

British Journal of Mathematics & Computer Science

20(3): 1-29, 2017; Article no.BJMCS.30783

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

*Corresponding author: E-mail: kurokawa@aitech.ac.jp;

Generation of Checkered Patterns and Their Variations by
Making Use of Eulerian Graph Features

Tomio Kurokawa1*

1Department of Information Science, Aichi Institute of Technology, 1247 Yachigusa, Yagusa-Cho,

Toyota 470-0392, Japan.

Author’s contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/BJMCS/2017/30783
Editor(s):

(1) Doina Bein, Applied Research Laboratory, The Pennsylvania State University, USA.
Reviewers:

(1) André Luiz Pires Guedes, Federal University of Paraná, Brazil.
(2) C. D. Guruprakash, Visvesvaraya Techhnological University, Karnataka, India.

(3) Liancui Zuo, Tianjin Normal University, Tianjin, China.
(4) Dipa Dixit, Fr. C. Rodrigues Institute of Technology(FrCRIT), Mumbai University , India.

Complete Peer review History: http://www.sciencedomain.org/review-history/17639

Received: 30th November 2016
Accepted: 16th January 2017

Published: 27th January 2017

Abstract

A variety of pictures of checkered pattern graphics appear on the Internet. However, rarely seen is how
those graphics were produced. This paper shows various checkered patterns and their variations generated
automatically by a computer program, making use of features of Eulerian Graph. Given a line drawing of
binary images, the procedure extracts contours of the line figures. The contours in turn form a set of
contour cycles of the regions surrounded by the original lines of the figures, which are supposed to form
an Eulerian Circuit. The drawing can be various combinations of closed lines -- circles, rectangles,
ellipses, any of closed drawings. Bi-partitioning the contours into partitions (X, Y), filling inside the
regions of X and Y, the procedure outputs the checkered patterns or their likes. Various patterns were
successfully produced in a number of experiments as well as demonstrating that the algorithm is very
robust and that some of the patterns are aesthetic. Since the checkered patterns are used in the Emblem of
Tokyo Olympic 2020, it is timely to do the demonstration about the design of checkered patterns and their
relations with computer programs and mathematics.

Keywords: Checkered patterns; closed one stroke curve; Eulerian graph; contour cycles; region adjacency

graph; dual; bipartite graph.

Original Research Article

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

2

1 Introduction

Checkered patterns (Ichimatsu Moyo in Japanese) are to appear, or it might be better saying to have
appeared on the Emblem of Tokyo Olympic Games 2020 [1]. Checkered patterns are recognized as
traditional arts and widely known in Japan as well as in the world.

Images of various checkered patterns [2] can be seen on the Internet. But we could rarely see articles written
about how they are drawn, especially the methods to automatically draw the patterns by a computer program.
This paper is intended to demonstrate various checkered patterns and their variations automatically
generated by a computer program using the method [3], which was previously published but without
demonstrations of generating checkered patterns.

The generation method of checkered patterns in this study first concerned with contour extraction of binary
images, especially binary line drawing. This contour extraction is realized by using the OpenCV library [4].
The specific function of contour extraction of the library is based on the study by Suzuki and Abe [5]. In the
study, they provide a method to obtain the topological structure and the contours of the binary image at the
same time. In the software [4], the topological structure is realized in a tree and the contours are by
sequences of coordinates. They call the contour extraction as “border following”. It provides two types of
borders -- “outer border” and “hole border.” These two are important for the present study. Researches
concerning “border following” also appear in [6-8].

Suzuki and Abe reported that their study [5] was extended from [6]. This contour extraction using the library
[4] has been successfully used in [9-11].

Another matter about this study after extraction of contours is bi-partitioning of the contours. The
construction of bipartite graph usually appears in a textbook, such as [12]. But in the present study, the
extracted contours are bi-partitioned into two sets, just separating the contours into two sets. The final step is
the actual region painting, to which the present study does not pay too much attention.

2 Outline of the Study and Contour Extraction of Line Figures

2.1 Outline of overall procedure

The procedure of this study first extract contours from an original binary line figure which is supposed to
constitute Eulerian Circuit [12]. Intersections of the lines of the figure are considered as vertices and the
lines between the intersections are edges. The extracted contours are the cycles which surround each of the
regions surrounded by the originally drawn curves. If two contours surrounded regions are adjacent, then the
corresponding two contours are adjacent, that means the two contours are very near or very close. Based on
this nearness between contours, the contours can be bi-partitioned. Bi-partitioning algorithm [3] just
separates them into X-partition and Y-partition. The regions of one partition are painted with a color and
those of another partition are with another color -- 2-coloring, which produces the final checkered patterns or
their variations.

2.2 Contour extraction of line figures

The contour extracting procedure of this study, which appears in [10], works as follows:

1. Prepare a line figure binary image.
2. Execute the contour extraction function of the library [4] for the image with obtaining a tree, which

holds the result.
3. Visit each node in the tree and obtain a set of series of coordinates of the contours.

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

3

The extracted contours are organized as a tree [5,10] represent the topological features of the contours and
series of two dimensional coordinates for each contour. The root node of the tree represents the outermost
contour of the line figure, the so called “outer border” [5]. All the nodes other than the root are just one level
under the root, representing the inside contours, or “hole borders” [5] for the case of the figures of the
present study. All points of contours, regardless outer or inside, are on the lines of the original figures. The
outer contour points are represented counter-clockwise and the inside contour clockwise.

The obtained contours are the set of contour cycles which surround each of the regions surrounded by the
originally drawn figure curves. The processing of this set of contours is explained in the next section.

3 Rephrasing and Modifying Algorithm of Previous Studies

The previous study [3] provides a method that generates a maze, where the solution path is the given one-
stroke curve itself. In the study, an algorithm was introduced to make the bi-partitioning of the contours
extracted from the one-stroke curve. The curve need not be literally one-stroke. Any curve having the
crosses (or vertices) with an even number of lines (edges) can be handled. This includes a diagram made
from a number of closed curves. That is, the line figure such as Fig. 1, grids, or a combination of a number
of rectangles or closed curves are accepted. For such a figure, all crosses (vertices) have even number of
edges, where extracted contours can be partitioned into sets [3].

Fig. 1 is an original drawing of two rectangles, the line width of which is 1, from which checkered patterns
were produced. These rectangles were drawn by using OpenCV library with line thickness of 1. The
program with VC++ and OpenCV for this study first extracts the contours of the lines from the figure. They
are shown in Fig. 2. The contours are on the lines of the original figure. However, they are also the contours
of regions surrounded by the drawn curves (lines). Actually, they are closed, hence cycles. They are
numbered from 1 to 6 by the OpenCV program library as shown in Fig. 2. No.1 is for the contour of the
outer region, or the outer region itself. They are double lines everywhere on the curves. However, those
curves of Fig. 2 do not look double. It is because the contours overlap everywhere on the curves. Hence, Fig.
2 looks exactly the same as the original curves, Fig. 1. This means that all the contour lines are on the
original image lines.

Since a figure made of closed lines (foreground white line) constitutes an outer region, a connected figure
lines and a number of hole regions, the extracted contours of the figure lines should be made of an “outer”
contour and a number of “hole” contours, both on the original figure lines. Since the figure is made of lines

Fig. 1. Original drawing of two rectangles
overlapped with line width of 1

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

4

of one-pixel width, all contour line parts are on the original one-pixel figure lines. That’s why contours look
like consisting of single lines, but actually completely overlapped. Accordingly, every line part is made of
two borders –- either an “outer border” and a “hole border”, or two “hole borders”. Despite extracting
contours of line figure are considered a kind of unusual processing, results were successful and reasonable.
The contour extraction function of OpenCV [4] and its theoretical base [5] should be highly evaluated.

Since the dual [13] of an Eulerian planar graph is a bipartite graph, the region adjacency graph (RAG),
which can be obtained by complete checking of contour adjacency, shown as yellow in Fig. 3, where the
regions are considered as vertices and the edges exist between the adjacent regions, constitutes the bipartite
graph. This process of obtaining RAG is not in the bi-partitioning algorithm [3] in subsection 3.1.

Fig. 3. Extracted contours constitute a
bipartite graph and the regions are numbered

Fig. 2. Extracted contours of two
rectangles overlapped, 6 contours

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

5

The algorithm introduced in [3] can be applied to make the partitions (X, Y) and is rephrased with more
clarity:

3.1 Bi-partitioning algorithm

Input: A set, CONTOURS, of all the extracted n contour cycles as in Fig. 2 and is expressed as

�������� = { ������ | 1 ≤ � ≤ �}. (1)

With �� the length of ������, each ������ is expressed as

������ = { ��(�, �), �(�, �)� | 1 ≤ � ≤ ��}. (2)

Output: Two partitions called X-partition and Y-partition, obtained from the bipartite graph, are disjoint and
the union of the two is �������� of (1).

Definitions: The distance from ������ to ������ is defined as:

 �(�, �) = ��������� & ������
���(�, �) − �(�, �)�

�
+ ��(�, �) − �(�, �)�

�
. (3)

Method:
Assumption: n: initial number of contour cycles in CONTOURS
X, Y: partition sets of the bipartite graph, both sets are empty at the beginning; they will have the resulted
vertices of bi-partition.
1. Remove an arbitrary ������ from CONTOURS and put it in X;

2. Repeat begin
3. For each � in X do begin
4. For each � in CONTOURS do begin
5. If � and � are adjacent, do begin
6. Remove � from CONTOURS and put it in Y;
7. If no cycle remains in CONTOURS, do begin
8. If the outer cycle is in Y, exchange X and Y;
8. Paint inside all CONTOURS with different colors for X and Y and finish;
10. end;
11. end;
12. end;
13. end;
14. Exchange X and Y;
15. end;

Contour adjacency: The adjacency checking is based on distance computation between two cycles. The
basic criteria for the adjacency is based on the overall average of the shortest distance (���) between two
cycles ������ and ������, where ��� is defined as:

��� =
�

∑ ��
�
���

∑ ∑ min����� min������
�(�, �, �, �)

��

���
�
��� , (4)

�ℎ��� �(�, �, �, �) is defined as

�(�, �, �, �) = �(�(�, �) − �(�, �))� + (�(�, �) − (�(�, �))�, (5)

�ℎ��� � ≠ ｉ��� �� is the number of points on ������.

Let’s define two cycles ������ and ������ are adjacent if there are more than a certain number, �, of points

on ������ such that the shortest distance, ��(�, ��, �), from a point �� on ������ to ������ is less than ���

multiplied by a certain number, �, where ��(�, ��, �) is expressed as:

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

6

��(�, ��, �) = min������
�(�, �, �, �). (6)

So if more than � such different points on ������ exist, ������ and ������ are considered adjacent. That is,

������ and ������ are adjacent if the size of � is greater than � in the following expression:

� = ���� ��(�, ��, �) ≤ α ∗ ��� and 1 ≤ � ≤ �� where � is a small positive value�. (7)

3.2 Experiment with Bi-partitioning and region filling

By applying the above algorithm to Fig. 2, the contour cycles are bi-partitioned to X-partition (Fig. 4) and Y-
partition (Fig. 5). Although they are interchangeable, the partition with the most outer contour is designated
as X-partition in this study. X-partition includes the contours of 1, and 4. While Y-partition holds 2, 3, 5, and
6. Fig. 6 is obtained by examining all the adjacencies between the contours. The graph (yellow) in Fig. 3 and
the one in Fig. 6 represent the same graph. Filling the regions of X-partition with yellow, Fig. 7 is obtained,
so called checkered patterns.

Fig. 5. Y-partition, 4 contours

Fig. 4. X-partition, 2 contours

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

7

4 More Experiments with Complex Figures and Discussion

4.1 Two rectangles overlapped but with line width 5

In these experiments, the algorithm was applied to the diagram of Fig. 8, which was drawn using OpenCV
library with line thickness of 5, the same shape figure as Fig. 1, but with different line width. Contours were
extracted as in Fig. 9. All the contours clearly appeared and no overlap occurred this time. By comparing
Figs. 8 and 9, we notice that contours are for the drawn lines as well as for the regions surrounded by the
drawn lines. And the figure clearly shows how each of the contours is related to its corresponding region.
The contours were bi-partitioned into X-partition (Fig. 10) and Y-partition (Fig. 11). These figures clearly
illustrate which contour belongs to which partition. Although the two partitions are interchangeable, the
partition with the most outer contour is designated as X-partition in this study. Hence, X-partition includes
the contours of 1, and 4, and Y-partition holds 2, 3, 5, and 6. Fig.12 (RAG) and Fig. 13 were obtained by
checking all the adjacencies between the contours. The graph (yellow) in Fig. 12 is exactly the same as the

Fig. 7. Checkered patterns: X-partition is
filled with blue, and Y-partition and

boundary
with yellow

Fig. 6. Bi-partitioned graph

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

8

bipartite graph (yellow) of Fig. 3. And the graph of Fig. 13 is the same as that of Fig. 6. This means the
extracted contours constitute the same bipartite graphs as well as the same RAGs. This suggests that the
width difference of the original line drawings causes no significant difference for the RAG. Filling the
regions of X-partition with blue color and Y-partition with red color and the boundaries with white color,
Fig. 14 was obtained, the checkered patterns with wider boundaries. The patterns give different impressions
with wider boundaries. The successful experiments in section 3 and section 4.1 suggest that the algorithm is
effective even for different line widths.

Fig. 9. Extracted contours, 6 contours and
regions are numbered

Fig. 8. Original drawing of two rectangles
overlapped with line width of 5

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

9

Fig. 10. X-partition, 2 contours

Fig. 12. Extracted contours constitute a region adjacency graph (RAG) as well as a bipartite graph

Fig. 11. Y-partition, 4 contours

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

10

4.2 A large number of grids with line width 1

Fig. 15 is the figure of 10 rectangles crossed drawn using OpenCV library with line thickness of 1. Contours
were extracted as in Fig. 16. There are 102 contours. Figs. 15 and 16 look exactly the same. The lines in Fig.
16 look single everywhere on the lines. Hence, it means that the contours should be overlapped everywhere.

The bi-partitioning algorithm was applied to Fig. 16. Fig. 17 is the resulted Y-partition with 60 contours; X-
partition is not shown because it’s supposed to look the same as Y-partition. Fig. 18 is the checkered patterns
obtained by filling the inside of all the contours of X-partition blue, Y-partition red, and the boundary white.
Fig. 19 is with X-partition and boundary blue and Y-partition red, literally 2-colored. Some subtle difference
seems to exist between Figs. 18 and 19.

Fig. 14. Checkered patterns: X-partition
blue, Y-partition red, and boundaries

white

Fig. 13. Bi-partitioned graph

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

11

Fig. 15. Original drawing of grids: 10 overlapped rectangles with line width of 1

Fig. 16. Contours extracted, 102 contours

Fig. 17. Y-partition, 60 contours

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

12

4.3 A large number of grids with line width 5

Fig. 20 is the figure of 10 rectangles crossed drawn using OpenCV library, but with line thickness of 5.
Contours were extracted and the result is in Fig. 21. There are 102 contours shown as in Fig. 16. It seems
that no contours overlap. The contours in Fig. 21 are quite different from those in Fig.16. The bi-partitioning
algorithm was applied to Fig. 21. Fig. 22 is X-partition with 42 contours, one of which is the outer contour,
very long, and Fig. 23 is Y-partition with 60 contours. Fig. 24 shows the checkered patterns with X-partition
filled with blue color and Y-partition with red and the boundaries with white. It seems that the algorithm
worked quite well, even with the different line width, this time too. The original picture of Fig. 21 is
different from that Fig. 15 just for the line width. But the resulted patterns give different impressions.

Fig. 19. Checkered patterns: X-partition
and boundary blue, and Y-partition red

Fig. 18. Checkered patterns: X-partition
with blue, Y-partition with red, and

boundary white

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

13

Fig. 20. Original drawing of grids: 10 overlapped rectangles with line width of 5

Fig. 21. Contours extracted from Fig. 20, 102 contours

Fig. 22. X-partition, 42 contours

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

14

4.4 A large number of circles overlapped with line width 1

Fig. 25 is the figure of 30 circles crossed. These circles were drawn using OpenCV library with line
thickness of 1. Since the drawing of circle curves is different from that of straight lines like rectangles,
contours could be different from those of rectangle figure. Fig. 26 shows the contours extracted. But the
lines look somewhat bolder. There are 140 contours counted by the program. The bi-partitioning algorithm
was applied to Fig. 26. Fig. 27 is the resulted X-partition and Fig. 28 is Y-partition, both holding 70

Fig. 24. Checkered patterns: X-partition
with blue, Y-partition with red and

boundary white

Fig. 23. Y-partition, 60
contours

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

15

contours. Figs. 26, 27 and 28 look alike. Lines of Fig. 26 look a little bolder. But those of Figs. 27 and 28
look thin. This suggests that the contour lines in Fig. 26 overlap partially, but those in Figs. 27 and 28 are not
overlapped and just look single. As a matter of facts, the regions surrounded by the lines of Fig. 27 and those
of Fig. 28 are completely different, exclusive each other because they are bi-partitioned regions. Fig. 29 is
the output patterns (checkered-like patterns) with X-partition and boundaries painted with blue and Y-
partition by red.

Fig. 26. Contours extracted, 140 contours

Fig. 25. Original drawing of 30 circles with
line width of 1

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

16

Fig. 27. X-partition, 70 contours

Fig. 28. Y-partition, 70 contours

Fig. 29. Checkered-like patterns: with X-partition and boundary blue, Y-partition yellow

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

17

4.5 A large number of circles overlapped with line width 3

Fig. 30 is the figure of 30 circles crossed, but drawn using OpenCV library with line thickness of 3. Fig. 31
shows the contours extracted. It seems that all the contour lines are completely separate and look thin. There
are 140 contours. The bi-partitioning algorithm was applied to Fig. 31. Fig. 32 is the resulted X-partition and
Fig. 33 is Y-partition, both holding 70 contours. Figs. 32 and 33 look complexly different and all the
contours are completely separate. This means that regions of the partitions are completely separate and
exclusive, but they occupy all the regions. Fig. 34 is the output patterns (checkered-like patterns) with X-
partition painted by blue color, but the most outer region with green, Y-partition by red, and boundaries
white.

Fig. 30. Original drawing of 30 circles with line width of 3

Fig. 31. Contours extracted, 140 contours

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

18

Fig. 32. X-partition, 70 contours

Fig. 33. Y-partition, 70 contours

Fig. 34. Checkered-like patterns: with X-partition blue, most outer region green, Y-partition red and
boundary white

4.6 Freehand drawing of 10 ovals overlapped with

Fig. 35 is the diagram of 10 freehand drawn ovals with line width of 1 overlapped. Somehow line widths
vary at places -- originally drawn by MS WORD.
curve parts are double lines. The double lines seem 2 pixels ap
two pixels. Accordingly, the distance of the rests should be one pixel. As will be shown in the subsequent
section, the average shortest distance (4) for Fig. 35 is 1.01. This suggests that only a very limited
are double. The bi-partitioning algorithm was applied to Fig. 36. Fig. 37 is the resulted
contours and Fig. 38 is Y-partition with 60 contours. As seen, those contour curves are very thin, one
width, thinner than those of Fig. 35. Fig. 39 is the checkered patterns obtained from Figs. 37 and 38
partition is blue, Y-partition and boundary are yellow.

Fig. 35. Original drawing of 10 freehand
ovals with line width of 1

Fig. 37. X-partition, 42 contours

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS

ovals overlapped with line width 1

he diagram of 10 freehand drawn ovals with line width of 1 overlapped. Somehow line widths
originally drawn by MS WORD. Fig. 36 shows 102 contours extracted. Notice that some

curve parts are double lines. The double lines seem 2 pixels apart. That is, the distance between the two are
two pixels. Accordingly, the distance of the rests should be one pixel. As will be shown in the subsequent
section, the average shortest distance (4) for Fig. 35 is 1.01. This suggests that only a very limited

partitioning algorithm was applied to Fig. 36. Fig. 37 is the resulted X-partition with 42
partition with 60 contours. As seen, those contour curves are very thin, one

e of Fig. 35. Fig. 39 is the checkered patterns obtained from Figs. 37 and 38
partition and boundary are yellow.

Fig. 35. Original drawing of 10 freehand
ovals with line width of 1

Fig. 36. 102 contours extracted

partition, 42 contours

Fig. 38. Y-partition, 60 contours

o.BJMCS.30783

19

he diagram of 10 freehand drawn ovals with line width of 1 overlapped. Somehow line widths
Fig. 36 shows 102 contours extracted. Notice that some

art. That is, the distance between the two are
two pixels. Accordingly, the distance of the rests should be one pixel. As will be shown in the subsequent
section, the average shortest distance (4) for Fig. 35 is 1.01. This suggests that only a very limited line parts

partition with 42
partition with 60 contours. As seen, those contour curves are very thin, one-pixel

e of Fig. 35. Fig. 39 is the checkered patterns obtained from Figs. 37 and 38 -- X-

Fig. 36. 102 contours extracted

partition, 60 contours

Fig. 40 is the same diagram as Fig. 35, but with the outer rectangle frame line. The oval curves and the outer
frame line cross for longer or wider area at the two touching places. Since
mathematically ideal curves, but realized in an actual image plane, occupying fussy crossing areas, it is
expected to be more difficult to recognize the adjacency between contours. Actually, the parameter
adjacent point count, was used instead of
more severe criterion for adjacency was applied in this case. Fig. 41 shows 122 contours extracted. Those
seem successfully extracted -- no signi
applied and the results are as in Fig. 42 (X
successfully partitioned into two parts. Since the intersecting parts are longer betw
rectangle frame lines, the adjacent parts between the two regions which are supposed to be in a same
partition set are inclined to be longer. This length, sometimes causes the confusion. But this was solved by
setting � to 10, longer adjacent point count, of (7). The final checkered patterns are shown in Fig. 44. Notice
that colors of blue and yellow are interchanged between Figs. 39 and 44. It is by the interchangeability of X
partition and Y-partition.

Fig. 39. Checkered-like patterns: X
blue, Y-partition and boundary yellow

Fig. 41. 122 contours extracted

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS

Fig. 40 is the same diagram as Fig. 35, but with the outer rectangle frame line. The oval curves and the outer
frame line cross for longer or wider area at the two touching places. Since these curves are not
mathematically ideal curves, but realized in an actual image plane, occupying fussy crossing areas, it is
expected to be more difficult to recognize the adjacency between contours. Actually, the parameter
adjacent point count, was used instead of � = 4 which were applied to most of the cases. This means that
more severe criterion for adjacency was applied in this case. Fig. 41 shows 122 contours extracted. Those

no significant difference from the Fig. 36. The bi-partitioning algorithm was
applied and the results are as in Fig. 42 (X-partition) and Fig. 43 (Y-partition). All contours were
successfully partitioned into two parts. Since the intersecting parts are longer between freehand ovals and
rectangle frame lines, the adjacent parts between the two regions which are supposed to be in a same
partition set are inclined to be longer. This length, sometimes causes the confusion. But this was solved by

to 10, longer adjacent point count, of (7). The final checkered patterns are shown in Fig. 44. Notice
that colors of blue and yellow are interchanged between Figs. 39 and 44. It is by the interchangeability of X

like patterns: X-partition
partition and boundary yellow

Fig. 40. Original drawing of 10 freehand ovals
with line width of 1 and the outer frame

Fig. 41. 122 contours extracted

Fig. 42. X-partition, 61 contours

o.BJMCS.30783

20

Fig. 40 is the same diagram as Fig. 35, but with the outer rectangle frame line. The oval curves and the outer
these curves are not

mathematically ideal curves, but realized in an actual image plane, occupying fussy crossing areas, it is
expected to be more difficult to recognize the adjacency between contours. Actually, the parameter � = 10,

which were applied to most of the cases. This means that
more severe criterion for adjacency was applied in this case. Fig. 41 shows 122 contours extracted. Those

partitioning algorithm was
All contours were

een freehand ovals and
rectangle frame lines, the adjacent parts between the two regions which are supposed to be in a same
partition set are inclined to be longer. This length, sometimes causes the confusion. But this was solved by

to 10, longer adjacent point count, of (7). The final checkered patterns are shown in Fig. 44. Notice
that colors of blue and yellow are interchanged between Figs. 39 and 44. It is by the interchangeability of X-

Fig. 40. Original drawing of 10 freehand ovals
with line width of 1 and the outer frame

partition, 61 contours

4.7 Freehand drawing of 10 ovals crossed with curve width

Fig. 45 is the figure of 10 freehand drawn ovals overlapped, but with curve width of 5.
extracted contours. All of them are successfully extracted. Notice that th
All the contours are completely separate. The bi
resulted X-partition with 42 contours and Fig. 48 is
crossing areas of curves, the bi-partitioning was successfully performed for all the regions using the
parameters α= 1.1 ��� � = 4. Fig. 49 is the final checkered
partition red and boundaries white. These give another different impression from the ordinary checkered
patterns of Fig. 39 or Fig. 44.

Fig. 45 Original drawing of 10 freehand
ovals with line width of 5

Fig. 43. Y-partition, 61 contours

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS

ovals crossed with curve width 5

freehand drawn ovals overlapped, but with curve width of 5. Fig. 46 shows 102
extracted contours. All of them are successfully extracted. Notice that the most outer contour is very long.
All the contours are completely separate. The bi-partitioning algorithm was applied to Fig. 46. Fig. 47 is the

partition with 42 contours and Fig. 48 is Y-partition with 60 contours. Despite the wide and fussy
partitioning was successfully performed for all the regions using the

Fig. 49 is the final checkered-like patterns with X-partition blue and Y
partition red and boundaries white. These give another different impression from the ordinary checkered

drawing of 10 freehand
ovals with line width of 5

Fig. 46. 102 contours extracted

partition, 61 contours

Fig. 44. Checkered-like patterns: X
partition blue, Y-partition and

boundary yellow

o.BJMCS.30783

21

Fig. 46 shows 102
e most outer contour is very long.

partitioning algorithm was applied to Fig. 46. Fig. 47 is the
Despite the wide and fussy

partitioning was successfully performed for all the regions using the
partition blue and Y-

partition red and boundaries white. These give another different impression from the ordinary checkered-like

Fig. 46. 102 contours extracted

like patterns: X-
partition and

Fig. 50 is supposedly the same diagram as Fig. 45, but with the outer rectangle frame line of width 5. Notice
that curves and lines cross at wider and fussy areas. Fig. 51 shows successfully extracted122 contours. The
bi-partitioning algorithm was applied. The results are as in Fig. 52 (X
(Y-partition with 61 contours). The parameters
checkered-like patterns are shown in Fig. 54. Notice that colors of blue and red are seemingly interchanged
between Figs. 49 and 54 despite regions of X
is due to the interchangeable feature of X

Fig. 49. Checkered-like patterns: X

blue, Y-partition red,

Fig. 47. X-partition, 42 contours

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS

Fig. 50 is supposedly the same diagram as Fig. 45, but with the outer rectangle frame line of width 5. Notice
wider and fussy areas. Fig. 51 shows successfully extracted122 contours. The

partitioning algorithm was applied. The results are as in Fig. 52 (X-partition with 61 contours) and Fig. 53
The parameters α = 1.1 ��� � = 4 were used as before. The final

like patterns are shown in Fig. 54. Notice that colors of blue and red are seemingly interchanged
between Figs. 49 and 54 despite regions of X-partition were painted with blue and those of Y-parti
is due to the interchangeable feature of X-partition and Y-partition.

like patterns: X-partition
partition red,

Fig. 50. Original drawing of 10 freehand ovals

with line width of 5 and the outer rectangle fr

partition, 42 contours

Fig. 48. Y-partition, 60 contours

o.BJMCS.30783

22

Fig. 50 is supposedly the same diagram as Fig. 45, but with the outer rectangle frame line of width 5. Notice
wider and fussy areas. Fig. 51 shows successfully extracted122 contours. The

partition with 61 contours) and Fig. 53
were used as before. The final

like patterns are shown in Fig. 54. Notice that colors of blue and red are seemingly interchanged
partition red. It

Fig. 50. Original drawing of 10 freehand ovals
with line width of 5 and the outer rectangle frame

partition, 60 contours

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

23

4.8 Triangles with six degree vertices with line width 8

Fig. 55 is the figure of triangles with 6 degree vertices drawn using OpenCV library with line thickness of 8.
Contours were extracted as in Fig. 56. There are 35 contours, all separate. The bi-partitioning algorithm was
applied to Fig. 56 and contours were partitioned into two parts. Fig. 57 is the resulted X-partition with15
contours and Fig. 58 is Y-partition with 20 contours. The vertices of 4 degrees as well as 6 were handled
successfully. By the way, the parameters, α= 1.1 ��� � = 4, were used as before. Fig. 59 is the colored
checkered-like patterns with X-partition blue including the most outer region, Y-partition red and boundaries
white.

Fig. 53. Y-partition, 61 contours Fig. 54. Checkered-like patterns: X-
partition blue, Y-partition red,

boundary white

Fig. 51. 122 contours extracted Fig. 52. X-partition, 61 contours

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

24

Fig. 56. 35 contours extracted

Fig. 57. X-partition, 15 contours

Fig. 55. Original drawing of triangles with 6
degree vertices and line width of 8

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

25

Fig. 58. Y-partition, 20 contours

4.9 Triangles with six degree vertices and line width 1

Fig. 60 is the figure of triangles with 6 degree vertices. It was drawn using OpenCV library with line
thickness of 1. Fig. 61 is the colored checkered-like patterns with X-partition blue, but the most outer region
green and Y-partition and boundary yellow. This example also successfully demonstrates the
bi-partitioning algorithm worked well with 6 degree vertices. The parameters, α= 1.1 ��� � = 4, were used
as before.

Fig. 59. Checkered-like patterns: X-
partition blue, Y-partition red and

boundary white

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

26

5 Line Width and Adjacency between Contours

A number of figures with different drawing line widths were tried for generating checkered patterns and
their likes in the experiments. This is to see the effects of the different line widths. It turned out that different
line widths cause no problem in algorithm execution and give successful outputs with different impressions -
- Figs. 7 and 14, Figs. 18 and 24, Figs. 29 and 34, Figs. 39 and 49, and Figs. 44 and 54, and Figs. 59 and 61
are the examples. These different line widths were specified by the parameters, but once the figures were
drawn by hand or by the program, all the checkered-like patterns were automatically generated by the
program. Specifications such as line width for different original figures are given in Table 1.

Fig. 61. Checkered-like patterns: X-partition
blue, the most outer region green and Y-

partition yellow

Fig. 60. Original drawing of triangles with 6
degree vertices and line width of 1

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

27

The bi-partitioning was done based on the adjacency between two contours. The adjacency criterion is the
distance between two contours. In the experiments, the overall average of the shortest distance from a point
on a contour to other contours as (4) was first computed. The values vary depending on the drawn lines,
especially on the line widths. This distance was used as the criteria for deciding if two contours are adjacent.
The averages (dAS) for Figs. 15, 20, 25, 30, 35, 45, 40, 50, 55, and 60, respectively, are shown in Table 1.
This table also includes the shape type of figures and the line width originally given.

The adjacency is based on how many adjacent points exist between two contours. The minimal count was
given by β of the expression (7) with the parameter α = 1.1. β = 4 was used for all the experiments except
for Fig. 40 (β = 10 was used). This figure of Fig.40 is with the outer rectangle frame. Many of the line
crossing parts are relatively long for Fig. 40 than other figures. The adjacency checking had to be more
severe for this kind of figures. That is, at those places where ovals touch the outer frame, the crossing parts
are inclined to be longer and misleading. With proper parameters manually given at the program start, the
program produces automatically the checkered-like patterns at once. All the experiments successfully
demonstrated that the bi-partitioning algorithm is very robust.

The suitable parameters (α and β) are dependent on the figure drawn situations. If the line width changes
while the figure is drawn, the overall average distance (dAS) might not work properly. But, as the
experiments show, α = 1.1 seems to be proper under the condition of no line width change. But smaller α
might be better, more severely distinguishing the real adjacency and the false one. The parameter β, together
with α has to work to distinguish between the real adjacency and the fake one. Fake adjacency comes often
from the long intersecting or touching part between two contours which are not adjacent. This fake
adjacency was caused, when β = 4, in the experiment of Fig.40, the free hand drawn ovals touch the
straight frame line, which could be considered as an unusual type of figure. For most cases, β can be
arbitrary within a roughly estimated reasonably range. But β cannot be too large for the case where contours
are not long enough. If proper parameters are computed automatically, it’s better.

The contour cycles of Fig. 2 were all on the lines of rectangles with line thickness of 1 (as of OpenCV). This
means that the distance between any two adjacent regions was zero. The computed average distance was also
zero. Rectangles of Fig. 15, Circles of Fig. 25 and triangles of Fig. 60, all with the line width 1, give the
distance of 0.0, 0.28 and 0.25, respectively. It seems that horizontal or vertical lines give the shorter distance.
Rectangles of Figs. 20 and triangles of Fig. 55 are with line width of 5 and 8, respectively, and the computed
average distance was 6.0 and 7.8, respectively. The distance does not seem to be proportional to the width.
Freehand ovals of Figs. 35 and 40 were drawn with line width 1. But the dAS is slightly smaller for Fig. 35
than Fig. 40. It should be due to the crossing parts between ovals and outer frame.

Table 1. Figure specifications and average of shortest distance (���)

Unit shape symbol explanation: r means rectangle, c circle, f freehand drawing, t triangle.
Line thickness of Figs. 35 and 44 are by MSWORD (point), others are by OpenCV library

Fig. no 15 20 25 30 35 45 40 50 55 60

Unit shape r r c c f f f f t t

Line thickness 1 5 1 3 1pt 5pt 1pt 5pt 8 1

dAS 0.0 6.0 0.28 3.4 1.01 7.0 1.03 7.03 7.8 0.25

6 Conclusion

The method of this study demonstrated its ability to generate varieties of checkered patterns and their
variations with various features including:

1) Wide range of patterns can be produced.
2) It can be applied to drawings of various closed line shapes as -- circles, rectangle, triangles,

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

28

freehand drawing, etc.
3) Width of the line or curve can vary.
4) It is automatic and very robust as demonstrated.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Available:https://www.google.co.jp/search?q=tokyo+olympic+games+2020+emblem&espv=2&biw=

1920&bih=1060&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwiG-
72Jjb7PAhVFnJQKHZnJCJAQsAQIKA, (accessed 2016/10/3)

[2] Available:https://www.google.co.jp/search?q=checkered+pattern&espv=2&biw=1920&bih=1060&tb
m=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwj7vPCQ9b3PAhVCVZQKHT8KAUYQsAQIH
g&dpr=1, accessed 2016/10/3

[3] Kurokawa T. Maze construction by using characteristics of Eulerian graphs. British Journal of
Mathematics & Computer Science. 2015;9(6):453-472. SCIENCE DOMAIN international, UK,
ISSN: 2231-0851.

Available: http://sciencedomain.org/issue/1147

[4] Open CV Library.

Available: https://msdn.microsoft.com/ja-jp/library/dn188695.aspx (Accessed 2016/12/30)

[5] Suzuki S, Abe K. Topological structural analysis of digitized binary images by border following.

CVGIP. 1985;32-46.

[6] Rosenfeld A, Kak AC. Digital picture processing, 2nd ed. Academic Press, New York. 1982;2.

[7] Yokoi S, Toriwaki J, Fukumura T. An analysis of topological properties of digitized binary pictures

using local features. Comput. Graphics Image Process. 1975;4:63-73.

[8] Agoston MK. Computer graphics and geometric modeling, Springer; 2005.

[9] Kurokawa T, Kazumasa Mori (Shizuoka Information Processing Center Co., Ltd.), and Teruaki

Mizuno (Daiichi System Engineering Co., Ltd.). Automatic construction of picture maze by repeated
contour connection. Thailand-Japan Joint Conference on Computational Geometry and Graphics
2012;5-6. Bangkok, Thailand.

[10] Kurokawa T. Picture maze generation by repeated contour connection and graph structure of maze.

Computer Science and Engineering. 2013;3(3):76-83. Scientific & Academic Publishing, USA,
ISSN:2163-1484.
Available: http://article.sapub.org/10.5923.j.computer.20130303.04.html

[11] Kurokawa T. Construction of picture maze along set of image dot vertices. British Journal of
Mathematics & Computer Science. 2016;1(1):1-14. SCIENCEDOMAIN international, UK, ISSN:
2231-0851.

Available: http://sciencedomain.org/issue/1786

Kurokawa; BJMCS, 20(3): 1-29, 2017; Article no.BJMCS.30783

29

[12] Meng KK, Fengming D, Guan TE. Introduction to graph theory. World Scientific; 2007.

[13] Matousek J, Nesetril J. Invitation to discrete mathematics. Second Edition, Oxford University Press,
New York; 2009.

© 2017 Kurokawa; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

 Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
http://sciencedomain.org/review-history/17639

