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ABSTRACT 
 

The time-stepping DRBEM modeling was proposed to study the 2D dynamic response of 
functionally graded anisotropic plate (FGAP) subjected to a moving heat source. The FGAP is 
assumed to be graded through the thickness. A Gaussian distribution of heat flux using a moving 
heat source with a conical shape is used for analyzing the temperature profiles. The main aim of 
this paper is to evaluate the difference between Green and Lindsay (G-L) and Lord and Shulman 
(L-S) theories of coupled thermo-elasticity in rotating FGAP subjected to a moving heat source. The 
accuracy of the proposed method was examined and confirmed by comparing the obtained results 
with those known previously.  
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1. INTRODUCTION 
 
Biot [1] proposed the classical coupled thermo-
elasticity (CCTE) theory to overcome the 
paradox inherent in the classical uncoupled 
thermo-elasticity (CUTE) theory that elastic 
changes have no effect on temperature. The 
heat equations for both theories are a diffusion 
type predicting infinite speeds of propagation for 
heat waves contrary to physical observations. A 
flux rate term into Fourier law of heat conduction 
is incorporated by Lord and Shulman (L-S) [2], 
who proposed an extended thermo-elasticity 
theory (ETE) which is also called as the 
generalized thermo-elasticity theory with one 
relaxation time. Another thermo-elasticity theory 
that admits the second sound effect is reported 
by Green and Lindsay (G-L) [3], who developed 
a temperature-rate-dependent thermo-elasticity 
theory (TRDTE) which is also called the 
generalized thermo-elasticity theory with two 
relaxation times by introducing two relaxation 
times that relate the stress and entropy to the 
temperature.   
 
Functionally graded Plates (FGPs) are a type of 
non-homogeneous composites and the transient 
thermo-elastic problems for these non-
homogeneous composites become important, 
and there are several studies concerned with 
these problems, such as Skouras et al. [4], 
Mojdehi et al. [5], Zhou et al. [6], Loghman et al. 
[7], Sun and Luo [8] and Mirzaei and Dehghan [9] 
which are papers involving functionally graded 
materials. 
 
In recent years, the dynamical problem of 
thermo-elasticity for functionally graded 
anisotropic plates (FGAPs) becomes more 
important due to its many applications in modern 
aeronautics, astronautics, earthquake 
engineering, soil dynamics, mining engineering, 
plasma physics, nuclear reactors and high-
energy particle accelerators, for instance. Abd-
Alla [10] obtained the relaxation effects on 
reflection of generalized magneto-thermo-elastic 
waves. Abd-Alla and Al-Dawy [11] obtained the 
relaxation effects on Rayleigh waves in 
generalized thermo-elastic media. Abbas 
and Abd-Alla [12,13] studied generalized thermo-
elastic problems for an infinite fibre-reinforced 
anisotropic plate. Xia, et al. [14] used a time 
domain finite element method to solve dynamic 
response of two-dimensional generalized 
thermo-elastic coupling problem subjected to a 
moving heat source based on Lord and Shulman 
theory with one thermal relaxation time. 

It is hard to find the analytical solution of a 
problem in a general case, therefore, an 
important number of engineering and 
mathematical papers devoted to the numerical 
solution have studied the overall behavior of 
such materials (see, e.g., El-Naggar et al. 
[15,16], Abd-Alla et al. [17-19], Qin [20], Sladek 
et al. [21], Tian et al. [22], Fahmy [23-28], Fahmy 
and El-Shahat [29], Othman and Song, [30], Davi 
and Milazzo [31], Hou et al. [32], Abreu et al. 
[33], Espinosa and Mediavilla, [34]). 
 
The advantages in the boundary element method 
(BEM) arises from the fact that the BEM can be 
regarded as boundary–based method that uses 
the boundary integral equation formulations 
where only the boundary of the domain of the 
partial differential equation (PDE) is required to 
be meshed. But in the domain-based methods 
such the finite element method (FEM), finite 
difference method (FDM) and element free 
method (EFM) that use ordinary differential 
equation (ODE) or PDE formulations, where the 
whole domain of the PDE requires discretization. 
Thus the dimension of the problem is effectively 
reduced by one, that is, surfaces for three–
dimensional (3D) problems or curves for two-
dimensional (2D) problems. And the equation 
governing the infinite domain is reduced to an 
equation over the finite boundary. Also, the BEM 
can be applied along with the other domain-
based methods to verify the solutions to the 
problems that do not have available analytical 
solutions. Presence of domain integrals in the 
formulation of the BEM dramatically decreases 
the efficiency of this technique. Many different 
approaches have been developed to overcome 
these problems. It is our opinion that the most 
successful so far is the dual reciprocity boundary 
element method (DRBEM), which is the subject 
matter of this paper. The basic idea behind this 
approach is to employ a fundamental solution 
corresponding to a simpler equation and to treat 
the remaining terms, as well as other non-
homogeneous terms in the original equation, 
through a procedure which involves a series 
expansion using global approximating functions 
and the application of reciprocity principles. 
However, there are some difficulties of extending 
the technique to several applications such as 
non-homogeneous, non-linear and time-
dependent problems for examples. The main 
drawback in this case is the need to discretize 
the domain into a series of internal cells to deal 
with the terms not taken to the boundary by 
application of the fundamental solution. This 
additional dicretization destroys some of the 
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attraction of the method in terms of the data 
required to run the program and the complexity 
of the extra operations involved. The DRBEM is 
essentially a generalised way of constructing 
particular solutions that can be used to solve 
non-linear and time-dependent problems as well 
as to represent any internal source distribution. 
The DRBEM was initially developed by Nardini 
and Brebbia [35] in the context of two-
dimensional dynamic elasticity and has been 
extended to deal with a variety of problems 
wherein the domain integral may account for 
linear-nonlinear static-dynamic effects. A more 
extensive historical review and applications of 
dual reciprocity boundary element method may 
be found in (Brebbia et al. [36], Wrobel and 
Brebbia [37], Partridge and Brebbia [38], 
Partridge and Wrobel [39] and Fahmy [40-47]). 
 
The main objective of this paper is to study the 
model of two-dimensional equations of coupled 
thermo-elasticity with one and two relaxation 
times in rotating FGAPs subjected to a moving 
heat source. A predictor-corrector time 
integration algorithm was implemented for use 
with the DRBEM to obtain the solution for the 
temperature and displacement components. The 
accuracy of the proposed method was examined 
and confirmed by comparing the obtained results 
with the finite element method (FEM) results 
known before. 
 
2. GOVERNING EQUATIONS OF THE 

FGAP 
 
Consider a Cartesian coordinate system ���� as 
shown in Fig. 1. We shall consider a rotating 
functionally graded anisotropic plate occupies the 

region � = ���, �, �
: 0 < � < �, 0 < � < �, 0 <

� < �� with the boundary C and the material is 
functionally graded along the thickness direction. 
Thus, the governing equations of Coupled 
Thermo-elasticity with Relaxation Times can be 
written in the following form: 
 ���,� − ��� + 1
����� = ��� + 1
��� � ,           �1
 

 ��� = �� + 1
�� ��!"�!," − ���#$ − $% + &'$( )*, �2
 
 ,��$,�� = ���$%�( �,�  + �-�� + 1
��$( + &�$� * − .. �3
 

 
where ��� is the mechanical stress tensor, �1 is 
the displacement, $  is the temperature,  ��!" 
and ���  are respectively, the constant elastic 
modulus and stress-temperature coefficients of 
the anisotropic medium, � is the uniform angular 
velocity, ,��  are the thermal conductivity 
coefficients satisfying the symmetry relation ,�� = ,��  and the strict inequality �,'�
� −,'',�� < 0 holds at all points in the medium, ρ is 
the density, c  is the specific heat capacity, &  is 
the time, &'  and &�  are mechanical relaxation 
times, . is the moving heat source. 
 
3. NUMERICAL IMPLEMENTATION 
 
Making use of (2), we can write (1) as follows 
 3"��! = ��� � − #4�$ + 54�'!�! − �����) = 6"� ,    �4
 

 
The field equations can now be written in 
operator form as follows 
 3"��! = 6"� ,                                                             �5
 

 3��$ = 6�� ,                                                              �6
 
 

 
Where the operators   3"� ,  6"� , 3�� and 6�� are defined as follows 
 3"� = 4��! ::�� , 6"� = ��� � − #4�$ + 54�'!�! − �����)                                                                 �7
 

 4��! =  ��!"<, < = ::�" , 5 = =� + 1 , 4� = −��� > ::�� + ?�'5 + &' > ::�� + 5@ ::&@ 

3�� = ,�� ::��
::�� , 6�� = �-�� + 1
��$( + &�$� * + ���$%�( �,� − ..                                                  �8
 

 
Using the weighted residual method (WRM), the differential equation (5) is transformed into an 
integral equation 
 

B#3"��! − 6"�)�C�∗
E F� = 0.                                                                                                                                �9
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Now, by choosing the fundamental solution �C!∗  
as the weighting function as follows 
 3"��C!∗ = −?�C?��, H
.                                       �10
 
 
The corresponding traction field can be written as 
 IC�∗ =  ��!"�C!,"∗ J� .                                           �11
 
 
In which  J�  is the unit normal vector to the 
surface. 
 
The thermo-elastic traction vector can be written 
as follows 
 I� = I�̅�� + 1
� = L ��!"�!,"− ���#$ − $% + &'$( )M J� .           �12
 

 
Applying integration by parts to (9) using the 
sifting property of the Dirac distribution, and 
using equations (10) and (12), we can write the 
following elastic integral representation formula 
 

�C�H
 = B ��C�∗ I� − IC�∗ �� + �C�∗ ���$J�
N F 
− B 6"��C�∗ F�.E                       �13
 

The fundamental solution T∗  of the thermal 
operator LQR, defined by 
 LQRT∗ = −δ�x, ξ
.                                                �14
 
 
By implementing the WRM and integration by 
parts, the differential equation (6) is transformed 
into the thermal reciprocity equation 
 

B�3��$$∗ − 3��$∗$
F� = B�T∗$ − T$∗
F ,NE   �15
 

 
Where the heat fluxes are as follows: 
 T = −,��$,�J� ,                                                    �16
 

 T∗ = −,��$,�∗ J� .                                                   �17
 
 

The thermal integral representation formula from 
(16) may be written as  
 

$�H
 = B �T∗$ − T$∗
F N − B 6��$∗F�.E     �18
 

 
The integral representation formulae of elastic 
and thermal fields (13) and (18) can be combined 
to form a single equation as follows 

 

U�C�H
$�H
 V = B W− UIC�∗ −�C�∗ ���J�0 −T∗ V X��$ Y + X�C�∗ 00 −$∗Y XI�T YZ F N  

                   − B X�C�∗ 00 −$∗Y U 6"�−6��V F�.E                                                                                                          �19
 

 
It is convenient to use the contracted notation to introduce generalized thermo elastic vectors and 
tensors, which contain corresponding elastic and thermal variables as follows: 
 [\ = W��         ] = ^ = 1, 2, 3;$          ^ = 4,                  `                                                                                                                            �20
 

 a\ = W I�        ] = ^ = 1, 2, 3;T          ^ = 4,                  `                                                                                                                           �21
 

 

[b\∗ = c�C�∗         F = 4 = 1, 2, 3; ] = ^ = 1, 2, 3;0           F = 4 = 1, 2, 3; ^ = 4;               0           4 = 4; ] = ^ = 1, 2, 3;               −$∗       4 = 4; ^ = 4,                                  `                                                                                        �22
 

 

$db\∗ = cIC�∗         F = 4 = 1, 2, 3; ] = ^ = 1, 2, 3;−�eC∗       F = 4 = 1, 2, 3; ^ = 4;                 0          4 = 4; ] = ^ = 1, 2, 3;               −T∗      4 = 4; ^ = 4,                                  `                                                                                      �23
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�eC∗ = �C�∗ ��!J!.                                                                                                                                                 �24
 
 

The thermo-elastic representation formula (19) can be written in contracted notation as: 
 

[b�H
 = B#[b\∗ a\ − $db\[\)F − B [b\∗ f\F�,EN                                                                                       �25
 

 
The vector Sh can be written in the split form as follows 
 f\ = f\% + f\i + f\j + f\i( + f\i� + f\j( + f\j� ,                                                                                                     �26
 

 
Where 
 f\% = W�����         ] = ^ = 1, 2, 3;.                   ^ = 4,                 `                                                                                                                    �27
 

 f\i = �\k[k         lmIℎ    �\k = W −4�               ^ = 1, 2, 3; o = 4;0                         otherwise,         ̀                                                         �28
 

 f\j = −#4�! + 54�'!)℧[k       

 With     ℧ = W1         ] = ^ = 1, 2, 3; 6 = o = 1, 2, 3;0                        qIℎrslmtr,                        ̀                                                                                  �29
 

 f\i( = −�-�� + 1
�?\k[(k  lmIℎ  ?\k = � 1              ^ = 4; o = 4;0              qIℎrslmtr,      `                                                            �30
 

 f\i� = −�-�� + 1
�&�?\k[�k ,                                                                                                                              �31
 
 f\j( = −$%Å?'v�!"<[(k ,                                                                                                                                         �32
 
 f\j� = Ⅎ[�k                lmIℎ    Ⅎ = W�                                        ^ = 1, 2, 3;  o = 1, 2, 3;0                                                  ^ = 4; 6 = o = 4..`                                    �33
 

 
The thermo-elastic representation formula (19) can be rewritten in matrix form as follows: 
 wf\x = U�����. V + X−4�$0 Y + U−#4�! + 54�'!)�!0 V 

                               +��-�� + 1
�
 X0$( Y − �-�� + 1
�&� X0$� Y − $% U 0����( �,�V + X��� �0 Y.                            �34
 

 
By implementing the DRBEM to transform the domain integral in (25) to the boundary integral, the 
source vector f\ in the domain was approximated by the following series of given tensor functions 6\yz  
and unknown coefficients �yz  
 

f\ ≈ | 6\yz �yz .y
z}'                                                                                                                                                      �35
 

 
According to the implementation of the DRBEM, the surface of the plate has to be discretized into 
boundary elements, where the total number of interpolation points is  ~ = ~� + ~�  in which ~�  are 
collocation points on the boundary   and ~� are the interior points of R 
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Thus, the thermo-elastic representation formula (25) can be written in the following form 
 

[b�H
 = B#[b\∗ $\ − $db\∗ [\)F − | B [b\∗ 6\yz F�E
y

z}'N �yz .                                                                           �36
 

 
By applying the WRM to the following inhomogeneous elastic and thermal equations: 
 3"��!�z = 6��z ,                                                                                                                                                         �37
 

 3��$z = 6�vz ,                                                                                                                                                           �38
 
 
Where the weighting functions were chosen to be the same as the elastic and thermal fundamental 
solutions �C�∗  and   $∗. Then the elastic and thermal representation formulae are as follows (Fahmy 
[42]) 
 

�C�z �H
 = B#�C�∗ I��z − IC�∗ ���z )N F − B �C�∗ 6��z F�,E                                                                                      �39
 

 

$z�H
 = B�T∗$z − Tz$∗
N F − B 6z$∗F�.E                                                                                                 �40
 

 
The elastic and thermal representation formulae can be combined to form the following dual 
representation formulae 
 

[byz �H
 = B #[b\∗ $\yz − $b\∗ [\yz )F N − B [b\∗ 6\yz F�,E                                                                                 �41
 

 
By substituting from (41) into (36), we can rewrite the dual reciprocity representation formula of 
coupled thermo elasticity as follows 
 

[b�H
 = B#[b\∗ $\ − $�b\∗ [\)F N + | �[byz �H
 + B#$b\∗ [\yz − [b\∗ $\yz )F N �y
z}' �yz .                           �42
 

 
Using the thin plate splines (TPS) of Fahmy [27], we can write the particular solution of the 
displacement as follows 
 

[�yz =
���
�� − 4�� ��%��s
 + �q��s
 − s� �q� s�� − 4��� , s > 0

   4�� UΥ+ �q� >�2@V − 4��  ,                                       s = 0 `                                                                 �43
 

 
where �% is the Bessel function of the third kind of order zero, Υ = 0.5772156649015328 is the Euler's 
constant and s = ‖� − H‖ is the Euclidean distance between the field point � and the load point H. 
 
According to the steps described in Fahmy [43], the dual reciprocity boundary integral equation (42) 
can be written in the following system of equations 
 ���� − �Ǐ = #�[� − �℘� )�.                                                                                                                                      �44
 
 
Where the matrix ζ  contains the fundamental solution T�∗  and the matrix ζ�  contains the modified 
fundamental tensor T��∗  with the coupling term. 



 
 
 
 

Fahmy; PSIJ, 9(4): 1-13, 2016; Article no.PSIJ.24052 
 
 

 
7 
 

The generalized displacements [k and velocities [(k are approximated as follows [48] 
 

[k ≈ | 6kbz ��
�bz,y
z}'                                              �45
 

 [(k ≈ ∑ 6kbz ��
�ebz ,yz}'                                           �46
  
 

Where 6kbz  are tensor functions and �bz  and  �ebz 
are unknown coefficients. 
 
The gradients of displacement and velocity were 
approximated as follows 
 

[k," ≈ | 6�,"z ��
��z ,y
z}'                                          �47
 

 

[(k," ≈ | 6kb,"z ��
�ebz .y
z}'                                        �48
 

 
If these approximations are substituted into 
equations (28) and (32) we obtain the 
corresponding approximating source terms as 
follows 

f\i = | f\bi,�y
z}' �bz ,                                                   �49
 

 

f\j( = −$%�!"< | f\bj( ,�y
z}' �ebz,                                 �50
 

 
Where  
 f\bi,� = f\k6kb,"z ,                                                     �51
 

 f\bj( ,� = fk\6kb,"z .                                                    �52
 

 
Applying the point collocation procedure of Gaul, 
et al. [49] to equations (35), (45) and (46) we 
have the following system of equations 
 f  = ¡�,          [ = ¡′�,           [( = ¡′�e.                �53
 
 
Similarly, the application of the point collocation 
procedure to the source terms equations (29), 
(30), (31), (33), (49) and (50) leads to the 
following system of equations 

 f j = −#4�! + 54�'!)℧[k       With    ℧ = W1         ] = ^ = 1, 2, 3; 6 = o = 1, 2, 3;0                        qIℎrslmtr,                        `                    �54
 

 f i( = �-�� + 1
�?\k[,(                                                                                                                                      �55
 
 f i� = −-��� + 1
�&�?\k[,�                                                                                                                              �56
 
 f j� = �̂[,�                                                                                                                                                                  �57
 
 f i = ℬi�,                                                                                                                                                                �58
 
 f j( = −$%�!"<ℬj( �e.                                                                                                                                               �59
 

 
Solving the system (53) for α, γ and γe yields 
 � = ¡£'f ,           � = ¡′£'[,            �e = ¡′£'[,(                                                                                                   �60
 

 
Now, the coefficients α can be expressed in terms of nodal values of the unknown displacements, 
velocities and accelerations as follows: 
 � = ¡£'�f % + Xℬi¡′£' − #4�! + 54�'!)℧Y [ + X�-�� + 1
�?\k − $%�!"<ℬj( ¡′£'Y [(                          +� �̂ − �-�� + 1
�&�?\k*[� 
,                                                                                                                      �61
 

 
Where A¥ and ℬ¦ are assembled using the sub matrices wℲx and ωh§ respectively. 
 
Substituting from Eq. (61) into Eq. (44), we obtain 
 ¨[� + ©[( + �[ = ℚ,                                                                                                                                          �62
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In which [� , [,( [ and ℚ represent the acceleration, velocity, displacement and external force vectors, 
respectively, «, ¨, © and � represent the volume, mass, damping and stiffness matrices, respectively, 
as follows: 
 « = #�℘� − �[�)¡£', ¨ = «� �̂  − -��� + 1
�&�?\k*,          © = « X�-�� + 1
�?\k − $%�!"<ℬj( ¡′£'Y, � = �� + « Xℬi¡′£' + #4�! + 54�'!)℧Y ,   ℚ = �$ + «f %,                                                                         �63
 
 
Using the following initial conditions 
 

 [�0
 = [%, [( �0
 = «%.  
 

Then, from Eq. (62), we can calculate the initial 
acceleration vector W% as follows  
 ¨% = ℚ% − ©«% − �[%.                                 �64
 

 
An implicit-explicit time integration algorithm of 
Hughes et al. [50, 51], was developed and 
implemented for use with the DRBEM. This 
algorithm consists in satisfying the following 
equations 
 ¨[��®' + ©¯[(�®' + ©°[(¥�®' + �¯[�®'+ �°[¥�®' = ℚ�®',             �65
 

 [�®' = [¥�®' + �∆&�[��®',                                �66
 
 [(�®' = [(¥�®' + �∆&[��®',                                  �67
 

 
Where the superscripts ²  and ³  denote, 
respectively, to the implicit and explicit parts and 
 [¥�®' = [�®' + ∆&[(� + �1 − 2�
 ∆&�2 [��,   �68
 

 [(¥�®' = [(� + �1 − �
∆&[��,                             �69
 
 

Where we used the quantities [¥�®' and [(¥�®' to 
denote the predictor values, and [�®'  and [(�®' 
to denote the corrector values. It is easy to 
recognize that the equations (66)-(69) 
correspond to the Newmark formulas [52]. 
 
At each time-step, equations (65)-(69), constitute 
an algebraic problem in terms of the unknown 
accelerations [��®'  

The first step in the code starts by forming and 
factoring the effective mass 
 ¨∗ = ¨ + �∆& ¯ + �∆&��¯.                            �70
 
 
The time step ∆τ  must be constant to run this 
step. As the time-step ∆τ  is changed, the first 
step should be repeated at each new step. The 
second step is to form residual force 
 ℚ�®'∗ = ℚ�®' −  ¯[(¥�®' −  °[(¥�®' − �¯[¥�®'− �°[¥�®'                              �71
 
 
The third step is to solve  ¨∗[��®' = ℚ�®'∗  using a 
Crout elimination algorithm [53] which fully 
exploits that structure in that zeroes outside the 
profile are neither stored nor operated upon. The 
fourth step is to use predictor-corrector equations 
(66) and (67) to obtain the corrector 
displacement and velocity vectors, respectively. 
 
4. NUMERICAL RESULTS AND 

DISCUSSION 
 
The Gaussian heat flux distribution .��, �
 can 
be expressed as 
 

.��, �
 = 3.%´s� rµ£¶#·¸®¹¸)º¸ »                              �72
 
 
In which Q%  is heat power of the plane heat 
source, s is the heat source radius.  
 
Following Rasolofosaon and Zinszner [54] 
monoclinic North Sea sandstone reservoir rock 
was chosen as an anisotropic material and 
physical data are as follows: 

 
Elasticity tensor 
 

 ��!" =
½¾¾
¾¾¿
17.77 3.78 3.763.78 19.45 4.133.76 4.13 21.79

0.24      −0.28   0.030     0   1.130     0  0.380     0       00     0       00.03  1.13 0.38
8.30      0.66     0   0.66    7.62   0   0        0    7.77ÀÁÁ

ÁÁÂ  ÃÄ]                                                        �73
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Mechanical temperature coefficient 
 ��� = Å0.001 0.02 00.02 0.006 00 0 0.05Æ ∙ 10È ~ /�=�    �74
 

 

Tensor of thermal conductivity is 
 ,�� = Å 1 0.1 0.20.1 1.1 0.150.2 0.15 0.9 Æ /�=                       �75
 

 

Mass density � = 2216 kg/m¶  and heat capacity - = 0.1  J/(kg K). The numerical values of the 
temperature and displacement are obtained by 
discretizing the boundary into 120 elements �~� = 120
  and choosing 60 well-spaced out 
collocation points �~� = 60
 in the interior of the 
solution domain, referring to the recent work of 
Fahmy [55,56]. 
 

 
 

The initial and boundary conditions considered in 
the calculations are 
 ]I & = 0, �' = �� = �( ' = �( � = 0,  $ = 0  �76
 

 ]I � = 0             
ËjÌË· = ËjÌË· = 0, ËiË· = 0       �77
 

 ]I � = �             
ËjÌË· = ËjÌË· = 0, ËiË· = 0        �78
 

 ]I � = 0             
ËjÌË¹ = ËjÌË¹ = 0, ËiË¹ = 0        �79
 

 ]I � = �            
ËjÌË¹ = ËjÌË¹ = 0, ËiË¹ = 0       �80
 

 

The present work should be applicable to any 
problems for coupled theory of thermo-elasticity 
in rotating FGAP. Such a technique was 
discussed in Fahmy et al. [57-60] who solved the 
special case from this study in the absence of a 
moving heat source. To achieve better efficiency 
than the technique described in Fahmy et al. [57-
60], we use thin plate splines into a code, which 
is proposed in the current study. We extend the 
study of Fahmy et al. [57-60], to solve 2D in the 
presence of a moving heat source. Thus, it is 

perhaps not surprising that the numerical values 
obtained here are in excellent agreement with 
those obtained by Fahmy et al. [57-60]. The 
results are plotted in Figs. 2-4 for the Green and 
Lindsay (G-L) theory and plotted in Figs. 5–7 for 
the Lord and Shulman (L-S) theory to show the 
variation of the temperature T  and the 
displacement components �'  and ��  with � 
coordinate. We can conclude from these figures 
that the temperature T and the displacements �' 
decrease with increasing �  but the 
displacements ��  increase with increasing �  for 
the two theories. It has been found that the 
comparison between these theories evaluates 
the effect of second thermal relaxation time taken 
by Green and Lindsay. These results obtained 
with the DRBEM have been compared 
graphically with those obtained using the finite 
element method (FEM) method of Xia et al. [14]. 
It can be seen from these figures that the 
DRBEM results are in excellent agreement with 
the results obtained by FEM, thus confirming the 
accuracy of the DRBEM. 
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5. CONCLUSION 
 
A predictor-corrector implicit-explicit time 
integration algorithm was implemented for use 
with the DRBEM to obtain the solution for the 
temperature and displacement components of 
the two-dimensional problem of coupled thermo-
elasticity theories with one and two relaxation 
times in rotating FGAP subjected to a moving 
heat source with a conical shape. The results 
obtained are presented graphically to show the 
difference between Green and Lindsay (G-L) and 
Lord and Shulman (L-S) theories of coupled 
thermo-elasticity with relaxation times in rotating 
FGAP. The accuracy of the DRBEM results was 
examined and confirmed by comparing the 
obtained results with the FEM obtained results. It 
can be seen from these figures that the DRBEM 
results are in excellent agreement with the 
results obtained by FEM.  
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