Fabrication and Characterization of Gliclazide Nanocrystals

Ravouru, Nagaraju and Venna, Rajeswari Surya Anusha and Penjuri, Subhash Chandra Bose and Damineni, Saritha and Kotakadi, Venkata Subbaiah and Poreddy, Srikanth Reddy (2018) Fabrication and Characterization of Gliclazide Nanocrystals. Advanced Pharmaceutical Bulletin, 8 (3). pp. 419-427. ISSN 2228-5881

[thumbnail of apb-8-419.pdf] Text
apb-8-419.pdf - Published Version

Download (930kB)

Abstract

Purpose: The main aim of the present investigation was to enhance the solubility of poorly soluble Gliclazide by nanocrystallization. Methods: In present investigation gliclazide nanocrystals were prepared by sonoprecipitation using Pluronic F68, Poly Vinyl Alcohol (PVA), Poly ethylene Glycol 6000 (PEG), Poly Vinyl Pyrrolidine (PVP K30) and Sodium Lauryl Sulphate (SLS) as stabilizers. Fourier Transform Infrared Spectroscopic study (FTIR), Differential Scanning Calorimetry (DSC) and X ray diffraction (XRD) studies were conducted to study the drug interactions. Size and zeta potential of the nanocrystals were evaluated. In vitro and in vivo studies of nanocrystals were conducted in comparison to pure gliclazide. Results: The Gliclazide nanocrystals (GN) showed mean particle size of 131±7.7 nm with a zeta potential of -26.6 mV. Stable nanocrystals were formed with 0.5% of PEG 6000. FTIR, DSC and XRD studies of nanocrystals showed absence of interactions and polymorphism. SEM photographs showed a change in morphology of crystals from rod to irregular shape. There is an increase in the saturation solubility and the percentage drug release from formulation GN5 (Optimized Gliclazide Nanocrystals) was found to be 98.5 in 15 min. In the in vivo study, GN5 nanocrystals have reduced the blood glucose level to 296.4±4.26 mg/dl in 12 hr. The nanocrystals showed lower tmax and higher Cmax values as compared to pure gliclazide. Conclusion: The prepared nanocrystals of gliclazide were stable without any drug polymer interactions. Increase in the dissolution of nanocrystals compared to pure gliclazide and significant reduction in blood glucose level in vivo indicated better bioavailability of the nanocrystals. Therefore, it is concluded that nanocrystal technology can be a promising tool to improve solubility and hence dissolution of a hydrophobic drug.

Item Type: Article
Subjects: Academics Guard > Medical Science
Depositing User: Unnamed user with email support@academicsguard.com
Date Deposited: 14 Apr 2023 10:25
Last Modified: 24 Jul 2024 10:01
URI: http://science.oadigitallibraries.com/id/eprint/549

Actions (login required)

View Item
View Item