonate crystallises the 
protein 2ZCS. ChemSketch (ACD / ChemSketch, 
version 2020.1.2, Advanced Chemistry 
Development, Inc., Toronto, Ontario, Canada, 
www.acdlabs.com, 2020) was used to draw nine 
synthetic compounds, which were then converted 
to mol

2
 format using OpenBabel. We performed 

individual molecular docking studies on all nine 
ligands and incorporated an empirical free 
energy assessment feature using the AutoDock 
4.2 programme [26-29] with the Lamarck Genetic 
Algorithm (LGA). 11 RCSB (https://www. 
Rcsb.org/structure/2zcs) was the source of this 
protein [30,40]. Protein database AutoDock will 
upload it, hydrogen will be added afterwards, and 
it will be saved in the PDBQT format. The ligands 
were then loaded one by one, their 
conformations were determined, and they were 
saved in PDBQT format. The automatic grid was 
used to choose and calculate the grid 
parameters. For all docking studies, a gridpoint 
spacing of 0.375 was adopted. The grid map 
comprised 60x60x60 points in size. The active 
site amino acids were used to determine the X, 
Y, and Z coordinates. The default AutoDock 
parameters have been configured. Docking 
interactions are visualized with BIOVIA Discovery 
Studio Visualizer (Discovery Studio Visualiser v 
19.1.0.18287). 

 
Methodology of Absorption Distribution, 
Metabolism and Excretion (ADME) Properties: 
The pharmacokinetic properties of the ligand 
molecule 8a-8i are predicted using the  online 
server tool SwissADME. Physicochemical, 
pharmacokinetic, lipophilic, and drug-like 
properties are evaluated for the molecule to 
reduce  clinical failure [31-35].  
 

3. RESULTS AND DISCUSSION 
 

3.1 Chemistry 
 
The goal of this research is to develop new 
pyrimidinone-conjugated 1,2,4-triazole 
derivatives, as well as to conduct biological 
evaluations and docking studies to better 
understand compound-protein interactions. The 
necessary 3-(prop-2-yn-1-yloxy)benzaldehyde is 
obtained via O-alkylation of 3-hydroxybenz-
aldehyde with propargyl bromide and K2CO3 to 
afford the required 3-(prop-2-yn-1-yloxy) benz-

aldehyde [36]. Further treatment of compound 3 

with methyl acetoacetate and urea results methyl 
6-methyl-2-oxo-4-(3-(prop-2-yn-1-yloxy)phenyl)-
1,2,3,4-tetrahydropyrimidine-5-carboxylate (6). 
[37-38] In the presence of CuSO4•5H2O and Na-
ascorbate in dry DMF, the terminal alkyne 
derivatives (6) and 7 (a-i) were transformed to 8 
(a-i) in 70-85% yield (scheme 1). 

1
H-NMR, 

13
C-

NMR, IR, MS, and elemental analyses were used 
to confirm all produced compounds. The 
antibacterial and antioxidant characteristics of 
the compounds created were studied in order to 
discover potent molecules. 

 

3.2 Antibacterial Activity 
 

In vitro antibacterial activity against gramme (+) 
pathogens was investigated on 8 (a-i) 
compounds. mm. Using ciprofloxacin as a 
reference medication (Table 1). The antibacterial 
activity of the pyrimidinone-targeted triazoles 8e, 
8f, and 8h demonstrated outstanding broad-
spectrum activity against the representative 
gramme (+) and gramme (-) germs, according to 
the results of the in-vitro assay. Against the 
organisms examined, all of the synthesized 
compounds 8 (a-i) demonstrated high 
antibacterial activity. The Gram-positive 
bacterium Staphylococcus aureus was inhibited 
by compounds 8e, 8f, and 8h, with inhibition 
zones of 18, 17, and 17 mm, respectively. With 
inhibition zones of 18, 16, and 16 mm, the three 
compounds 8a, 8e, and 8h exhibited good 
effectiveness against Streptococcus pneumoniae 
strains. Compounds 8d, 8e, and 8f have greater 
action against Pseudomonas aeruginosa in 
inhibition zones of 20, 18, and 17 mm, 
respectively, as well as E. coli, a gram-negative 
bacterium. Showed a lot of energy. Furthermore, 
as compared to ciprofloxacin, the final target 
triazole in combination with dihydropyrimidinone
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Scheme 1. Synthesis of novel 1,2,3-triazols linked pyrimidinone scaffolds 
 
8e, 8f, and 8h demonstrated higher action 
against all Gram-positive and Gram-negative 
bacteria. Pseudomonas aeruginosa, 
Staphylococcus aureus, pneumonia, and 
Pseudomonas aeruginosa were all found to be 
more efficient against freshly manufactured 
hybrids. E. coli is a type of bacteria. SAR 
analysis revealed that terminal compounds 
having substituents at the meta-position of the 
benzene ring, such as NO2, Cl, and OMe, had 
the best antibacterial activity. 
 

3.3 Antioxidant Activity 
 
Table 1 shows the antioxidant activity data of the 
synthesized framework 8 (ai). The results show 
that all compounds have a strong antioxidant 
activity profile. Of all synthesized 4-
methoxyphenyl 1,2,3 triazole and dihydro-
pyrimidinone (8g), 2-nitrophenyl 1,2,3 triazole 
and dihydropyrimidinone (8h) and 2, 5-
Dimethoxyphenyl 1,2,3 triazole and 
dihydropyrimidinone (8e) have the highest 
antioxidant activity (80%, 59% and 51% at  1 mg 
mL-1 concentration), with an IC50 value of 320 
µg mL. It is -1 (1.42 mM). Compounds 8b, 8f and 
8i show moderate antioxidant activity (44-50%). It 
is worth noting that the antioxidant capacity of 
compound 8 g may have already been observed 
at lower concentrations (750, 500, 250, and 125 
μgmL

-1
).. It was found that the DPPH scavenger 

potential at 8 g and 8 hours decreased with 

increasing concentration. The effectiveness of 8 
g against other compounds in the elimination of 
DPPH activity demonstrates the importance of 
the 1,2,3-triazole moiety in enhancing the 
antioxidant capacity of dihydropyrimidinone. 
 
3.4 Docking Study 
 
The capacity of the new compounds to bind at 
the active site of the Staphylococcus aureus 
protein with PDB ID 2ZCS were evaluated for 
their mode of action of dehydrosqualene 
synthase. PdbSum tool analysis yielded a grid at 
the active site residues HIS18, PHE22, TYR41, 
ARG45, ALA134, VAL137, LEU141, ALA157, 
LEU160, LEU164, ILE241, and TYR248. 
Molecular docking is the most frequent approach 
for calculating protein-ligand interactions, and it 
is also a potent way of forecasting possible 
ligand interactions. Antibacterial protein inhibition 
was performed using Vina software and 
AutoDock 4.2 for the foreign compounds chosen 
for study. Docking analysis determines the 
binding free energy and predicts the optimal 
binding confirmation for the ligands 8 that fits into 
the receptor (a-i). The produced compounds 
were docked with dehydrosqualene synthase 
complexed with the crystal structure of 
Tripotassium(1r)-4-biphenyl-4-yl-1-
phosphonatobutane-1-sulfonate ligand (PDB 
ID:2ZCS) [39].
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Table 1. Antibacterial (inhibition of zone (mm)) and Antioxidant activity of compounds (8a-i) 
 

Compound  Gram + ve bacteria  Gram - ve bacteria DPPH 
Scavenging 
(%)

b
 

 S. aureus S. pneumoniae  E. coli P. aeruginosa  

8a  15±0.1 16±0.3  12±0.2 16±0.3 28 
8b  16±0.2 13±0.3  15±0.2 14±0.1 49 
8c  14±0.1 15±0.3  15±0.2 13±0.3 18 
8d  15±0.2 14±0.1  16±0.3 17±0.2 20 
8e  18±0.1 16±0.2  17±0.2 18±0.3 51 
8f  17±0.2 15±0.1  14±0.2 20±0.3 44 
8g  15±0.2 14±0.3  15±0.1 18±0.2 80 
8h  17±0.2 18±0.1  16±0.3 14±0.2 59 
8i  15±0.3 12±0.3  14±0.4 15±0.2 50 
Standard  30±0.1

a
 33±0.3  34±0.1 28±0.2 93

c
 

Antibacterial activity results are the mean ± SD; n=6, 
a
Ciprofloxacin used as standard; 

b
Antioxidantresults are the 

mean of three different experiments, 
c
Ascorbic acidused as standard 

 

Table 2 shows that all of the compounds had the 
highest binding energies and multiple amino acid 
interactions with the protein 2ZCS. Eight 
chemicals interact with one of three amino acids, 
according to docking results: ARG45, ASP 48, 
TYR129, GLN165, ASN 168, ARG171, ARG 
181TYR183, and ARG265. The amino acids 
ARG45, TYR129, and GLN165 of the 2ZCS 
protein interact with the molecules 8b, 8d, and 
8h. The resulting compounds had good binding 
values and dissociation constants ranging from G 
= -8.1 to -10.1 kcal/mol and 1.39 to 596.68 M, 
respectively (Table 2). 
 

When interacting with the amino acids ARG45, 
TYR129, GLN165, ASN168, ARG171, ILE241, 
TYR248, and ARG265, compounds 8a, 8h, and 
8i have the highest binding energies of -9.5, -9.8, 
and -10.1 Kcal/mol. The greatest dissociation 
constant values are 596.68, 277.51, 252.57, and 
252.53M for the docking conformations of the 
ligands 8i, 8b, 8g, and 8d, respectively. Because 
it is bonded with more non-bonded contacts with 
the receptor amino acids, molecule 8i has the 
highest dissociation constant value. All the 
molecules 8a-8i exhibited good binding energy 

values. Fig. 2; i) and ii) represents the complexes 
of dehydrosqualene synthase (2ZCS) with the 
compounds 8(a-f) ligands interactions in 3D and 
2D representations. All the molecules are 
forming in common one π- π stacking bond with 
the phenyl ring of PHE22 residue of the 2ZCS 
protein. 
 

3.5 ADME Properties  
 

The ADME properties predicted by all 
frameworks 8 (a-i) are acceptable (Table 3 and 
Fig. 3). All ligand molecules contain two 
hydrogen bond donors. All molecules except 
NO2-substituted 8b, 8f, and 8h ligand molecules 
have high Gi absorption, indicating that all  
molecules can be orally administered. Molecules 
8b and 8f are positive substrates for permeable 
glycoprotein (Pgp) and have no human 
gastrointestinal absorption [40]. All molecules are 
considered good drug molecules according to 
Lipinski's Rule 5. The molecule does not interact 
with some cytochrome P450 isoforms and 
confirms that their metabolites have been 
removed. 

 

https://en.wikipedia.org/wiki/Streptococcus_pneumoniae
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Fig. 2. The binding interactions between PDB ID 2ZCS protein with the ligand scaffolds 8(a-c) 
 

 

 
 

Fig. 3. Plot of total polar surface area (TPSA) and WlogP for the ligands 8(a-i) 
In Fig. 3 Each molecule is represented with a dot in the graph. The molecules do not cross the blood-brain barrier 

and fall in the range of oral bioavailability limits. (BBB-blood brain barrier, HIA- Human gastrointestinal 
absorption, PGP- Permeability glycoprotein) 
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Table 2. List of docking interaction distances (Å) along with the docking energies (kcal/mole) and dissociation constant (µM) values for each 
ligand 8(a-i) docked with dehydrosqualene synthase (PDB ID: 2ZCS) (Bond distances less than 4 Å are presented) 

 

Ligand Docking Energy (ΔG) Dissociation constant (KI) Interacting Amino acid Residues Bond distance 

8a -9.5 16.95 Hydrogen Bond  
ARG171:HH21 -8a:O10 
ARG171:HH22 - 8a:O10 
ARG265:HH22 - 8a:O10 
GLN165:HE22 - :8a 

 
2.850 
2.966 
2.417 
2.751 

8b -9 277.51 Hydrogen Bond 

8b:N11 -ASP176:OD2 

ARG45:HH21 - 8b:N23 

TYR129:HH - 8b:O1 

GLN165:HE22 - 8b:O20 

ASN179:HD21 - 8b:O10 

TYR183:HH - 8b:O1 

8b:C26 - GLN165:OE1 

8b:C4 :TYR129:OH 

GLN165:HA - 8b:O35 

π-anion 

ASP48:OD2 - :8b 

π-sigma 

8b:C37 - PHE22 

 

3.226 

2.505 

2.339 

2.255 

2.207 

2.224 

3.311 

3.523 

3.032 

 

3.871 

 

3.760 

8c -8.1 20.04 Hydrogen Bond 

GLN165:HE21 - 8c:O10 

GLN165:HE22 - 8c:O10 

ASN168:HD21 - 8c:O10 

8c:C21 - ASP48: O 

8c:C34 -ASN179: O 

8c:C4 - ASP48: O 

π-anion 

ASP114:OD1 - :8c 

 

2.706 

2.612 

2.726 

3.488 

3.379 

3.783 

 

3.324 
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Ligand Docking Energy (ΔG) Dissociation constant (KI) Interacting Amino acid 
Residues 

Bond distance 
 

8d -9.4 252.53 Hydrogen Bond 
8d:N11:TYR129:OH 
ARG45:HH21 - :8d:N23 
ARG45:HH22 - :8d:O1 
ASN168:HD22 - 8d:O20 
8d:C26 :GLN165:OE1 

 
3.057 
2.742 
2.450 
2.910 
3.341 

8e -8.7 3.96 Hydrogen Bond 
ARG45:HH22 - :8e:O3 
ARG181:HE - :8e:O10 

 
2.269 
2.453 

8f -9.1 8.10 Hydrogen Bond 
ARG45:HH21 - :8f:N23 
ASN168:HD22 - :8f:O20 
ARG181:HE - :8f:O10 
HIS18:HE1 - :8f:N23 

 
2.666 
2.342 
2.600 
3.032 

8g -9.3 252.57 Hydrogen Bond 
ARG45:HH22 - :8g:O1 
ASN168:HD22 - :8g:O10 
8g: C34:ALA157: O 
8g:C4:TYR129:OH 

 
2.575 
2.607 
3.578 
3.640 

8h -9.8 1.65 Hydrogen Bond 
8h:N11 - TYR129:OH 
ARG45:HH21 - 8h:N23 
ASN168:HD22 -8h:O20 
TYR248:HH - 8h:O34 
8h:C26 - GLN165:OE1 
HIS18:HE1 - 8h:N23 
GLN165:HA - 8h:O35 

 
3.044 
2.322 
2.816 
2.342 
3.603 
3.098 
2.798 
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8i -10.1 596.68 Hydrogen Bond 
ARG45:HH21 - 8i:O1 
ARG171:HH12 - 8i:O10 
alkyl 
8i:CL33:ILE241 
π-alkyl 
PHE233  :8i:CL33 

 
2.742 
2.426 
 
3.889 
 
3.993 

 
Table 3. Predicted ADME properties for the ligands 8(a-i) 

 

Molecule Molecule 
No 

MW Lipinski rule Rotatable 
bonds 

HB 
acceptors 

HB donors TPSA WLOGP GI 
absorption 

iLOGP Lead 
likeness  

8a Molecule 1 495.5 0 8 6 2 107.37 3.08 High 3.55 3 
8b Molecule 2 570.5 2 10 9 2 162.42 3.52 Low 3.63 2 
8c Molecule 3 525.5 1 9 7 2 116.6 3.08 High 4.33 3 
8d Molecule 4 509.5 1 8 6 2 107.37 3.38 High 4.26 3 
8e Molecule 5 555.5 2 10 8 2 125.83 3.09 High 4.56 3 
8f Molecule 6 540.5 2 9 8 2 153.19 3.51 Low 3.66 2 
8g Molecule 7 525.5 1 9 7 2 116.6 3.08 High 3.97 3 
8h Molecule 8 540.5 2 9 8 2 153.19 3.51 Low 3.48 2 
8i Molecule 9 529.9 1 8 6 2 107.37 3.73 High 4.1 3 
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4. CONCLUSIONS 
 
Finally, the research concentrated on the 
synthesis of a new series of phenyl substituted 
1,2,3-triazoles linked to 1,2,3,4-tetrahydro 
pyrimidine heterocyclic rings 8(a-i), with 
spectrum analysis confirming the structures. 
Gram-(+ve) and Gram-(-ve) bacteria were 
tested for representative compounds of the 
produced products, and 8a, 8e, and 8h 
compounds were evaluated as possible 
antimicrobial agents. When compared to 
ascorbic acid (93%), the triazole functionalized 
compounds 8e, 8g, and 8h had the highest 
antioxidant activity, with inhibition of 80%, 
59%, and 51%.The maximum binding energy, 
hydrogen bonding, Van der Waal forces, and - 
stacking were also found in the molecular 
docking data of produced compounds. The 
ADME properties of the synthesized 
compounds are predicted, and the study 
revealed that the values determined for 8(a-i) 
are within druggable molecules' acceptable 
limits. The novel pyrimidinone hybrid 
compounds could be used as lead molecules 
in the development of new antibacterial and 
antioxidant chemicals. 
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